1. Numeric exercises

(a) For this exercise there are three independent considerations:
i. First we must know what the third digit from the code is, and there are 8 possibilities for this.
ii. Second, since the length of the code is 5 digits, there must be either $(3,1,1)$ or $(2,2,1)$ instances of the digits respectively, therefore, we have $\binom{5}{3,1,1}=\frac{5!}{3!!!!!}=20$ or $\binom{5}{2,2,1}=\frac{5!}{2!2!1!}=30$ possibilities respectively.
iii. Finally, we must choose which digit corresponds to which role in the previous item. However, since we notice there is one distinct number in either of the cases (the ones which have 3 and 1 appearances respectively), to choose this digit we have another 3 possibilities: 1, 7 , or our new digit.
Summing this up (actually by the multiplication principle), our numeric answer is:

$$
8 \times\left(\binom{5}{3,1,1}+\binom{5}{2,2,1}\right) \times 3=8 \times(20+30) \times 3=1200
$$

(b) Since we must get from $(0,0)$ to $(8,8)$ in 16 unit steps, we may only traverse in the up (\uparrow) and right (\rightarrow) directions (assuming we may only walk vertically or horizontally) and, so, we may count the paths by $\binom{n+m}{n}$ where n and m are the number of right and up steps respectively (hence $n+m$ corresponds to the length of the path or number of steps). Now, to get from $(0,0)$ to $(2,3)$ the path starts out with 2 (out of the first 5 steps) going right, hence there are $\binom{5}{2}=10$ possibilities for this. Following up, the path may continue in $\binom{16-5}{8-2}=\binom{11}{6}$ ways. However, out of these, there are a series of paths which do pass through point $(6,5)$, namely $\binom{11-5}{6-2}\binom{5}{2}$ of them (since out of the 6 steps from $(2,3)$ to $(6,5)$ four go right, and out of the 5 from $(6,5)$ to $(8,8) 2$ go right. Numerically, this is:

$$
\binom{5}{2}\left(\binom{11}{6}-\binom{6}{4}\binom{5}{2}\right)=10(462-15 \times 10)=3120
$$

(c) First of all, since the top and bottom teams are in known/fixed positions, we may omit them from our count. Second, since Tolima is immediately above Santa Fé, when counting they may be treated as a single entity (and then replaced back in the correct order). This gives us $(18-2-1)!=15$! possible orders for the teams as a starting point. The other condition states that there are three other teams which are to be included in a specific order, so that the previous number counts 3! each valid order. Therefore, the numeric answer is simply: $\frac{15!}{3!}$. (The actual number is 217945728000 but the previous answer is more revealing about the count.)

