We must show that the number of words of length n using only A, B or C as letters and having no more than two or more consecutive consonants is

$$
a_{n}=\frac{2^{n+2}+(-1)^{n+1}}{3}
$$

Solution If you consider the graph

Then the problem is equivalent to counting the number of walks of length $n-1$ in this graph. From basic graph theory, if A is the adjacency matrix of a graph G, then $A^{k}(i, j)$ counts the number of walks from node i to node j with length k. In this case

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

So if i need to count all walks of size n, I only need to add all entries of A^{n}. Equivalently,

$$
a_{n+1}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] A^{n}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

After diagonalizing, I can easily compute A^{n},

$$
\begin{align*}
A & =\left[\begin{array}{ccc}
-1 & 0 & 2 \\
1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
-1 / 3 & 1 / 3 & 1 / 3 \\
0 & -1 / 2 & 1 / 2 \\
1 / 3 & 1 / 6 & 1 / 6
\end{array}\right] \\
\Rightarrow a_{n+1} & =\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] A^{n}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \tag{1}\\
& =\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 2 \\
1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
(-1)^{n} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2^{n}
\end{array}\right]\left[\begin{array}{ccc}
-1 / 3 & 1 / 3 & 1 / 3 \\
0 & -1 / 2 & 1 / 2 \\
1 / 3 & 1 / 6 & 1 / 6
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
(-1)^{n} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2^{n}
\end{array}\right]\left[\begin{array}{c}
1 / 3 \\
0 \\
2 / 3
\end{array}\right] \tag{2}\\
& =\frac{2^{n+3}+(-1)^{n}}{3}
\end{align*}
$$

As desired :D

