1a Give a combinatorial proof that for any positive integers $n \geq k$,

$$
\binom{n}{k}=\frac{n}{k}\binom{n-1}{k-1}
$$

Solution. A car lot has $n>0$ different black cars. How many different ways are there to put $k \leq n$ of the cars into a garage so that one of the k cars in the garage is also painted red?
We could choose k cars out of n to move to the garage in $\binom{n}{k}$ ways. Then there are k choices for which to paint one of them red. Thus we can accomplish the task in $k\binom{n}{k}$ ways.
Instead we could first choose which car to paint red and move into the garage; this can be done in n ways. Then there are $n-1$ cars left and we need to choose $k-1$ of them to move into the garage with the red car. So we can accomplish the task in $n\binom{n-1}{k-1}$ ways.

Since we were counting the same thing,

$$
k\binom{n}{k}=n\binom{n-1}{k-1} .
$$

Dividing by k,

$$
\binom{n}{k}=\frac{n}{k}\binom{n-1}{k-1} .
$$

1b Give a combinatorial proof that for any positive integers $n \geq k$,

$$
\sum_{l=k}^{n}\binom{l}{k}=\binom{n+1}{k+1}
$$

Solution. Let's count the number of $(k+1)$-element subsets of $[n+1]=\{1,2, \ldots, n+1\}$.
This can be counted straightforwardly as $\binom{n+1}{k+1}$.
Date: 9/20/13.

On the other hand, we can count the total number of subsets with the desired property by counting how many we have with a certain largest element and adding them together. Each of the $(k+1)$-element subsets of $[n+1]=\{1,2, \ldots, n+1\}$ will have a largest element between $k+1$ and $n+1$ (inclusive). Once we determine what the largest element l of the set is, we must choose k additional elements which are less than the largest element to make the $(k+1)$-element subset. There are $l-1$ elements smaller than l to choose from. Thus the number of $(k+1)$-element subsets of $[n+1]=\{1,2, \ldots, n+1\}$ is $\sum_{l=k+1}^{n+1}\binom{l-1}{k}=\sum_{l=k}^{n}\binom{l}{k}$.
Since we're counting the same objects, $\sum_{l=k}^{n}\binom{l}{k}=\binom{n+1}{k+1}$.

