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Now I am going to jump to a combinatorial interpretation of the right hand side of the equation.

We know that ✓
n� 1

k � 1

◆
is the formula for k compositions of [n] (1)

So in this example the right hand side of the equation represents the k = 4 (3 = k � 1) compositions of
n = 5 (4 = n� 1).

If we apply the same combinatorial interpretation to the left hand side of the equation, we have the
sum of 3 compositions of 3 and 3 compositions of 4.

So we would like to say that there is a bijection between the number of k + 2 compositions of n + 2
and the sum of k + 1 compositions of k + 1 up to k + 1 compositions of n.
The 3 compositions of 3 and the 3 compositions of 4 are the following

3 comp of 3 3 comp of 4

1 + 1 + 1 2 + 1 + 1

1 + 2 + 1

1 + 1 + 2

The 4 compositions of 5 are the following

1 + 1 + 1 + 2 2 + 1 + 1 + 1

1 + 2 + 1 + 1

1 + 1 + 2 + 1

There appears to be a nice bijection such that depending on the di↵erence between n+ 2 and i we simply
add (n + 2 � i) to the composition k + 1 of i + 1 to get a unique element of the k + 2 compositions of
n + 2. So in our example we add 2 to the composition 1 + 1 + 1 to obtain a 4 composition of 5 because
5� 3 = 2 and we add a 1 to the compositions 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2 because 5� 4 = 1.

c. (Bonus) For any positive integer n,
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2. (Counting binary words by runs) Collaborators: Nina Cerutti, Hannah Winkler
A binary word is a word consisting of 0s and 1s. A run is a maximal string of consecutive 1s. For example the
word 11010111011 has 4 runs. Find the number of binary words having exactly m 0s, n 1s, and k runs.

Proof. This is a fun problem and as usual it is helpful to think of an example. First allow me to define a
sequence of zeros to be a stop. So for instance the following binary word would contain 3 stops.

000111100110 A binary word with 3 stops.
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Suppose we wanted to generate a binary word with n = 4 1’s and m 0’s and k runs. Now I want to consider
all of the possible sequences of runs. In other words I want to consider all the ways of grouping the 4 1’s. This
results in the following possibilities:

Grouping of 4 1’s Number of Runs

1� 1� 1� 1 4 runs

11� 1� 1 3 runs

1� 11� 1 3 runs

1� 1� 11 3 runs

11� 11 2 runs

111� 1 2 runs

1� 111 2 runs

1111 1 run

But notice that the di↵erent groupings of 4 1’s is just the number of compositions of 4. That is there are
24�1 ways of grouping the 1’s. And a consquence of this is that the number of binary words with n 1’s and k

runs is equal to k compositions of n or
�n�1
k�1

�
. Also note that for k runs there are a minimum of k � 1 and a

maximum of k + 1 stops.

Grouping of 4 1’s Number of Runs and Stops k compositions of 4

1� 1� 1� 1 4 runs, 3  stops  5 1 + 1 + 1 + 1

11� 1� 1 3 runs, 2  stop  4 2 + 1 + 1

1� 11� 1 3 runs, 2  stops  4 1 + 2 + 1

1� 1� 11 3 runs, 2  stops  4 1 + 1 + 2

11� 11 2 runs, 1  stops  3 2 + 2

111� 1 2 runs, 1  stops  3 3 + 1

1� 111 2 runs, 1  stops  3 1 + 3

1111 1 run, 0  stops  2 4

Now we want to take into account the placement of the m 0’s. In order for a binary word to contain k runs
it must have at least k � 1 stops with one stop placed in between each run. This means that k � 1 of the
m zeroes must be placed in between each of the k runs. (Note that if k � 1 > m then there are zero binary
words.) For the remaining (m� (k� 1)) 0’s, if there are any, they can be placed on either side of each of the
runs, that is there are k + 1 places to distribute the remaining 0’s.

So for a binary word consisting of n 1’s, 3 runs and m 0’s we have

0 · · · 0| {z }
m1

1 · · · 1 0 · · · 0| {z }
m2

1 · · · 1 0 · · · 0| {z }
m3

1 · · · 1 0 · · · 0| {z }
m4

where m2,m3 � 1 and m1+m2+m3+m4 = m. For this case there are place places where we can distribute
the m� 2 0’s. Suppose m = 5 the possible distributions of (5� 2) 0’s would be the following:

1 + 1 + 1 + 0 0 + 2 + 0 + 1 3 + 0 + 0 + 0

0 + 1 + 1 + 1 1 + 0 + 2 + 0 0 + 3 + 0 + 0

2 + 1 + 0 + 0 0 + 1 + 2 + 0 0 + 0 + 3 + 0

2 + 0 + 1 + 0 0 + 0 + 2 + 1 0 + 0 + 0 + 3

2 + 0 + 0 + 1 1 + 0 + 0 + 2 1 + 0 + 1 + 1

1 + 2 + 0 + 0 0 + 1 + 0 + 2 1 + 1 + 0 + 1

0 + 2 + 1 + 0 0 + 0 + 1 + 2

But these are just the weak composition of 3 into 4 parts. In general this is a m� (k � 1) weak composition
into k + 1 parts or a weak k + 1 composition of m� (k � 1).
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So the number of binary words consisting of n 1’s with k runs and m 0’s is equal to
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3. (Sequences of Subsets) Collaborators:Tahir Anjum, Servando Pineda

(a) Let k, n � 1 be given. Find the number of sequences S0, S1, . . . , Sk of subsets of n such that for any
1  i  k we have either:

Si � Si�1 and |Si � Si�1| = 1, or (2)

Si ⇢ Si�1 and |Si�1 � S1| = 1 (3)

Proof. This is type of problem where I think it is helpful to look at an example. Suppose n = 3, so we
are selecting elements from the power set of 3 and constructing sequences of length k.

Power Set of 3 = {;, 1, 2, 3, 1, 2, 1, 3, 2, 3, 123}

I want to introduce a way of thinking about these subsets. For each element of the set {1, 2, 3} we can
either include it or exclude it. So for instance the subset {1, 2, 3} includes all of the elements whereas
{1, 2} includes the elements 1 and 2 but not 3. So I want to think about the elements of the sequence
we are constructing as states of inclusion or exclusion. To demonstrate this I would like to represent the
powerset of [3] as the following

; ! 000 {1, 2} ! 110

{1} ! 100 {1, 3} ! 101

{2} ! 010 {2, 3} ! 011

{3} ! 001 {1, 2, 3} ! 111

Given this representation of 1’s and 0’s I like to think of light switches that are either turned on or o↵. So
given the first element of our sequence, suppose we selected {3}, then our next element in the sequence
is restricted to a subset of cardinality zero or 2. That is our only options are {1, 3}, {2, 3} or the empty
set. Written in a light switch notation, given 001 are only options are 101, 011, or 000.

001

8
<

:

101
011
000

That is we can only turn on a switch that is currently o↵ or turn o↵ the switch that is currently on. In
general this means that for any state we have 3 possible states we can change to. This is true for the
general case of n switches that for any state we have n possible states that we can change to. Then given
the length of our sequence we have n

k possibilities for a given starting state of our light switches and we
have 2n initial starting states this gives

2nnk

(b) Collaborators:Servando Pineda
Prove that there are exactly
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such sequences with the additional property that S0 = Sk = ;.
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