2. (Counting binary words by runs) Collaborators: Nina Cerutti, Hannah Winkler A binary word is a word consisting of 0s and 1s. A run is a maximal string of consecutive 1s. For example the word 11010111011 has 4 runs. Find the number of binary words having exactly m 0s, n 1s, and k runs.

Proof. This is a fun problem and as usual it is helpful to think of an example. First allow me to define a sequence of zeros to be a *stop*. So for instance the following binary word would contain 3 stops.

000111100110 A binary word with 3 stops.

Suppose we wanted to generate a binary word with n = 4 1's and m 0's and k runs. Now I want to consider all of the possible sequences of runs. In other words I want to consider all the ways of grouping the 4 1's. This results in the following possibilities:

Grouping of 4 1's	Number of Runs
1 - 1 - 1 - 1	4 runs
11 - 1 - 1	3 runs
1 - 11 - 1	3 runs
1 - 1 - 11	3 runs
11 - 11	2 runs
111 - 1	2 runs
1 - 111	2 runs
1111	1 run

But notice that the different groupings of 4 1's is just the number of compositions of 4. That is there are 2^{4-1} ways of grouping the 1's. And a consquence of this is that the number of binary words with n 1's and k runs is equal to k compositions of n or $\binom{n-1}{k-1}$. Also note that for k runs there are a minimum of k-1 and a maximum of k+1 stops.

Grouping of 4 1's	Number of Runs and Stops	\boldsymbol{k} compositions of 4
1 - 1 - 1 - 1	4 runs, 3 \leq stops \leq 5	1 + 1 + 1 + 1
11 - 1 - 1	3 runs, 2 \leq stop \leq 4	2 + 1 + 1
1 - 11 - 1	3 runs, 2 \leq stops \leq 4	1 + 2 + 1
1 - 1 - 11	3 runs, 2 \leq stops \leq 4	1 + 1 + 2
11 - 11	2 runs, 1 \leq stops \leq 3	2 + 2
111 - 1	2 runs, $1 \leq$ stops \leq 3	3 + 1
1 - 111	2 runs, $1 \leq$ stops \leq 3	1 + 3
1111	1 run, 0 \leq stops \leq 2	4

Now we want to take into account the placement of the m 0's. In order for a binary word to contain k runs it must have at least k-1 stops with one stop placed in between each run. This means that k-1 of the m zeroes must be placed in between each of the k runs. (Note that if k-1 > m then there are zero binary words.) For the remaining (m - (k-1)) 0's, if there are any, they can be placed on either side of each of the runs, that is there are k+1 places to distribute the remaining 0's.

So for a binary word consisting of n 1's, 3 runs and m 0's we have

$$\underbrace{0\cdots 0}_{m_1}1\cdots 1\underbrace{0\cdots 0}_{m_2}1\cdots 1\underbrace{0\cdots 0}_{m_3}1\cdots 1\underbrace{0\cdots 0}_{m_4}$$

where $m_2, m_3 \ge 1$ and $m_1 + m_2 + m_3 + m_4 = m$. For this case there are place places where we can distribute the m - 2 0's. Suppose m = 5 the possible distributions of (5 - 2) 0's would be the following:

1 + 1 + 1 + 0	0 + 2 + 0 + 1	3 + 0 + 0 + 0
0 + 1 + 1 + 1	1 + 0 + 2 + 0	0 + 3 + 0 + 0
2 + 1 + 0 + 0	0 + 1 + 2 + 0	0 + 0 + 3 + 0
2 + 0 + 1 + 0	0 + 0 + 2 + 1	0 + 0 + 0 + 3
2 + 0 + 0 + 1	1 + 0 + 0 + 2	1 + 0 + 1 + 1
1 + 2 + 0 + 0	0 + 1 + 0 + 2	1 + 1 + 0 + 1
0 + 2 + 1 + 0	0 + 0 + 1 + 2	

But these are just the weak composition of 3 into 4 parts. In general this is a m - (k - 1) weak composition into k + 1 parts or a weak k + 1 composition of m - (k - 1).

So the number of binary words consisting of n 1's with k runs and m 0's is equal to

$$\binom{n-1}{k-1}\binom{m-(k-1)+(k+1)-1}{k+1-1} = \binom{n-1}{k-1}\binom{m+1}{k}$$