2a. Worked with Emily Let w_{n} be the number of words of length n in the alphabet $\{A, B, C\}$ which do not have two consecutive consonants.

If we focus on what happens at the beginning of a word of length n, it can begin with an A, and then there is any word of length $n-1$ following it. There are no restrictions of what can follow the A because it's a vowel. The word can also begin with a B, but then it is mandatory that the next letter is an A, since we cannot have two consecutive consonants. So we have $B A$ followed by a word of length $n-2$, with no restrictions of what follows the A. Similarly, the word can begin with $C A$, and be followed by any word of length $n-2$.

Therefore, w_{n}, the total number of words of length n, can be given recursively by

$$
w_{n}=w_{n-1}+2 w_{n-2}, \quad(\text { for } n \geq 2)
$$

2b. Worked with Emily The generating function for w_{n} is

$$
W(x)=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\ldots
$$

Using our recursion from part (a), we have

$$
\begin{array}{r}
W(x)=1+3 x+w_{1} x^{2}+w_{2} x^{3}+\ldots \\
+2 w_{0} x^{2}+2 w_{1} x^{3}+\ldots
\end{array}
$$

The first line can be rewritten as $1+2 x+x W(x)$ and the second line can be rewritten as $2 x^{2} W(x)$. So,

$$
\begin{aligned}
W(x) & =1+2 x+x W(x)+2 x^{2} W(x) \\
& \Longrightarrow W(x)=\frac{1+2 x}{1-x-2 x^{2}} .
\end{aligned}
$$

2c. Worked with Emily Using partial fractions, we want to rewrite $W(x)$ as a geometric series, so that we will be able to explicitly see the formula for w_{n} as the coefficient of x^{n} in the series.

$$
W(x)=\frac{1+2 x}{1-x-2 x^{2}}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x}
$$

$$
=\frac{A(1-\beta x)+B(1-\alpha x)}{1-(\alpha+\beta) x-(-\alpha \beta) x^{2}}
$$

for some A, B, α, β. From the denominator, we get the system of equations $\alpha+\beta=1$ and $-\alpha \beta=2$. Using substitution, we get that $\alpha=2$ and $\beta=-1$.
We can rewrite the numerator as $(A+B)-(A \beta+B \alpha) x$, and so we get the system of equations $A+B=1$ and $A \beta+B \alpha=-2$. Again, through substitution and using our results for α, β, we get $A=\frac{4}{3}$ and $B=\frac{-1}{3}$. So,

$$
\begin{gathered}
W(x)=\frac{1+2 x}{1-x-2 x^{2}}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x} \\
\Longrightarrow W(x)=A \sum_{n \geq 0} \alpha^{n} x^{n}+B \sum_{n \geq 0} \beta^{n} x^{n}=\sum_{n \geq 0}\left(A \alpha^{n}+B \beta^{n}\right) x^{n} \\
\Longrightarrow w_{n}=A \alpha^{n}+B \beta^{n} \\
\Longrightarrow w_{n}=\frac{4}{3} 2^{n}-\frac{1}{3}(-1)^{n} \\
\Longrightarrow w_{n}=\frac{1}{3}\left(2^{n+2}+(-1)^{n+1}\right)
\end{gathered}
$$

