(3) (Sequences of subsets)
(a) Let $k, n \geq 1$ be given. Find the number of sequences $S_{0}, S_{1}, \ldots, S_{k}$ of subsets of $[n]$ such that for any $1 \leq n \leq k$ we have either:

$$
\begin{gathered}
S_{i} \supseteq S_{i-1} \quad \text { and } \quad\left|S_{i}-S_{i-1}\right|=1, \text { or } \\
S_{i} \subseteq S_{i-1} \quad \text { and } \quad\left|S_{i-1}-S_{i}\right|=1
\end{gathered}
$$

First, as there are 2^{n} possible subsets there are 2^{n} possibilities for the set S_{0}. Now, with every transition from a subset S_{i} to S_{i+1} we "toggle" the membership of one of its elements. This means that for the transitions we are simply counting the number of sequences of length k that use numbers from $[n]$. Since there are n^{k} such sequences the answer is

$$
2^{n} n^{k}
$$

(b) Prove that there are exactly

$$
\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k}
$$

such sequences with the additional property that $S_{0}=S_{k}=\emptyset$.
For ease in notation, let

$$
T_{k, n}=\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k}
$$

Since every element that is "toggled" in must also be "toggled" out, we are simply counting the number of sequences of length k of numbers from $[n]$ that use each number an even number of times-for example, we can have

$$
123231441441 .
$$

We will call such a sequence a strongly even.
Now, if k is odd, this will never work, so the number of ways is 0 , which agrees with this formula. Now assume that k is even. If $n=1$, then there is 1 possibility (all 1 s), so

$$
T_{k, n}=1
$$

for all even k. Now, assume that the formula works for some fixed value n. To count the number of strongly even sequences that use the numbers in $[n+1]$, we break it down into the cases where element $n+1$ appears i times, and count the number of possibilities for the other n numbers in the remaining $k-i$ positions in the sequence:
(i) " $n+1$ " appears 0 times, so the remaining numbers appear k times. There are $T_{k, n}$ ways of doing this.
(ii) " $n+1$ " appears 1 time. This is an odd number, and so there should be $T_{k-1, n}=0$ ways of doing this.
(iii) " $n+1$ " appears 2 times, so the remaining numbers appear $k-2$ times. There are $\binom{k}{2}$ ways for placing the numbers " $n+1$ " and $T_{k-2, n}$ ways of choosing the remaining numbers, so there are $\binom{k}{2} T_{k-2, n}$ ways.
(iv) In general, if " $n+1$ " appears j times, there are $\binom{k}{j} T_{k-j, n}$ ways. Take note that this works even for odd j as $k-j$ is odd, so that while we are counting

$$
\sum_{j=0}^{k / 2}\binom{k}{2 j} T_{k-2 j, n}
$$

it is much more convenient to use the equivalent sum

$$
\sum_{j=0}^{k}\binom{k}{j} T_{k-j, n}
$$

despite the fact that half of its summands are zero.

So now to show that the number of strongly even sequences using the set $[n+1]$ is equal to $T_{n+1, k}$ we use some algebra:

$$
\begin{aligned}
& \sum_{j=0}^{k}\binom{k}{j} T_{k-j, n} \\
= & \sum_{j=0}^{k}\binom{k}{j}\left[\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k-j}\right] \\
= & \frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}\left[\sum_{j=0}^{k}\binom{k}{j}(n-2 i)^{k-j}\right] \\
= & \frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(n+1-2 i)^{k} \\
= & \frac{1}{2^{n+1}} \cdot 2\left[\binom{n}{0}(n+1)^{k}+\binom{n}{1}(n-1)^{k}+\binom{n}{2}(n-3)^{k}+\cdots+\binom{n}{n}(n-1)^{k}\right] \\
= & \left.\frac{1}{2^{n+1}}\left[\binom{n}{0}(n+1)^{k}+\binom{n}{0}(n+1)^{k}+\left[\binom{n}{1}(n-1)^{k}+\cdots+\binom{n}{n}(n-1)^{k}\right]+\left[\binom{n}{1}(n-1)^{k}+\cdots+\binom{n}{n}(n-1)^{k}\right]\right]\right] \\
= & \frac{1}{2^{n+1}}\left[\binom{n}{0}(n+1)^{k}+\binom{n}{n}(n+1)^{k}+\binom{n}{n-1}(n-1)^{k}+\cdots+\binom{n}{0}(n-1)^{k}+\binom{n}{1}(n-1)^{k}+\cdots+\binom{n}{n}(n-1)^{k}\right] \\
= & \frac{1}{2^{n+1}}\left[\binom{n}{0}(n+1)^{k}+\binom{n}{0}(n-1)^{k}+\binom{n}{1}(n-1)^{k}+\cdots+\binom{n}{n-1}(n-1)^{k}+\binom{n}{n}(n-1)^{k}+\binom{n}{n}(n+1)^{k}\right] \\
= & \frac{1}{2^{n+1}}\left[\binom{n+1}{0}(n+1)^{k}+\binom{n+1}{1}(n-1)^{k}+\cdots+\binom{n+1}{n}(n-1)^{k}+\binom{n+1}{n+1}(n+1)^{k}\right] \\
= & \frac{1}{2^{n+1}} \sum_{i=0}^{n}\binom{n+1}{i}(n+1-2 i)^{k} \\
= & T_{k, n+1} .
\end{aligned}
$$

