1. Generating functions of sequences which are eventually polynomial. For a function $f: \mathbb{N} \rightarrow \mathbb{N}$ prove that the following are equivalent:
(a) There exists a polynomial $F(x)$ of degree $d$ such that $f(n)=F(n)$ for all sufficiently large integers $n$.
(b) There exists a polynomial $g(x)$ such that

$$
\Sigma_{n \geq 0} f(n) x^{n}=\frac{g(x)}{(1-x)^{d+1}}
$$

Proof. $(\Rightarrow)$ : Suppose there exists a polynomial $F(x)$ of degree $d$ such that $f(n)=F(n)$ for all sufficiently large integers $n$. Then we can write

$$
\Sigma_{n \geq 0} f(n) x^{n}=f(0)+f(1) x+\cdots+f(n-1) x^{n-1}+F(n) x^{n}+\Sigma_{1 \geq 0} F(n+i) x^{n+i} .
$$

Claim: The series $\Sigma_{i \geq 1} i^{d} x^{i-1}=\frac{p(x)}{(1-x)^{d+1}}$. We prove the claim by induction:
The case when $d=1$ is done. Suppose it is true for $d=n$ Then

$$
\Sigma_{i \geq 1} i^{n} x^{i-1}=1+2^{n} x+3^{n} x^{2}+\cdots=\frac{p(x)}{(1-x)^{n+1}}
$$

Multiplying this series by $x$ and then differntiating term by term we have

$$
\Sigma_{i \geq 1} i^{n+1} x^{i-1}=1+2^{n+1} x+3^{n+1} x^{2}+\ldots
$$

Therefore since $\frac{d}{d x} \frac{p(x)}{(1-x)^{n+1}}=\frac{p^{\prime}(x)(1-x)+(n+1) p(x)}{(1-x)^{n+2}}$ we've proved the claim. By assumption $F(x)=a_{d} x^{d}+\cdots+a_{1} x+a_{0}$. Then

$$
F(n+i)=a_{d}(n+i)^{d}+\cdots+a_{1}(n+i)+a_{0}=c_{d} i^{d}+\ldots c_{1} i+c_{0}
$$

where each $c_{j}$ doesn't involve $i$. We can rewrite $\Sigma_{i \geq 1} F(n+i) x^{n+i}$ as $\Sigma_{i \geq 1}\left(c_{d} i^{d}+\cdots+c_{1} i+c_{0}\right) x^{n+i}=c_{d} x^{n} \Sigma_{i \geq 1} i^{d} x^{i-1}+\cdots+c_{1} x^{n} \Sigma_{i \geq 1} i x^{i-1}+c_{0} x^{n} \Sigma_{i \geq 1} x^{i-1}$.
and by the claim we have:

$$
\Sigma_{i \geq 1} F(n+i) x^{n+i}=\frac{c_{d} x^{n} p_{d}(x)}{(1-x)^{d+1}}+\cdots+\frac{c_{1} x^{n} p_{1}(x)}{(1-x)^{2}}+\frac{c_{0} x^{n}}{(1-x)}
$$

Then
$\Sigma_{n \geq 0} f(n) x^{n}=f(0)+f(1) x+\cdots+F(n) x^{n}+\frac{c_{d} x^{n} p_{d}(x)}{(1-x)^{d+1}}+\cdots+\frac{c_{1} x^{n} p_{1}(x)}{(1-x)^{2}}+\frac{c_{0} x^{n}}{(1-x)}$.
which can be written $\frac{g(x)}{(1-x)^{d+1}}$ by writting each of the terms above as a polynomial over $(1-x)^{d+1}$ and collecting terms.
$(\Leftarrow)$ The series

$$
\frac{1}{(1-x)^{d+1}}=\Sigma_{i=0}\left(\binom{d+1}{i}\right) x^{i}
$$

Since $\left.\left(\binom{d+1}{i}\right)=\binom{d+i}{d}\right)$ we can write the series in choose notation as $\Sigma_{i=0}\binom{d+i}{i} x^{i}$. Let

$$
g(x)=a_{k} x^{k}+\cdots+a_{1} x+a_{0}
$$

Then by multiplying and collecting terms of the same degree we have

$$
\frac{g(x)}{(1-x)^{d+1}}=\Sigma_{i=0}\left(a_{k}\binom{d+i-k}{d}+\cdots+a_{0}\binom{d+i}{d} x^{i}\right.
$$

where the term $a_{k}\binom{d+i-k}{d}$ is zero for $i<k$. For each coefficient $a_{j}$ of $g(x)$ define $p_{a_{j}}(i)=\binom{d+i-j}{d}$. Then
$p_{a_{j}}=\frac{(i-j+d)!}{(d!)(i-j)!}=\frac{(i-j+d)(i-j+d-1) \ldots(i-j+1)}{d!}=c_{d} i^{d}+\cdots+c_{1} i+c_{0}$
and so $p_{a_{j}}(i)$ is a polynomial. Let $f(n)$ be the coeficients of the above series. Then for $n>k f(n)=\Sigma_{j=0}^{k} p_{a_{j}}(n)$ is polynomial.

