3. (A generating function identity) Let k be a fixed positive integer. Prove the identity

$$
\sum_{n_{1}, \ldots, n_{k} \geq 0} \min \left(n_{1}, \ldots, n_{k}\right) x_{1}^{n_{1}} \cdots x_{k}^{n_{k}}=\frac{x_{1} x_{2} \cdots x_{k}}{\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{k}\right)\left(1-x_{1} x_{2} \cdots x_{k}\right)}
$$

where we are summing over all k-tuples of non-negative integers n_{1}, \ldots, n_{k}, and $\min \left(n_{1}, \ldots, n_{k}\right)$ denotes the smallest number among n_{1}, \ldots, n_{k}.
Before we begin our proof let's quickly note that if at least one $n_{i}=0$, then $\min \left(n_{1}, \ldots, n_{k}\right)=0$. Let

$$
A\left(x_{1}, \ldots, x_{k}\right)=\sum_{n_{1}, \ldots, n_{k} \geq 0} \min \left(n_{1}, \ldots, n_{k}\right) x_{1}^{n_{1}} \cdots x_{k}^{n_{k}}
$$

Then we have that $\left(1-x_{1} x_{2} \cdots x_{k}\right) A\left(x_{1}, \ldots, x_{k}\right)=$

$$
\begin{gathered}
A\left(x_{1}, \ldots, x_{k}\right)-x_{1} x_{2} \cdots x_{k} A\left(x_{1}, \ldots, x_{k}\right) \\
\sum_{n_{1}, \ldots, n_{k} \geq 0} \min \left(n_{1}, \ldots, n_{k}\right) x_{1}^{n_{1}} \cdots x_{k}^{n_{k}}-\sum_{n_{1}, \ldots, n_{k} \geq 0} \min \left(n_{1}, \ldots, n_{k}\right) x_{1}^{n_{1}+1} \cdots x_{k}^{n_{k}+1} \\
\sum_{n_{1}, \ldots, n_{k} \geq 1}\left[\min \left(n_{1}, \ldots, n_{k}\right)-\min \left(n_{1}-1, \ldots, n_{k}-1\right)\right] x_{1}^{n_{1}} \cdots x_{k}^{n_{k}}
\end{gathered}
$$

Now if we have that $\min \left(a_{1}, \ldots, a_{k}\right)=a_{i}$ for some i, then we must have that $a_{i}-1 \leq a_{j}-1$ for all j. Thus $\min \left(a_{1}-1, \ldots, a_{k}-1\right)=a_{i}-1$. From this we have that $\min \left(n_{1}, \ldots, n_{k}\right)-\min \left(n_{1}-1, \ldots, n_{k}-1\right)=1$. Therefore we have that $\left(1-x_{1} x_{2} \cdots x_{k}\right) A\left(x_{1}, \ldots, x_{k}\right)=$

$$
\begin{gathered}
\sum_{n_{1}, \ldots, n_{k} \geq 1} x_{1}^{n_{1}} \cdots x_{k}^{n_{k}} \\
\left(\sum_{n \geq 1} x_{1}^{n}\right)\left(\sum_{n \geq 1} x_{2}^{n}\right) \cdots\left(\sum_{n \geq 1} x_{k}^{n}\right) \\
\left(\frac{x_{1}}{1-x_{1}}\right)\left(\frac{x_{2}}{1-x_{2}}\right) \cdots\left(\frac{x_{k}}{1-x_{k}}\right) \\
\frac{x_{1} x_{2} \cdots x_{k}}{\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{k}\right)}
\end{gathered}
$$

Hence we have that $A\left(x_{1}, \ldots, x_{k}\right)=\frac{x_{1} x_{2} \cdots x_{k}}{\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{k}\right)\left(1-x_{1} x_{2} \cdots x_{k}\right)}$.

