
Solving this system gives us that A = −4
3 and B = −1

3 . Therefore we have that
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Hence we have that wn = 2n+2+(−1)n+1
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3. (A generating function identity) Let k be a fixed positive integer. Prove the identity∑
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where we are summing over all k-tuples of non-negative integers n1, ..., nk, andmin(n1, ..., nk)
denotes the smallest number among n1, ..., nk.
Before we begin our proof let’s quickly note that if at least one ni = 0, then min(n1, ..., nk) = 0.
Let
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Now if we have that min(a1, ..., ak) = ai for some i, then we must have that ai − 1 ≤ aj − 1 for all j.
Thusmin(a1−1, ..., ak−1) = ai−1. From this we have thatmin(n1, ..., nk)−min(n1−1, ..., nk−1) = 1.
Therefore we have that (1− x1x2 · · ·xk)A(x1, ..., xk) =∑
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Hence we have that A(x1, ..., xk) = x1x2···xk

(1−x1)(1−x2)···(1−xk)(1−x1x2···xk)
.

4. (Compositions of compositions) Let n be a fixed positive integer. Find the number of
ways of choosing a composition α of n, and then choosing a composition of each part of
α.
We begin by first breaking up n = 1+1+ · · ·+1. Now for any composition of n we are free to remove
any of the n−1 +′s and combine the 1′s adjacent to each other. If we don’t remove any plus signs than
we have a compostion with n entries (all 1′s). Now for every plus sign that we remove we decrease the
number of entries by one. Thus if we remove j plus signs we end up with a composition with n − j
entries. For example let n = 7 and j = 3 then we must get 4−compositions, some being

4 + 1 + 1 + 1 or 2 + 3 + 1 + 1 or 2 + 2 + 2 + 1
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