
ENUMERATIVE COMBINATORICS

HOMEWORK 2

KYLA QUILLIN

1a Give a combinatorial proof that for any positive integers n ≥ k,(
n

k

)
=

n

k

(
n− 1

k − 1

)
Solution. A car lot has n > 0 different black cars. How many different ways are
there to put k ≤ n of the cars into a garage so that one of the k cars in the garage
is also painted red?

We could choose k cars out of n to move to the garage in

(
n

k

)
ways. Then there

are k choices for which to paint one of them red. Thus we can accomplish the task

in k

(
n

k

)
ways.

Instead we could first choose which car to paint red and move into the garage; this
can be done in n ways. Then there are n− 1 cars left and we need to choose k− 1
of them to move into the garage with the red car. So we can accomplish the task

in n

(
n− 1

k − 1

)
ways.

Since we were counting the same thing,

k

(
n

k

)
= n

(
n− 1

k − 1

)
.

Dividing by k, (
n

k

)
=

n

k

(
n− 1

k − 1

)
.

1b Give a combinatorial proof that for any positive integers n ≥ k,
n∑

l=k

(
l

k

)
=

(
n + 1

k + 1

)
Solution. Let’s count the number of (k + 1)-element subsets of
[n + 1] = {1, 2, ..., n + 1}.

This can be counted straightforwardly as

(
n + 1

k + 1

)
.
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On the other hand, we can count the total number of subsets with the desired
property by counting how many we have with a certain largest element and adding
them together. Each of the (k + 1)-element subsets of [n + 1] = {1, 2, ..., n + 1}
will have a largest element between k+ 1 and n+ 1 (inclusive). Once we determine
what the largest element l of the set is, we must choose k additional elements which
are less than the largest element to make the (k + 1)-element subset. There are
l − 1 elements smaller than l to choose from. Thus the number of (k + 1)-element

subsets of [n + 1] = {1, 2, ..., n + 1} is
n+1∑

l=k+1

(
l − 1

k

)
=

n∑
l=k

(
l

k

)
.

Since we’re counting the same objects,

n∑
l=k

(
l

k

)
=

(
n + 1

k + 1

)
.

2 A binary word is a word consisting of 0s and 1s. A run is a maximal string of
consecutive 1s. For example the word 11010111011 has 4 runs. Find the number
of binary words having exactly m 0s, n 1s, and k runs.

Solution. First we must break the n 1s up into k runs. This is equivalent to

counting the number of k-compositions of n, so it can be done in

(
n− 1

k − 1

)
ways.

There must be a 0 between each of the k runs; thus the position of k − 1 0s is
forced. We are left with m− (k− 1) = m− k + 1 0s. There are k + 1 places to put
these 0s which would result in different binary words: before the first run, between

two of the runs, or after the last run. Thus there are

(
k + 1

m− k + 1

)
ways to place

the remaining 0s.
Since these are independent tasks, by the multiplication principle we know that

there are

(
n− 1

k − 1

)
·
(

k + 1

m− k + 1

)
binary words having exactly m 0s, n 1s, and k

runs.

3a Let k, n ≥ 1 be given. Find the number of sequences S0, S1, ..., Sk of subsets of
[n] such that for any 1 ≤ i ≤ k we have either Si ⊃ Si−1 and |Si − Si−1| = 1, or
Si ⊂ Si−1 and |Si−1 − Si| = 1.

Solution. Consider a subset Si−1 of [n] with p elements. How many possibilities
do we have for Si? If Si ⊃ Si−1 and |Si − Si−1| = 1, it means we have added one
element to Si−1 to make Si. There are n− p ways to do this. If, instead, Si ⊂ Si−1
and |Si−1 − Si| = 1, we have deleted one element from Si−1 to achieve Si. There
are p ways to do this. Thus in general there are (n− p) + p = n possibilities for Si

given Si−1.
There are 2n choices for which subset of [n] is S0. Since the sequence S0, S1, ..., Sk

has k additional subsets, and each transition from one set to another is independent,
we have a total of 2nnk sequences with the desired property.


