
So our syzygies are

ye1 − (x + z)e3 − e4 = 0
(x− z)e2 − ye3 = 0

z2e3 + (z − x)e4 = 0.

4.) Let I = 〈x1x3, x1x4, x2x4〉 in F[x1, x2, x3, x4], and let Id be the F-vector
space of homogeneous polynomials of degree d in I.

Note that all monomials in F[x1, x2, x3, x4] are in I except those of the form
xi
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4 where i, j ≥ 0. Basically, any monomial which is divisible by

three of x1, x2, x3, x4 is divisible by one of the generators of I. On the other
hand, monomials of the form xi
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To count these, there are
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monomials in 4 variables of degree d. There

are d + 1 monomials of the form xi
1x
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2 with i + j = d. If we count these for
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4 as well, then we get 3(d + 1) monomials, but we have overcounted

xd
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3 once each. Putting this all together gives that the number of monic
polynomials in I of degree d is

(d+3
3

)
− 3d− 1. So

HI(d) = dimFId =
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To compute H(I;x), we will use the following identity:
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. This gives that
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5. Let R = F[x1, x2, . . . , xn] and I = 〈x1, . . . , xn〉. For each d = 1, 2, . . . , n,
define the map φd : R(n

d) → R( n
d−1) so that for every A = {a1, . . . , ad} ⊂ [n],

eA
φd'−→

d∑

k=1

(−1)(k−1)xakeA\{ak}.

Then

0 → R
φn−→ Rn φn−1−→ . . .

φd+1−→ R(n
d) φd−→ . . .

φ2−→ Rn φ1−→ R → 0

is a free resolution of R/I.
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