
homework three

Brandon Stickel

1. Generating functions of sequences which are eventually polynomial. For a
function f : N→ N prove that the following are equivalent:

(a) There exists a polynomial F (x) of degree d such that f(n) = F (n) for
all sufficiently large integers n.

(b) There exists a polynomial g(x) such that

Σn≥0f(n)xn =
g(x)

(1− x)d+1
.

Proof. (⇒): Suppose there exists a polynomial F (x) of degree d such that
f(n) = F (n) for all sufficiently large integers n. Then we can write

Σn≥0f(n)xn = f(0)+f(1)x+· · ·+f(n−1)xn−1+F (n)xn+Σ1≥0F (n+i)xn+i.

Claim: The series Σi≥1idxi−1 = p(x)
(1−x)d+1 . We prove the claim by induction:

The case when d = 1 is done. Suppose it is true for d = n Then

Σi≥1i
nxi−1 = 1 + 2nx + 3nx2 + · · · =

p(x)
(1− x)n+1

Multiplying this series by x and then differntiating term by term we have

Σi≥1i
n+1xi−1 = 1 + 2n+1x + 3n+1x2 + . . .

Therefore since d
dx

p(x)
(1−x)n+1 = p′(x)(1−x)+(n+1)p(x)

(1−x)n+2 we’ve proved the claim. By
assumption F (x) = adxd + · · · + a1x + a0. Then

F (n + i) = ad(n + i)d + · · · + a1(n + i) + a0 = cdi
d + . . . c1i + c0.

where each cj doesn’t involve i. We can rewrite Σi≥1F (n + i)xn+i as

Σi≥1(cdi
d+· · ·+c1i+c0)xn+i = cdx

nΣi≥1i
dxi−1+· · ·+c1x

nΣi≥1ix
i−1+c0x

nΣi≥1x
i−1.

and by the claim we have:

Σi≥1F (n + i)xn+i =
cdxnpd(x)
(1− x)d+1

+ · · · +
c1xnp1(x)
(1− x)2

+
c0xn

(1− x)
.

Then

Σn≥0f(n)xn = f(0)+f(1)x+· · ·+F (n)xn+
cdxnpd(x)
(1− x)d+1

+· · ·+c1xnp1(x)
(1− x)2

+
c0xn

(1− x)
.

which can be written g(x)
(1−x)d+1 by writting each of the terms above as a poly-

nomial over (1− x)d+1 and collecting terms.
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(⇐) The series
1

(1− x)d+1
= Σi=0(

(
d + 1

i

)
)xi.

Since (
(d+1

i

)
) =

(d+i
d

)
) we can write the series in choose notation as Σi=0

(d+i
i

)
xi.

Let
g(x) = akxk + · · · + a1x + a0.

Then by multiplying and collecting terms of the same degree we have

g(x)
(1− x)d+1

= Σi=0(ak

(
d + i− k

d

)
+ · · · + a0

(
d + i

d

)
xi

where the term ak

(d+i−k
d

)
is zero for i < k. For each coefficient aj of g(x)

define paj (i) =
(d+i−j

d

)
. Then

paj =
(i− j + d)!
(d!)(i− j)!

=
(i− j + d)(i− j + d− 1) . . . (i− j + 1)

d!
= cdi

d+· · ·+c1i+c0

and so paj (i) is a polynomial. Let f(n) be the coeficients of the above series.
Then for n > k f(n) = Σk

j=0paj (n) is polynomial.

2. Polynomials with the integer values at the integers. Let T ⊂ R[x] be the ring
of real polynomials P (x) such that P (n) is an integer whenever n is an integer.

(a) Prove that T is a free abelian group and the polynomials
(x
0

)
,
(x
1

)
,
(x
2

)
, . . .

form a basis for it, where
(

x

k

)
=

x(x− 1) . . . (x− k + 1)
k!

.

Proof. First we’ll show that the polynomials
(x
0

)
,
(x
1

)
,
(x
2

)
, . . . form a basis

for R[x] as a vector space over R.
The polynomial

(x
0

)
= 1 so

(x
0

)
generates the subspace T0 of all polyno-

mials of degree 0. Suppose that
(x
0

)
, . . . ,

(x
n

)
generate the subspace Tn

of all polynomials of degree less than or equal to n. Then we can write
1, x, x2, . . . , xn as linear combinations of

(x
0

)
, . . . ,

(x
n

)
. The polynomial

(
x

n + 1

)
=

x(x− 1) . . . (x− n)
(n + 1)!

=
xn+1

(n + 1)!
+ cnxn + · · · + c1x + c0

for some constants ci. Then by induction we can write

xn+1 = (n + 1)!
(

x

n + 1

)
+ an

(
x

n

)
+ · · · + a0

(
x

0

)

for some constants ai. We conclude that
(x
0

)
,
(x
1

)
,
(x
2

)
, . . . generate all of

R[x]. Suppose now that p(x) = an

(x
n

)
+ · · ·+a0

(x
0

)
= bn

(x
n

)
+ · · ·+ b0

(x
0

)
.

Then an
n! x

n = bn
n! x

n and an = bn. Then we must have

an−1

(
x

n− 1

)
+ · · · + a0

(
x

0

)
= bn−1

(
x

n− 1

)
+ · · · + b0

(
x

0

)

and similarly an−1 = bn−1. This shows that there is a unique expression
for each p(x) as a linear combination of

(x
0

)
,
(x
1

)
,
(x
2

)
, . . .. We conclude

that they form a basis for R[x].
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