of such partitions. An expression for $f_{k}(n)$ could be

$$
f_{k}(n)=\sum_{a_{1}+a_{2}+\cdots+a_{n}=k}\binom{k}{a_{1}, a_{2}, \cdots, a_{n}}
$$

Where the sum is taken over all sequences $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ of even nonnegative even integers satisfying $a_{1}+a_{2}+\cdots+a_{n}=k$.

We will use an exponential generating function to obtain a 1
closed form for that sum. Consider the exponen ing function

$$
\sum_{j=0}^{\infty} \frac{x^{2 j}}{(2 j)!}=\frac{e^{x}+e^{-x}}{2}=\cosh (x)
$$

The important observation is that

$$
f_{k}(n)=\sum_{a_{1}+a_{2}+\cdots+a_{n}=k}\binom{k}{a_{1}, a_{2}, \cdots, a_{n}}=\left[\frac{x^{k}}{k!}\right]\left(\frac{e^{x}+e^{-x}}{2}\right)^{n}
$$

i.e. the coefficient of $\frac{x^{k}}{k!}$ in the series $\left(\frac{e^{x}+e^{-x}}{2}\right)^{n}$

Expanding yields

$$
\begin{aligned}
\left(\frac{e^{x}+e^{-x}}{2}\right)^{n} & =\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}\left(e^{-x}\right)^{i}\left(e^{x}\right)^{n-i} \\
& =\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i} e^{x(n-2 i)}
\end{aligned}
$$

And now it is clear that

$$
\begin{aligned}
f_{k}(n) & =\left[\frac{x^{k}}{k!}\right] \frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i} e^{x(n-2 i)} \\
& =\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k}
\end{aligned}
$$

