4.1. Let $a=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}$, let $b=x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \ldots x_{n}^{\beta_{n}}$, and let $a<b$ in the weight order using the above vectors. Since the dot product of the $v_{i} \mathrm{~s}$ with $a$ and $b$ extracts the $i$ th component of the vector, and since the $i$ th components of $a$ and $b$ are $\alpha_{i}$ and $\beta_{i}$, respectively, then we know that if $a>b$, there exists some $t$ such that $\alpha_{i}=\beta_{i}$ for all $i<t$ and $\alpha_{t}>\beta_{t}$. However, this is the same criteria used in the lexicographic order with $x_{1}>x_{2}>\ldots>x_{n}$, and so these orderings are equivalent.
4.2. Let $a=x_{1}^{\alpha_{1}} \ldots x_{n}^{\beta_{1}}$, and let $b=x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}}$. Assume $a<b$ in the weight order using the above vectors. If $\operatorname{deg} a<\operatorname{deg} b$. If $v_{1} \cdot \operatorname{multideg}(a)<v_{1} \cdot \operatorname{multideg}(b)$, or $\sum_{k=1}^{n} \alpha_{k}<\sum_{k=1}^{n} \beta_{k}$, then $\operatorname{deg} a<\operatorname{deg} b$. So far, this weight order coincides with the grevlex order: importance is first given to the degree of the polynomial.

If $v_{2} \cdot$ multideg $(a)<v_{2} \cdot$ multideg $(b)$, then $\sum_{k=1}^{n-1} \alpha_{k}+\alpha_{n}(-n+1)<\sum_{k=1}^{n-1} \beta_{k}+\beta_{+} n(-n+1)$. Here, $\beta_{n}$ must be less $\alpha_{n}$, and so $\sum_{k=1}^{n-1} \alpha_{k}<\sum_{k=1}^{n-1} \beta_{k}$. Again, thus far, this weight order coincides with the grevlex order-the monomial with the larger degree on the last variable is weighted to be the smaller variable.

Assume inductively now that there exists some $i$ such that for all $j>i, v_{j} \cdot \operatorname{multideg}(a)=$ $v_{j} \cdot$ multideg $(b)$, implying (inductively) that $\alpha_{j}=\beta_{j}$ for $j>i$. If $\sum_{k=1}^{n-1+i} \alpha_{k}+\alpha_{n-i+2}(-n+$ $i-1)<\sum_{k=1}^{n-1} \beta_{k}+\beta_{+} n(-n+i-1) i$, then we have that $\alpha_{n-i+2}>\beta_{n-i+2}$. Therefore, we have all our conditions for the grevlex order in this weight order: if $\operatorname{deg} a<\operatorname{deg} b, a<b$. Otherwise, examine the degree of each variable starting with $x_{n}$. If $a<b$, then there exists an $i$ such that $\alpha_{j}=\beta_{j}$ for all $j>i$ and $\alpha_{i}>\beta_{i}$.

