homework three due: wed. mar. 4 (sf) / vie. 6 de mar. (bog)
Note. You are encouraged to work together on the homework, but you must state who you worked with. You must write your solutions independently and in your own words. If you are turning in your homework by email, please send it to cca.acc.cca@gmail.com.

1. Generating functions of sequences which are eventually polynomial. For a function $f: \mathbb{N} \rightarrow \mathbb{N}$ prove that the following are equivalent:
(i) There exists a polynomial $F(x)$ of degree d such that $f(n)=F(n)$ for all sufficiently large integers n.
(ii) There exists a polynomial $g(x)$ such that

$$
\sum_{n \geq 0} f(n) x^{n}=\frac{g(x)}{(1-x)^{d+1}} .
$$

2. Polynomials with integer values at the integers. Let $T \subset \mathbb{R}[x]$ be the ring of real polynomials $P(x)$ such that $P(n)$ is an integer whenever n is an integer.
(a) Prove that T is a free abelian group and the polynomials $\binom{x}{0},\binom{x}{1},\binom{x}{2}, \ldots$ form a basis for it, where

$$
\binom{x}{k}=\frac{x(x-1) \cdots(x-k+1)}{k!} .
$$

(Hint: Consider the linear operator $\Delta: T \rightarrow T$ given by $\Delta f(x)=f(x+1)-f(x)$.)
(b) Is the ring T Noetherian?
3. A recurrence for Hilbert series of monomial ideals. Let $I=\left\langle m_{1}, \ldots, m_{k}\right\rangle$ be a monomial ideal in $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Let

$$
I^{\prime}=\left\langle m_{1}, \ldots, m_{k-1}\right\rangle, \quad J=\left\langle\frac{m_{1}}{\operatorname{gcd}\left(m_{1}, m_{k}\right)}, \ldots, \frac{m_{k-1}}{\operatorname{gcd}\left(m_{k-1}, m_{k}\right)}\right\rangle .
$$

Prove that

$$
H_{R / I}(d)=H_{R / I^{\prime}}(d)-H_{R / J}(d) .
$$

(Hint. Find an appropriate exact sequence.)
4. Hilbert series of monomial ideals. Compute the Hilbert function and series for the ring

$$
\mathbb{C}[w, x, y, z] /(\langle w, x\rangle \cap\langle y, z\rangle) .
$$

5. Hilbert series. Compute the Hilbert function and series of the ring

$$
\mathbb{C}[w, x, y, z] /\left\langle w y-z^{2}, w x-y z, x z-y^{2}\right\rangle .
$$

6. (Bonus: 10 points) The SET problem. (Thanks to Diane Maclagan.) Let $\mathbb{F}_{3}=\{0,1,2\}$ be the field of three elements. We say that points u, v, w in \mathbb{F}_{3}^{n} form a SET if for each $i(1 \leq i \leq n)$, the coordinates u_{i}, v_{i}, w_{i} are either all equal or all distinct. Let $f(n)$ be the largest possible size of a subset of \mathbb{F}_{3}^{n} containing no SETs.
Let R be the polynomial ring in 3^{n} variables $x_{v}\left(v \in \mathbb{F}_{3}^{n}\right)$, and let I be the ideal generated by all monomials $x_{u} x_{v} x_{w}$ with $u+v+w=0$.
(a) Prove that $f(n)=\operatorname{dim}(R / I)$.
(b) For $n=2$, find a free resolution for R / I and compute $f(2)$.
(c) What can you say about R / I and $f(n)$ for larger values of n ?

Feel free to use a computer algebra system in this question.

