4.1. Let $a = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}$, let $b = x_1^{\beta_1} x_2^{\beta_2} \dots x_n^{\beta_n}$, and let a < b in the weight order using the above vectors. Since the dot product of the v_i s with a and b extracts the *i*th component of the vector, and since the *i*th components of a and b are α_i and β_i , respectively, then we know that if a > b, there exists some t such that $\alpha_i = \beta_i$ for all i < t and $\alpha_t > \beta_t$. However, this is the same criteria used in the lexicographic order with $x_1 > x_2 > \dots > x_n$, and so these orderings are equivalent.

4.2. Let $a = x_1^{\alpha_1} \dots x_n^{\beta_1}$, and let $b = x_1^{\beta_1} \dots x_n^{\beta_n}$. Assume a < b in the weight order using the above vectors. If deg $a < \deg b$. If $v_1 \cdot multideg(a) < v_1 \cdot multideg(b)$, or $\sum_{k=1}^n \alpha_k < \sum_{k=1}^n \beta_k$, then deg $a < \deg b$. So far, this weight order coincides with the grevlex order: importance is first given to the degree of the polynomial.

If $v_2 \cdot multideg(a) < v_2 \cdot multideg(b)$, then $\sum_{k=1}^{n-1} \alpha_k + \alpha_n(-n+1) < \sum_{k=1}^{n-1} \beta_k + \beta_+ n(-n+1)$. Here, β_n must be less α_n , and so $\sum_{k=1}^{n-1} \alpha_k < \sum_{k=1}^{n-1} \beta_k$. Again, thus far, this weight order coincides with the grevlex order-the monomial with the larger degree on the last variable is weighted to be the smaller variable. Assume inductively now that there exists some i such that for all j > i, $v_i \cdot multideq(a) =$ $v_j \cdot multideg(b)$, implying (inductively) that $\alpha_j = \beta_j$ for j > i. If $\sum_{k=1}^{n-1+i} \alpha_k + \alpha_{n-i+2}(-n+i)$ i-1 $< \sum_{k=1}^{n-1} \beta_k + \beta_+ n(-n+i-1)i$, then we have that $\alpha_{n-i+2} > \beta_{n-i+2}$. Therefore, we have all our conditions for the grevlex order in this weight order: if deg $a < \deg b$, a < b. Otherwise, examine the degree of each variable starting with x_n . If a < b, then there exists an *i* such that $\alpha_i = \beta_i$ for all i > i and $\alpha_i > \beta_i$.