Extra: Suppose $a$ is not a zero divisor in a commutative ring $R$, and $M$ is an $R$-module. Then the following is an exact sequence and free resolution of $R /\langle a\rangle$.

$$
0 \xrightarrow{\delta_{2}} R \xrightarrow{\delta_{1}} R \xrightarrow{\delta_{0}} R /\langle a\rangle \rightarrow 0 .
$$

where $\delta_{1}$ is multiplication by $a$.
By tensoring with $M$ we get

$$
0 \xrightarrow{\delta_{2}} R \otimes M \xrightarrow{\delta_{1}} R \otimes M \xrightarrow{\delta_{0}} R /\langle a\rangle \otimes M \rightarrow 0 .
$$

But $R \otimes M$ is just $M$, as any element $r \otimes m$ can be written as $1 \otimes r m$. So we get

$$
0 \xrightarrow{\delta_{2}} M \xrightarrow{\delta_{1}} M .
$$

Then the image of $\delta_{2}$ in $M$ is just 0 . Since $\delta_{1}$ is multiplication by $a$, the kernel is $\{m \in M \mid a m=0\}$. Thus the kernel of $\delta_{1} \bmod$ the image of $\delta_{2}$ is $\operatorname{Tor}_{1}(R /\langle a\rangle, M)=\{m \in M \mid a m=0\}$.

