5. (Compositions with bounded parts) Let k be a fixed positive integer. For each n let $c_{k}(n)$ be the number of compositions of n such that every part is less than k. Prove that

$$
\sum_{n \geq 0} c_{k}(n) x^{n}=\frac{1-x}{1-2 x+x^{k}}
$$

We have the recurrence relation $c_{k}(n)=c_{k}(n-1)+c_{k}(n-2)+\cdots+c_{k}(n-(k-1))$ for $n>0$ (if we suppose that if $n<0$ then $c_{k}(n)=0$) depending of which number is the first in the composition.

$$
\begin{aligned}
& \text { So } C(x)=\sum_{n \geq 0} c_{k}(n) x^{n}=c_{k}(0)+c_{k}(1) x+c_{k}(2) x^{2}+\cdots+c_{k}(k-1) x^{k-1}+c_{k}(k) x^{k}+\ldots \\
& =c_{k}(0)+c_{k}(0) x+\left(c_{k}(1)+c_{k}(0)\right) x^{2}+\cdots+\left(c_{k}(k-2)+c_{k}(k-3)+\cdots+c_{k}(0)\right) x^{k-1}+ \\
& \left(c_{k}(k-1)+c_{k}(k-2)+\cdots+c_{k}(1)\right) x^{k}+\ldots \\
& \Rightarrow C(x)=1+C(x)\left(x+x^{2}+\cdots+x^{k-1}\right) \\
& \Rightarrow C(x)\left(1-x-x^{2}-\cdots-x^{k-1}\right)=1 \\
& \Rightarrow C(x)=\frac{1}{1-x-x^{2}-\cdots-x^{k-1}}=\frac{1-x}{(1-x)\left(1-x-x^{2}-\cdots-x^{k-1}\right)}=\frac{1-x}{1-2 x+x^{k}}
\end{aligned}
$$

