1. Let R be the ring of continuous functions on $[0,1]$. Let I be the ideal of function that are zero on some neighborhood of zero,

$$
I=\{f \in R: \exists \epsilon>0 \text { with } f=0 \text { on }[0, \epsilon]\} .
$$

Let $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ be any finite subset of I and let $\epsilon_{1}, \ldots, \epsilon_{m}>0$ so that $f_{i}=0$ on $\left[0, \epsilon_{i}\right]$. For every $h \in\left\langle f_{1}, \ldots, f_{m}\right\rangle, h=0$ on $\left[0, \min \left\{\epsilon_{1}, \ldots, \epsilon_{m}\right\}\right]$. Let $0<\epsilon<\min \left\{\epsilon_{1}, \ldots, \epsilon_{m}\right\}$ and find $g \in R$ so that $\{g=0\}=[0, \epsilon]$. Then $g \in I \backslash\left\langle f_{1}, \ldots, f_{m}\right\rangle$. Thus I cannot be finitely generated.

