
free abelian group generated by
(x

i

)
where i ∈ N it suffices to prove that aj is an integer

for j ∈ {0, . . . , k}. The proof is by induction on j. The base case is j = 0. Evaluating at
x = 0 yields that P (0) = a0 ∈ N (because

(0
i

)
= 0 for i ≥ 1). Now assume that ai is an

iteger for all i < s. Setting x = s yields P (s) = as +
∑s−1

j=0

(s
j

)
aj ∈ N (because

(s
s

)
= 1

and
(s

i

)
= 0 for i > s) and since (N,+, ·) is a ring we get that as ∈ N by the induction

hypothesis. The result follows by the induction principle. This means that T is a free
abelian group with basis

(x
i

)
for i ∈ N.

(b) The ring T isn’t Noetherian. Consider the ideal I =
〈
{
(x

i

)
|i ≥ 1}

〉
and supposse that I is

finitely generated by the polyomials P1, . . . , Pn. Note first that 0 is a root of
(x

i

)
for i > 0,

so the constants are not in I and 0 is a root of all the polynomials in I. By (a) there exist
integers ai0, . . . aibi such that Pi(x) =

∑bi
j=0 aij

(x
j

)
for i ∈ {1, . . . , n}. Let k = max{bi|1 ≤

i ≤ n} and p > k be a prime number. Note that Pi(p) =
∑bi

j=0 aij
(p
j

)
≡ 0(modp)

(because p|
(p
j

)
for 1 ≤ j ≤ p − 1 and 0 is a root of Pi). Now since P1, . . . , Pn generate

I and
(x
p

)
∈ I, there exist polynomials Q1, . . . , Qn in T (some of them may be 0), such

that
(x
p

)
=

∑n
j=1 Qj(x)Pj(x). Evaluating at x = p yields

(p
p

)
= 1 =

∑n
j=1 Qj(p)Pj(p) ≡

0(modp) which is a contradiction. It follows that I is not finitely generated and so T is
not Noetherian.

3. It suffices to show that 0 → R/J(−d) f→ R/I ′
g→ R/I → 0 is a graded exact sequence,

where d = deg(mk) and f and g are homomorphisms given by g : R/J(−d) → R/I so that
[a]J '→ [mka]I′ and f : R/I ′ → R/I so that [a]I′ '→ [a]I . Note that g is degree preserving
because of the shifting and f does obviously preserve degree.

We divide the proof in three steps.

(a) The sequence is exact in R/J(−d). For this it is enough to prove that ker(g) = {0J}
(which in this case is J). Suppose that g([a]J) = I ′, this means that mka + I ′ = I ′, so
mka ∈ I ′, hence every monomial of mka is divisible bye some element in I ′. It follows
that every monomial in a is divisible by (mk, mj) for some j ∈ {1, . . . , n − 1}. We
conclude that a in J , so [a] = 0J .

(b) The sequence is exact in R/I ′. It suffices to show that Im(g) = Ker(f). Let [a]I′ ∈
Ker(f), where a does not have monomials that are multiples of mj for j ∈ {1, . . . , k−1}.
We have that a + I = I so that a ∈ I so every monomial of a is a multiple of mk, hence
a ∈ Im(g). Now if [a]I′ ∈ Im(g) (taking the repesentative a of the class with no
monomials in I ′) then there is a polynomial a′ such that a = mka′ and hence f([a]I′) =
f([mka′]I′) = mka′ + I = I so [a]I′ ∈ Ker(f). We conclude then that Im(g) = Ker(f).

(c) The sequence is exact in R/I which in this case is equivalent to prove that f is surjective.
This follows from the fact that if [a]I ∈ R/I then f([a]I′) = [a]I by definition.

From (a), (b) and (c) we conclude that 0 → R/J(−d) f→ R/I ′
g→ R/I → 0 is a fininte graded
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free resolution of R/I (because all the modules are free and the sequence is exact) and so
HR/I(m) = HR/I′(m)−HR/J(−d)(m) or equivalently HR/I(m) = HR/I′(m)−HR/J(m− d) as
desired.

4. I = 〈w, x〉 ∩ 〈y, z〉 = 〈wy,wz, xy, xz〉, bucause there a polynomial f is in 〈w, x〉 if and only
if every monomial of f is divisible either by w or by x and is in 〈y, z〉 if and only if every
monomial of f is divisible by y or by z. This means that f is in 〈w, x〉 ∩ 〈y, z〉 if and only if
every monomial of f is divisible by wy, wz, xy or xz or equivalently f ∈ 〈wy,wz, xy, xz〉.
This means that the elements of R/I are represented by polynomials whose monomials only
contain w, x or only contain y, z. So B = {waxb|a + b = d ∧ a, b ∈ Z≥0} ∪ {yazb|a + b =
d ∧ a, b ∈ Z≥0} is basis for vector space Vd over C of the homogenous polyonmials of degree
d in R/I. This means that HR/I(d) = 2d + 2 and

H(R/I|x) =
∞∑

n=0

HR/I(d)xd

=
∞∑

n=0

(2d + 2)xd

=
2

(1− x)2

5. Let R = C[w, x, y, z]. Note that I =
〈
wy − z2, wx− yz, xz − y2

〉
is a Gröbner basis with

respect to lex with w > x > y > z. It follows from Buchberger’s algorithm given that:

• s(wy − z2, wx− yz) = −z(xz − y2)
• s(wy − z2, xz − y2) = y2(wy − z2)− z2(xz − y2)
• s(wx− yz, xz − y2) = y(wy − z2)

By Macaulay’s theorem the hilbert function of R/I is equal to the hilbert function of R/in(I).
But in(I) =< wy,wx, xz >, because I is a Gröbner basis. We now want to find the dimension
of the homogeneous polynomials of degree d in R/in(I), this basis consists of monomials that
are not divisible by wx, wy or xz. The idea is to construct a basis consisting of monomials,
so the an element of the basis must be either of the form wazb, xayb or yazb where a, b ∈
Z≥0 and a + b = d, there are 3d + 1 (3(d − 1) with a and b positive, wd, xd, yd and zd)
such monomials and so HR/I(d) = 3d + 1 (because such monomials clearly span all the
homogeneous polynomials of degree d in R/I and are obviously lienarly independent). Now

H(R/I|x) =
∞∑

d=0

(3d + 1)xd =
3x

(1− x)2
+

1
1− x

.
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