5 Compute the Hilbert function and series of the ring $\mathbb{C}[w, x, y, z] /\left\langle w y-z^{2}, w x-\right.$ $\left.y z, x z-y^{2}\right\rangle$.

Let $R=\mathbb{C}[w, x, y, z]$ and $I=\left\langle w y-z^{2}, w x-y z, x z-y^{2}\right\rangle$. By Macaulay's Thm, the Hilbert function and series for R / I is equal to the Hilbert function and series for $R /($ in $I)$.

Since $\left\{w y-z^{2}, w x-y z, x z-y^{2}\right\}$ is a Grobner basis for I (verified by Mathematica), in $I=\langle w y, w x, x z\rangle$. This means that every element of $R /($ in $I)$ is of the form $a+I$ where a is a polynomial with any constant in \mathbb{C} and monomial terms in $\mathbb{C}[y, z] \cup \mathbb{C}[w, z] \cup \mathbb{C}[x, y]$.

So, for each $d \geq 1$, the number of basis elements of $(R / \text { in } I)_{d}$ is equal to the number monomials in $\mathbb{C}[y, z]$ with degree $d,\binom{d+1}{1}$, plus the number of monomials in $\mathbb{C}[w, z]$ with degree d minus the number of these monomials containing only $z,\binom{d+1}{1}-1$, plus the number of monomials in $\mathbb{C}[x, y]$ with degree d minus the number of these monomials containing only $y,\binom{d+1}{1}-1$. Thus, computing $H_{R / I}(d)=H_{R /(\text { in } I)}(d)$, we get:

$$
H_{R / I}(d)=H_{R /(\text { in } I)(d)=\left\{\begin{array}{ll}
1 & \mathrm{~d}=0(1 \text { is the only basis element when } \mathrm{d}=0) \\
3(d+1)-2 & \text { otherwise. }
\end{array}\right. \text {) }}^{\text {(d) }}
$$

And

$$
\begin{aligned}
H(R / I ; x)=H(R /(\text { in } I) ; x) & =1+\sum_{d \geq 1}(3(d+1)-2) x^{d} \\
& =1+3 \cdot \sum_{d \geq 1}(d+1) x^{d}-2 \cdot \sum_{d \geq 1} x^{d} \\
& =1+3 \cdot \frac{d}{d x}\left(\sum_{d \geq 1} x^{d+1}\right)-2 \cdot \sum_{d \geq 1} x^{d} \\
& =1+3 \cdot \frac{2 x-x^{2}}{(1-x)^{2}}-2 \cdot \frac{x}{1-x} \\
& =\frac{1+2 x}{(1-x)^{2}}
\end{aligned}
$$

Credits: I worked Zoe, Fang-i, Andrew, and Lothar

