3. It suffices to show that $0 \rightarrow R / J(-d) \xrightarrow{J} R / I^{\prime} \xrightarrow{g} R / I \rightarrow 0$ is a graded exact sequence, where $d=\operatorname{deg}\left(m_{k}\right)$ and f and g are homomorphisms given by $g: R / J(-d) \rightarrow R / I$ so that $[a]_{J} \mapsto\left[m_{k} a\right]_{I^{\prime}}$ and $f: R / I^{\prime} \rightarrow R / I$ so that $[a]_{I^{\prime}} \mapsto[a]_{I}$. Note that g is degree preserving because of the shifting and f does obviously preserve degree.
We divide the proof in three steps.
(a) The sequence is exact in $R / J(-d)$. For this it is enough to prove that $\operatorname{ker}(g)=\left\{0_{J}\right\}$ (which in this case is J). Suppose that $g\left([a]_{J}\right)=I^{\prime}$, this means that $m_{k} a+I^{\prime}=I^{\prime}$, so $m_{k} a \in I^{\prime}$, hence every monomial of $m_{k} a$ is divisible bye some element in I^{\prime}. It follows that every monomial in a is divisible by $\left(m_{k}, m_{j}\right)$ for some $j \in\{1, \ldots, n-1\}$. We conclude that a in J, so $[a]=0_{J}$.
(b) The sequence is exact in R / I^{\prime}. It suffices to show that $\operatorname{Im}(g)=\operatorname{Ker}(f)$. Let $[a]_{I^{\prime}} \in$ $\operatorname{Ker}(f)$, where a does not have monomials that are multiples of m_{j} for $j \in\{1, \ldots, k-1\}$. We have that $a+I=I$ so that $a \in I$ so every monomial of a is a multiple of m_{k}, hence $a \in \operatorname{Im}(g)$. Now if $[a]_{I^{\prime}} \in \operatorname{Im}(g)$ (taking the repesentative a of the class with no monomials in $\left.I^{\prime}\right)$ then there is a polynomial a^{\prime} such that $a=m_{k} a^{\prime}$ and hence $f\left([a]_{I^{\prime}}\right)=$ $f\left(\left[m_{k} a^{\prime}\right]_{I^{\prime}}\right)=m_{k} a^{\prime}+I=I$ so $[a]_{I^{\prime}} \in \operatorname{Ker}(f)$. We conclude then that $\operatorname{Im}(g)=\operatorname{Ker}(f)$.
(c) The sequence is exact in R / I which in this case is equivalent to prove that f is surjective. This follows from the fact that if $[a]_{I} \in R / I$ then $f\left([a]_{I^{\prime}}\right)=[a]_{I}$ by definition.

From (a), (b) and (c) we conclude that $0 \rightarrow R / J(-d) \xrightarrow{f} R / I^{\prime} \xrightarrow{g} R / I \rightarrow 0$ is a fininte graded
free resolution of R / I (because all the modules are free and the sequence is exact) and so $H_{R / I}(m)=H_{R / I^{\prime}}(m)-H_{R / J(-d)}(m)$ or equivalently $H_{R / I}(m)=H_{R / I^{\prime}}(m)-H_{R / J}(m-d)$ as desired.

