For this exercise I follow an idea suggested by Jose Gabriel Acevedo. We count bounded compositions depending on the number of parts in the composition. Since $m_{i} \leq k-1$, for all $i=1, \ldots, l$, an integer $n$ which admits a $k$-bounded composition of $l$ parts must be $\leq l(k-1)$, so, all possible $k$ bounded compositions of all possible $n$ appear, up to the correspondence, in the terms of $\left(x+x^{2}+\cdots+x^{k-1}\right)^{l}$. Since we need the compositions of all possible $n$ 's, we sum over $l$ in order to have all the bounded compositions of any number of parts. Hence, we get that $c_{k}(n)$ is the $n$-th coefficient of the formal power series

$$
\sum_{n=0}^{\infty}\left(x+x^{2}+\cdots+x^{k-1}\right)^{n} .
$$

Finally, easy algebraic computations lead us to

$$
\begin{aligned}
\sum_{j=0}^{\infty}\left(x+x^{2}+\cdots+x^{k-1}\right)^{j} & =\frac{1}{1-\left(x+x^{2}+\cdots+x^{k-1}\right)} \\
& =\frac{1}{1-x\left(1+x+\cdots+x^{k-2}\right)} \\
& =\frac{1}{1-x \frac{1-x^{k-1}}{1-x}} \\
& =\frac{1-x}{(1-x)\left(1-\frac{x-x^{k}}{1-x}\right)} \\
& =\frac{1-x}{1-2 x+x^{k}},
\end{aligned}
$$

