$3 \mid \quad$ Sequences of subsets

(a) Let $n, k \geq 1$. Consider the bijection between the sequences $S_{0}, S_{1}, \ldots S_{k}$ of subsets of $[n]$ such that for any $1 \leq i \leq l$ we have either:

$$
\begin{array}{lll}
S_{i} \supset S_{i-1} & \text { and } & \left|S_{i} \backslash S_{i-1}\right|=1, \text { or } \\
S_{i} \subset S_{i-1} & \text { and } & \left|S_{i-1} \backslash S_{i}\right|=1
\end{array}
$$

and the set of pairs $\left(S_{0},\left\{b_{i}\right\}_{i=1}^{k}\right)$.

$$
S_{0}, S_{1}, \ldots S_{k} \longrightarrow\left(S_{0},\left\{S_{i} \triangle S_{i-1}\right\}_{i=1}^{k}\right)
$$

where $S_{i} \triangle S_{i-1}$ is the symmetric difference of the sets S_{i} and S_{i-1}, and whose inverse is:

$$
\left(S_{0},\left\{b_{i}\right\}_{i=1}^{k}\right) \longrightarrow S_{0}, S_{1}=S_{0} \triangle\left\{b_{1}\right\}, S_{2}=S_{1} \triangle\left\{b_{2}\right\}, \ldots, S_{k}=S_{k-1} \triangle\left\{b_{k}\right\}
$$

Now, the cardinality of the set of such pairs is $2^{n} \times n^{k}$, since there are 2^{n} subsets of [n] and $n^{k} k$-sequences of elements in $[n]$.

Then, the number of such sequences $S_{0}, S_{1}, \ldots S_{k}$ is:

$$
2^{n} \times n^{k}
$$

(b) First note that the number of such sequences with the additional condition $S_{0}=$ $S_{k}=\emptyset$ is zero if k is odd, but this agrees with the formula:

$$
\begin{aligned}
2 \sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k} & =\sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k}+\sum_{i=0}^{n}\binom{n}{(n-i)}(n-2(n-i))^{k} \\
& =\sum_{i=0}^{n}\left(\binom{n}{i}(n-2 i)^{k}+\binom{n}{(n-i)}(n-2(n-i))^{k}\right) \\
& =\sum_{i=0}^{n}\binom{n}{i}\left((n-2 i)^{k}+(2 i-n)^{k}\right) \\
& =\sum_{i=0}^{n}\binom{n}{i}\left((n-2 i)^{k}-(n-2 i)^{k}\right) \\
& =\sum_{i=0}^{n}\binom{n}{i} 0=0
\end{aligned}
$$

so $\sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k}=0$ and $\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k}=0$.
(Idea: José Acevedo) Considering the bijection in part (a), the number of sequences such that $S_{0}=S_{k}=\emptyset$ is just the number of k-sequences of elements in [n] such that every element appears in an even number of positions.

If $k=a_{1}+a_{2}+\cdots+a_{n}$ is an n-weak composition of k, then there are $\left(\begin{array}{ccc} & k & \\ a_{1} & a_{2} & \ldots\end{array}\right)$ sequences of length k having exactly $a_{1} 1 \mathrm{~s}, a_{2} 2 \mathrm{~s}$, and so on. So what we want to count is:

$$
\sum_{\substack{a_{1}+a_{2}+\ldots+a_{n}=k \\
a_{i} \in 2 \mathbb{Z} \geq 0}}\left(\begin{array}{ccc}
k \\
a_{1} & a_{2} & \ldots
\end{array}\right)
$$

Remember that:

$$
\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{k}=\sum_{\substack{a_{1}+a_{2}+\cdots+a_{n}=k \\
a_{i} \in \mathbb{Z}}}\left(\begin{array}{c}
k \\
a_{1} \\
a_{2}
\end{array} \ldots a_{n}\right) x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}
$$

Now, we will evaluate this multinomial in all the points of the form $(\pm 1, \pm 1, \ldots, \pm 1)$ (2^{n} total) and sum up.

On the left hand, there are $\binom{n}{i}$ ways to give values to the n variables in such a way that exactly i terms are -1 and the remaining $n-i$ are 1 , and in this case, the evaluation is $((-1) i+(1)(n-i))^{k}=(n-2 i)^{k}$. Adding over all the possible values of i, the left side is:

$$
\sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k}
$$

On the right hand, first fix an element $\left(\begin{array}{cc}k \\ a_{1} & a_{2}\end{array} \ldots a_{n}\right) x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}$ and evaluate it on all the elements $(\pm 1, \pm 1, \ldots, \pm 1)$ and sum. Clearly, if all a_{i} 's are even, $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}$ will always be 1 , so the sum becomes: $2^{n}\left(\begin{array}{ccc}k \\ a_{1} & a_{2} & \ldots\end{array} a_{n}\right)$. In the case that some a_{j} is odd, then all the evaluations in $(\pm 1, \ldots, \pm 1,1, \pm 1, \ldots, \pm 1)$ (where the 1 appears in the j-th position) have the opposite sing that the evaluations in $(\pm 1, \ldots, \pm 1,-1, \pm 1, \ldots, \pm 1)$, so the sum is zero. Then, adding all the evaluations over the right hand gives:

$$
\sum_{\substack{a_{1}+a_{2}+\ldots+a_{n}=k \\
a_{i} \in 2 \mathbb{Z} \geq 0}} 2^{n}\binom{k}{a_{1} a_{2} \ldots}=2^{n} \sum_{\substack{a_{1}+a_{2}+\ldots+a_{n}=k \\
a_{i} \in 2 \mathbb{Z} \geq 0}}\left(\begin{array}{c}
k \\
a_{1} \\
a_{2}
\end{array} \ldots a_{n}\right)
$$

So we have the equality:

$$
\sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k}=2^{n} \sum_{\substack{a_{1}+a_{2}+\ldots+a_{n}=k \\
a_{i} \in 2 \mathbb{Z} \geq 0}}\left(\begin{array}{c}
k \\
a_{1} \\
a_{2}
\end{array} \ldots a_{n}\right)
$$

and therefore:

$$
\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k}=\sum_{\substack{a_{1}+a_{2}+\ldots+a_{n}=k \\
a_{i} \in 2 \mathbb{Z} \geq 0}}\left(\begin{array}{ccc}
k \\
a_{1} & a_{2} & \ldots
\end{array} a_{n}\right)
$$

Thus, we have proven that the number of such sequences is:

$$
\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(n-2 i)^{k}
$$

