2. (Counting binary words by runs) Collaborators: Nina Cerutti, Hannah Winkler A binary word is a word consisting of 0 s and 1 s . A run is a maximal string of consecutive 1 s . For example the word 11010111011 has 4 runs. Find the number of binary words having exactly $m 0 \mathrm{~s}, n 1 \mathrm{~s}$, and k runs.

Proof. This is a fun problem and as usual it is helpful to think of an example. First allow me to define a sequence of zeros to be a stop. So for instance the following binary word would contain 3 stops.

000111100110 A binary word with 3 stops.

Suppose we wanted to generate a binary word with $n=41$'s and $m 0$'s and k runs. Now I want to consider all of the possible sequences of runs. In other words I want to consider all the ways of grouping the 41 's. This results in the following possibilities:

Grouping of 4 1's	Number of Runs
$1-1-1-1$	4 runs
$11-1-1$	3 runs
$1-11-1$	3 runs
$1-1-11$	3 runs
$11-11$	2 runs
$111-1$	2 runs
$1-111$	2 runs
1111	1 run

But notice that the different groupings of 41 's is just the number of compositions of 4 . That is there are 2^{4-1} ways of grouping the 1 's. And a consquence of this is that the number of binary words with $n 1$'s and k runs is equal to k compositions of n or $\binom{n-1}{k-1}$. Also note that for k runs there are a minimum of $k-1$ and a maximum of $k+1$ stops.

Grouping of 4 1's	Number of Runs and Stops	k compositions of 4
$1-1-1-1$	4 runs, $3 \leq$ stops ≤ 5	$1+1+1+1$
$11-1-1$	3 runs, $2 \leq$ stop ≤ 4	$2+1+1$
$1-11-1$	3 runs, $2 \leq$ stops ≤ 4	$1+2+1$
$1-1-11$	3 runs, $2 \leq$ stops ≤ 4	$1+1+2$
$11-11$	2 runs, $1 \leq$ stops ≤ 3	$2+2$
$111-1$	2 runs, $1 \leq$ stops ≤ 3	$3+1$
$1-111$	2 runs, $1 \leq$ stops ≤ 3	$1+3$
1111	1 run, $0 \leq$ stops ≤ 2	4

Now we want to take into account the placement of the $m 0$'s. In order for a binary word to contain k runs it must have at least $k-1$ stops with one stop placed in between each run. This means that $k-1$ of the m zeroes must be placed in between each of the k runs. (Note that if $k-1>m$ then there are zero binary words.) For the remaining $(m-(k-1)) 0$'s, if there are any, they can be placed on either side of each of the runs, that is there are $k+1$ places to distribute the remaining 0 's.

So for a binary word consisting of n 1's, 3 runs and m 's we have

$$
\underbrace{0 \cdots 0}_{m_{1}} 1 \cdots 1 \underbrace{0 \cdots 0}_{m_{2}} 1 \cdots 1 \underbrace{0 \cdots 0}_{m_{3}} 1 \cdots 1 \underbrace{0 \cdots 0}_{m_{4}}
$$

where $m_{2}, m_{3} \geq 1$ and $m_{1}+m_{2}+m_{3}+m_{4}=m$. For this case there are place places where we can distribute the $m-20$'s. Suppose $m=5$ the possible distributions of $(5-2) 0$'s would be the following:

$$
\begin{array}{lll}
1+1+1+0 & 0+2+0+1 & 3+0+0+0 \\
0+1+1+1 & 1+0+2+0 & 0+3+0+0 \\
2+1+0+0 & 0+1+2+0 & 0+0+3+0 \\
2+0+1+0 & 0+0+2+1 & 0+0+0+3 \\
2+0+0+1 & 1+0+0+2 & 1+0+1+1 \\
1+2+0+0 & 0+1+0+2 & 1+1+0+1 \\
0+2+1+0 & 0+0+1+2 &
\end{array}
$$

But these are just the weak composition of 3 into 4 parts. In general this is a $m-(k-1)$ weak composition into $k+1$ parts or a weak $k+1$ composition of $m-(k-1)$.

So the number of binary words consisting of $n 1$'s with k runs and $m 0$'s is equal to

$$
\binom{n-1}{k-1}\binom{m-(k-1)+(k+1)-1}{k+1-1}=\binom{n-1}{k-1}\binom{m+1}{k}
$$

