4.) Let $I=\left\langle x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{4}\right\rangle$ in $\mathbb{F}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, and let I_{d} be the \mathbb{F}-vector space of homogeneous polynomials of degree d in I.

Note that all monomials in $\mathbb{F}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ are in I except those of the form $x_{1}^{i} x_{2}^{j}, x_{2}^{i} x_{3}^{j}, x_{3}^{i} x_{4}^{j}$ where $i, j \geq 0$. Basically, any monomial which is divisible by three of $x_{1}, x_{2}, x_{3}, x_{4}$ is divisible by one of the generators of I. On the other hand, monomials of the form $x_{1}^{i} x_{2}^{j}, x_{2}^{i} x_{3}^{j}$, or $x_{3}^{i} x_{4}^{j}$ where $i, j \geq 0$ are not in I.

To count these, there are $\binom{d+3}{3}$ monomials in 4 variables of degree d. There are $d+1$ monomials of the form $x_{1}^{i} x_{2}^{j}$ with $i+j=d$. If we count these for $x_{2}^{i} x_{3}^{j}, x_{3}^{i} x_{4}^{j}$ as well, then we get $3(d+1)$ monomials, but we have overcounted x_{2}^{d} and x_{3}^{d} once each. Putting this all together gives that the number of monic polynomials in I of degree d is $\binom{d+3}{3}-3 d-1$. So

$$
H_{I}(d)=\operatorname{dim}_{\mathbb{F}} I_{d}=\binom{d+3}{3}-3 d-1
$$

To compute $H(I ; x)$, we will use the following identity:

$$
\sum_{d \geq 0}\binom{d+n-1}{n-1} x^{d}=\sum_{d \geq 0}(\#\{\text { monomials of degree } d \text { in } n \text { variables }\}) x^{d}=\frac{1}{(1-x)^{n}}
$$

Then write $H(d)=\binom{d+3}{3}-3\binom{d+1}{1}+2\binom{d}{0}$. This gives that

$$
\begin{aligned}
\sum_{d \geq 0} H(d) x^{d} & =\sum_{d \geq 0}\binom{d+3}{3} x^{d}-3 \sum_{d \geq 0}\binom{d+1}{1} x^{d}+2 \sum_{d \geq 0}\binom{d}{0} x^{d} \\
& =\frac{1}{(1-t)^{4}}-\frac{3}{(1-t)^{2}}+\frac{2}{(1-t)}
\end{aligned}
$$

