(3) (Sequences of subsets)

()

Let k,n > 1 be given. Find the number of sequences Sy, S1, ..., Sk of subsets of [n] such that for any
1 < n <k we have either:

Si D) Sifl and |S1 — Sl',1| = 1, or
Si Q Si—l and |Si_1 — Sz' =1.
First, as there are 2" possible subsets there are 2™ possibilities for the set Sy. Now, with every transition
from a subset S; to S;+1 we “toggle” the membership of one of its elements. This means that for the

transitions we are simply counting the number of sequences of length k that use numbers from [n].
Since there are n* such sequences the answer is

2k,

1 " n k

- — 9
2 i=0 <Z> =2

such sequences with the additional property that So = Sy = ().

For ease in notation, let
1 «— (n N
Tk’n:2_n‘ (’L) (TL—2Z) .
=0
Since every element that is “toggled” in must also be “toggled” out, we are simply counting the number

of sequences of length k of numbers from [n] that use each number an even number of times—for
example, we can have

Prove that there are exactly

123231441441.

We will call such a sequence a strongly even.

Now, if k is odd, this will never work, so the number of ways is 0, which agrees with this formula.
Now assume that k is even. If n = 1, then there is 1 possibility (all 1s), so
Thn =1

for all even k. Now, assume that the formula works for some fixed value n. To count the number of
strongly even sequences that use the numbers in [n + 1], we break it down into the cases where element
n + 1 appears ¢ times, and count the number of possibilities for the other n numbers in the remaining
k — i positions in the sequence:

(i) “n+1” appears 0 times, so the remaining numbers appear k times. There are T}, ways of doing

this.

(i) “n+1” appears 1 time. This is an odd number, and so there should be Tj_1 ,, = 0 ways of doing
this.

(iii) “n + 1”7 appears 2 times, so the remaining numbers appear k — 2 times. There are (’;) ways for
placing the numbers “n + 1”7 and Tj;_2 5, ways of choosing the remaining numbers, so there are
(g)Tk_gm ways.

(iv) In general, if “n + 1”7 appears j times, there are (I;-)kaj,n ways. Take note that this works even
for odd j as k — j is odd, so that while we are counting

K2
2 <2j> Hizin
j=0

it is much more convenient to use the equivalent sum

()

Jj=0

despite the fact that half of its summands are zero.
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equal to Thp41,, we

So now to show that the number of strongly even sequences using the set [n + 1] is

e some algebra:
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