5 Compute the Hilbert function and series of the ring $\mathbb{C}[w, x, y, z]/\langle wy - z^2, wx - yz, xz - y^2 \rangle$.

Let $R = \mathbb{C}[w, x, y, z]$ and $I = \langle wy - z^2, wx - yz, xz - y^2 \rangle$. By Macaulay's Thm, the Hilbert function and series for R/I is equal to the Hilbert function and series for $R/(\ln I)$.

Since $\{wy - z^2, wx - yz, xz - y^2\}$ is a Grobner basis for *I* (verified by Mathematica), in $I = \langle wy, wx, xz \rangle$. This means that every element of $R/(\ln I)$ is of the form a + I where *a* is a polynomial with any constant in \mathbb{C} and monomial terms in $\mathbb{C}[y, z] \cup \mathbb{C}[w, z] \cup \mathbb{C}[x, y]$.

So, for each $d \ge 1$, the number of basis elements of $(R/\text{in }I)_d$ is equal to the number monomials in $\mathbb{C}[y, z]$ with degree d, $\binom{d+1}{1}$, plus the number of monomials in $\mathbb{C}[w, z]$ with degree d minus the number of these monomials containing only z, $\binom{d+1}{1} - 1$, plus the number of monomials in $\mathbb{C}[x, y]$ with degree d minus the number of these monomials containing only y, $\binom{d+1}{1} - 1$. Thus, computing $H_{R/I}(d) = H_{R/(\ln I)}(d)$, we get: $H_{R/I}(d) = H_{R/(\text{in }I)}(d) = \begin{cases} 1 & d=0 \text{ (1 is the only basis element when d=0)} \\ 3(d+1) - 2 & \text{otherwise.} \end{cases}$

And

$$H(R/I;x) = H(R/(\text{in }I);x) = 1 + \sum_{d \ge 1} (3(d+1)-2)x^d$$

= $1 + 3 \cdot \sum_{d \ge 1} (d+1)x^d - 2 \cdot \sum_{d \ge 1} x^d$
= $1 + 3 \cdot \frac{d}{dx} (\sum_{d \ge 1} x^{d+1}) - 2 \cdot \sum_{d \ge 1} x^d$
= $1 + 3 \cdot \frac{2x - x^2}{(1-x)^2} - 2 \cdot \frac{x}{1-x}$
= $\frac{1 + 2x}{(1-x)^2}$

Credits: I worked Zoe, Fang-i, Andrew, and Lothar