4 If Δ_{1} and Δ_{2} are simplicial complexes on disjoint sets E_{1} and E_{2}, we define the join $\Delta_{1} * \Delta_{2}$ to be the simplicial complex on $E_{1} \cup E_{2}$ whose faces are the sets $A_{1} \cup A_{2}$ with $A_{1} \in \Delta_{1}$ and $A_{2} \in \Delta_{2}$. Compute the h-vector of $\Delta_{1} * \Delta_{2}$ in terms of the h-vectors of Δ_{1} and \triangle_{2}.

Let Δ_{1} and Δ_{2} be simplicial complexes on disjoint sets E_{1} and E_{2} with f-vectors $\left(a_{-1}, a_{0}, \ldots, a_{n-1}\right)$ and $\left(b_{-1}, b_{0}, \ldots, b_{m-1}\right)$ respectively.

CLAIM: $f_{\Delta_{1} * \Delta_{2}}(x)=f_{\Delta_{1}}(x) \cdot f_{\Delta_{2}}(x)$
Since $f_{\triangle_{1}}(x) \cdot f_{\Delta_{2}}(x)=\sum_{j=0}^{n} a_{j-1} x^{j} \cdot \sum_{k=0}^{m} b_{k-1} x^{k}=\sum_{j=0}^{n+m}\left(\sum_{k=0}^{j} a_{k-1} b_{j-k-1}\right) x^{j}$ (by the definition of multiplication of polynomials), to prove the above claim, we need to show that the number of i-faces of $\Delta_{1} * \Delta_{2}$ is equal to $\sum_{k=0}^{i+1} a_{k-1} b_{i-k}$.

Let $-1 \leq i \leq n+m-1^{\dagger}$. Since E_{1} and E_{2} are disjoint, for all $A_{1} \in \Delta_{1}$ and $A_{2} \in \Delta_{2}$, $\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|$. So every i-face of $\Delta_{1} * \Delta_{2}$ is of the form $A_{1} \cup A_{2}$ such that $A_{1} \in \triangle_{1}, A_{2} \in \Delta_{2}$, and $\left|A_{1}\right|+\left|A_{2}\right|=i+1$. This means that if $A_{1} \cup A_{2}$ is an i-face of $\Delta_{1} * \Delta_{2}$, then $\left|A_{1}\right|=k$ iff $\left|A_{2}\right|=i+1-k$. Furthermore, since there are a_{k-1} elements of
Δ_{1} with cardinality k and b_{i-k} elements of Δ_{2} with cardinality $i+1-k$ (this is the definition of the f-vectors), then the number of ways to choose an element, A_{1}, from \triangle_{1}, and an element, A_{2}, from \triangle_{2}, such that $\left|A_{1}\right|+\left|A_{2}\right|=i+1$ is preceisely $\sum_{k=0}^{i+1} a_{k-1} b_{i-k}$. Therefore, $f_{\triangle_{1} * \Delta_{2}}(x)=f_{\Delta_{1}}(x) \cdot f_{\triangle_{2}}(x)$.

Now let us use this identity to compute $h_{\Delta_{1} * \Delta_{2}}(x)$.

$$
\begin{aligned}
h_{\Delta_{1} * \Delta_{2}}(x) & =(1-x)^{n+m} f_{\Delta_{1} * \Delta_{2}}\left(\frac{x}{1-x}\right) \\
& =(1-x)^{n}(1-x)^{m} f_{\Delta_{1}}\left(\frac{x}{1-x}\right) \cdot f_{\Delta_{2}}\left(\frac{x}{1-x}\right) \\
& =(1-x)^{n} f_{\Delta_{1}}\left(\frac{x}{1-x}\right) \cdot(1-x)^{m} f_{\Delta_{2}}\left(\frac{x}{1-x}\right) \\
& =h_{\Delta_{1}}(x) \cdot h_{\Delta_{2}}(x)
\end{aligned}
$$

So if the h vectors for Δ_{1} and Δ_{2} are $\left(c_{-1}, c_{0}, \ldots c_{n-1}\right)$ and $\left(d_{-1}, d_{0}, \ldots d_{m-1}\right)$, respectively, then the h vector of $\Delta_{1} * \Delta_{2}$ is $\left(h_{-1}, h_{0}, \ldots h_{n+m-1}\right)$ where $h_{i}=\sum_{k=0}^{i+1} c_{k-1} d_{i-k}$.

