4 If \triangle_1 and \triangle_2 are simplicial complexes on disjoint sets E_1 and E_2 , we define the *join* $\triangle_1 * \triangle_2$ to be the simplicial complex on $E_1 \cup E_2$ whose faces are the sets $A_1 \cup A_2$ with $A_1 \in \triangle_1$ and $A_2 \in \triangle_2$. Compute the *h*-vector of $\triangle_1 * \triangle_2$ in terms of the *h*-vectors of \triangle_1 and \triangle_2 .

Let \triangle_1 and \triangle_2 be simplicial complexes on disjoint sets E_1 and E_2 with f-vectors $(a_{-1}, a_0, \dots, a_{n-1})$ and $(b_{-1}, b_0, \dots, b_{m-1})$ respectively.

CLAIM:
$$f_{\triangle_1 * \triangle_2}(x) = f_{\triangle_1}(x) \cdot f_{\triangle_2}(x)$$

Since $f_{\Delta_1}(x) \cdot f_{\Delta_2}(x) = \sum_{j=0}^n a_{j-1}x^j \cdot \sum_{k=0}^m b_{k-1}x^k = \sum_{j=0}^{n+m} (\sum_{k=0}^j a_{k-1}b_{j-k-1})x^j$ (by the definition of multiplication of polynomials), to prove the above claim, we need to show that the number of *i*-faces of $\Delta_1 * \Delta_2$ is equal to $\sum_{k=0}^{i+1} a_{k-1}b_{i-k}$.

Let $-1 \leq i \leq n + m - 1^{\dagger}$. Since E_1 and E_2 are disjoint, for all $A_1 \in \Delta_1$ and $A_2 \in \Delta_2$, $|A_1 \cup A_2| = |A_1| + |A_2|$. So every *i*-face of $\Delta_1 * \Delta_2$ is of the form $A_1 \cup A_2$ such that $A_1 \in \Delta_1$, $A_2 \in \Delta_2$, and $|A_1| + |A_2| = i + 1$. This means that if $A_1 \cup A_2$ is an *i*-face of $\Delta_1 * \Delta_2$, then $|A_1| = k$ iff $|A_2| = i + 1 - k$. Furthermore, since there are a_{k-1} elements of \triangle_1 with cardinality k and b_{i-k} elements of \triangle_2 with cardinality i + 1 - k (this is the definition of the f-vectors), then the number of ways to choose an element, A_1 , from \triangle_1 , and an element, A_2 , from \triangle_2 , such that $|A_1| + |A_2| = i + 1$ is preceisely $\sum_{k=0}^{i+1} a_{k-1}b_{i-k}$. Therefore, $f_{\triangle_1 * \triangle_2}(x) = f_{\triangle_1}(x) \cdot f_{\triangle_2}(x)$.

Now let us use this identity to compute $h_{\triangle_1 * \triangle_2}(x)$.

 h_{\wedge}

$$egin{aligned} & f_{\Delta_1 * \Delta_2}(x) = (1-x)^{n+m} f_{\Delta_1 * \Delta_2}(rac{x}{1-x}) \ & = (1-x)^n (1-x)^m f_{\Delta_1}(rac{x}{1-x}) \cdot f_{\Delta_2}(rac{x}{1-x}) \ & = (1-x)^n f_{\Delta_1}(rac{x}{1-x}) \cdot (1-x)^m f_{\Delta_2}(rac{x}{1-x}) \ & = h_{\Delta_1}(x) \cdot h_{\Delta_2}(x) \end{aligned}$$

So if the *h* vectors for \triangle_1 and \triangle_2 are $(c_{-1}, c_0, \dots, c_{n-1})$ and $(d_{-1}, d_0, \dots, d_{m-1})$, respectively, then the *h* vector of $\triangle_1 * \triangle_2$ is $(h_{-1}, h_0, \dots, h_{n+m-1})$ where $h_i = \sum_{k=0}^{i+1} c_{k-1} d_{i-k}$.