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In order for a finitely generated Zd-graded k[Q]-module M to have an
irreducible resolution, a necessary condition is that Ma = 0 for a ∈ Zd !Q;
that is, the module M has to be Q-graded. This condition is also sufficient:

Theorem 11.4 Every finitely generated Q-graded module M has a finite
minimal irreducible resolution, and it is unique up to isomorphism.

This theorem applies in particular to ideals I and their quotients k[Q]/I.
An immediate consequence is the following combinatorial statement, which
we have already seen in action in Example 7.14.

Corollary 11.5 Every monomial ideal I ⊆ k[Q] has a unique irredundant
expression I = W1 ∩ · · · ∩Wr as an intersection of irreducible ideals Wj.

Proof. If W . is a minimal irreducible resolution of k[Q]/I, then choose
r = µ0 and Wj = W 0j . The kernel of the composite homomorphism
k[Q] → k[Q]/I → ⊕r

j=1 Wj is the intersection of ideals W1 ∩ · · · ∩ Wr.
Existence follows because k[Q]/I → W 0 is an inclusion. Uniqueness follows
from the uniqueness of minimal irreducible resolutions in Theorem 11.4. !

It is worth pausing at this juncture to remark that, while the ideals W1

and W2 in Definition 11.2 are required to be monomial ideals by the con-
ventions of this chapter, such monomial ideals are always irreducible in
the ungraded sense of Remark 5.17, anyway. The proof of this statement
requires some facts about Zd-graded irreducible ideals, so we postpone it
until Proposition 11.41, at the end of the chapter.

We take Corollary 11.5 as the motivation for the rest of this chap-
ter, whose eventual aim is to prove Theorem 11.4 (after Example 11.40).
Along the way, we’ll see how injective modules and injective resolutions
arise naturally, allowing their well-behaved homological behavior to rub off
onto irreducible resolutions. Also, we will attempt to dispel the common
belief that injective modules must necessarily be unwieldy behemoths, by
describing them combinatorially in the context of affine semigroup rings.

Let us illustrate the difference between free resolutions and injective
resolutions for the ideal I = 〈x4, x2y2, y4〉 from Example 11.3. The free
resolution of k[x, y]/I (i) covers the set of standard monomials modulo I
with all of N2; (ii) uncovers the monomials in I using shifted copies of the
positive quadrant N2; and finally (iii) excludes the monomials in I that
were uncovered too many times:
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In contrast, an injective resolution of k[x, y]/I starts by covering the set
of standard monomials using shifted copies of the negative quadrant −N2.
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of M . The resulting resolution of the Borel-fixed ideal S7/M is called the
Eliahou–Kervaire resolution:

(x1x2x4
4 x1x2x3x2

4 · · · x2
1)

0 ← S ←−−−−−−−−−−−−−−−−− S7 ←− S12 ←− S8 ←− S2 ← 0

The reader is encouraged to compute the matrices representing the differ-
entials in a computer algebra system. !

Our results on the Betti numbers of Borel-fixed ideals apply in particular
to the GLn(k)-fixed ideals. By Corollary 2.2, these are the powers md of the
maximal homogeneous ideal m = 〈x1, . . . , xn〉, as follows when n = d = 3.

Example 2.20 Let n = d = 3 and rename the variables as x, y, z. The
Betti numbers and Eliahou–Kervaire resolution of the Borel-fixed ideal I =
〈x, y, z〉3 can be visualized as follows:
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max(mi) 〈x, y, z〉3

The importance of the dotted lines in the right-hand diagram will be ex-
plained in Example 4.22. The numbers in the left-hand diagram determine
the binomial coefficients

(
max(mj)−1

i

)
from Theorem 2.18, which are given

in the triangles below. By adding these triangles we get the Betti numbers
of the minimal free resolution

S ←−−− S10 ←−−− S15 ←−−− S6 ←−−− 0
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The triangles show how the resolution of the initial module in(M) decom-
poses as a direct sum of ten Koszul complexes, one for each generator of I.!

2.4 Lex-segment ideals

In this section, fix the lexicographic term order < = <lex on the polyno-
mial ring S = k[x1, . . . , xn]. The dth graded component Sd will be identified
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degree |σ| for each face σ of ∆. The free S-module

F∆ =
⊕
σ∈∆

S · eσ

with differential ∂(eσ) =
∑
i∈σ

sign(i,σ)
mσ

mσ!i
eσ!i

is the Taylor complex. Here sign(i,σ) = (−1)j−1 if i is the jth element
of σ when the elements of the set σ are listed in increasing order. In the
literature, the term ‘Taylor complex’ has nearly always been used (as in Sec-
tion 4.3.2) for the special case when ∆ is the full (r−1)-simplex, consisting
of all subsets of {1, 2, . . . , r}; but Definition 6.1 should raise no confusion.

Example 6.2 Taking I = 〈x2, xy, y2z, z2〉, let ∆ be the simplicial complex
consisting of the two triples {1, 2, 4} and {2, 3, 4} and their subsets. Here
is a picture of ∆, with each face accompanied by its monomial label.
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The Taylor complex F∆ is given by the monomial matrices below.

1
[xy x2 z2 y2z

1 1 1 1
]

xy

x2

z2

y2z


xy2z y2z2 x2z2 x2y xyz2

1 0 0 1 1

0 0 1 −1 0

0 1 −1 0 −1

−1 −1 0 0 0


xy2z

y2z2

x2z2

x2y

xyz2


xy2z2 x2yz2

−1 0

1 0

0 1

0 1

1 −1


0←S←−−−−−−−−−−S4←−−−−−−−−−−−−−−−−−−S5←−−−−−−−−−−S2← 0

For an example of the non-monomial matrix way to write this complex,
note that the left column in the rightmost map corresponds to

∂(e234) = ze23 + xe34 − ye24,

where e234 is the basis vector of F∆ in degree a{2,3,4} = (1, 2, 2). !
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