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0 Introduction

Enumerative combinatorics is about counting. The typical question is to find the number of objects
with a given set of properties.

However, enumerative combinatorics is not just about counting. In “real life”, when we talk
about counting, we imagine lining up a set of objects and counting them off: 1, 2, 3, . . .. However,
families of combinatorial objects do not come to us in a natural linear order. To give a very simple
example: we do not count the squares in an m × n rectangular grid linearly. Instead, we use the
rectangular structure to understand that the number of squares is m ·n. Similarly, to count a more
complicated combinatorial set, we usually spend most of our efforts understanding the underlying
structure of the individual objects, or of the set itself.

Many combinatorial objects of interest have a rich and interesting algebraic or geometric
structure, which often becomes a very powerful tool towards their enumeration. In fact, there are
many families of objects which we only know how to count using these tools. Our goal in this
chapter is to highlight some key aspects of the rich interplay between algebra, discrete geometry,
and combinatorics, with an eye towards enumeration.

About this chapter. Over the last fifty years, combinatorics has undergone a radical transformation.
Not too long ago, combinatorics mostly consisted of ad hoc methods and clever solutions to problems
that were fairly isolated from the rest of mathematics. It has since grown to be a central area of
mathematics, largely thanks to the discovery of deep connections to other fields. Combinatorics
has become an essential tool in many disciplines. Conversely, even though ingenious methods and
clever new ideas still abound, there is now a powerful, extensive toolkit of algebraic, geometric,
topological, and analytic techniques that can be applied to combinatorial problems.

It is impossible to give a meaningful summary of the many facets of algebraic and geometric
combinatorics in a writeup of this length. I found it very difficult but necessary to omit several
beautiful, important directions. In the spirit of a Handbook of Enumerative Combinatorics, my
guiding principle was to focus on algebraic and geometric techniques that are useful towards the
solution of enumerative problems. My main goal was to state clearly and concisely some of the
most useful tools in algebraic and geometric enumeration, and to give many examples that quickly
and concretely illustrate how to put these tools to use.
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Partially supported by the US National Science Foundation CAREER Award DMS-0956178 and the SFSU-Colombia
Combinatorics Initiative.
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PART 1. ALGEBRAIC METHODS

The first part of this chapter focuses on algebraic methods in enumeration. In Section 1 we
discuss the question: what is a good answer to an enumerative problem? Generating functions are
the most powerful tool to unify the different kinds of answers that interest us: explicit formulas,
recurrences, asymptotic formulas, and generating functions. In Section 2 we develop the algebraic
theory of generating functions. Various natural operations on combinatorial families of objects
correspond to simple algebraic operations on their generating functions, and this allows us to
count many families of interest. In Section 3 we show how many problems in combinatorics can
be rephrased in terms of linear algebra, and reduced to the problem of computing determinants.
Finally, Section 4 is devoted to the theory of posets. Many combinatorial sets have a natural poset
structure, and this general theory is very helpful in enumerating such sets.

1 What is a good answer?

The main goal of enumerative combinatorics is to count the elements of a finite set. Most frequently,
we encounter a family of sets T0, T1, T2, T3, . . . and we need to find the number tn = |Tn| for
n = 1, 2, . . .. What constitutes a good answer?

Some answers are obviously good. For example, the number of subsets of {1, 2, . . . , n} is 2n,
and it seems clear that this is the simplest possible answer to this question. Sometimes an answer
“is so messy and long, and so full of factorials and sign alternations and whatnot, that we may
feel that the disease was preferable to the cure” [Wil06]. Usually, the situation is somewhere in
between, and it takes some experience to recognize a good answer.

A combinatorial problem often has several kinds of answers. Which answer is better depends
on what one is trying to accomplish. Perhaps this is best illustrated with an example. Let us count
the number an of domino tilings of a 2 × n rectangle into 2 × 1 rectangles. There are several
different ways of answering this question.

Figure 1.1: The five domino tilings of a 2× 4 rectangle.

Explicit formula 1. We first look for an explicit combinatorial formula for an. To do that, we play
with a few examples, and quickly notice that these tilings are structurally very simple: they are
just a sequence of 2 × 1 vertical tiles, and 2 × 2 blocks covered by two horizontal tiles. Therefore
constructing a tiling is the same as writing n as an ordered sum of 1s and 2s. For example, the
tilings of Figure 1.1 correspond, respectively, to 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 2 + 2.
These sums are easy to count. If there are k summands equal to 2 there must be n− 2k summands
equal to 1, and there are

(
n−2k+k

k

)
=
(
n−k
k

)
ways of ordering the summands. Therefore

an =

bn/2c∑
k=0

(
n− k
k

)
=

(
n

0

)
+

(
n− 1

1

)
+

(
n− 2

2

)
+ · · · . (1)
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This is a pretty good answer. It is certainly an explicit formula, and it may be used to compute
an directly for small values of n. It does have two drawbacks. Aesthetically, it is certainly not
as satisfactory as “ 2n ”. In practice, it is also not as useful as it seems; after computing a few
examples, we will soon notice that computing binomial coefficients is a non-trivial task. In fact
there is a more efficient method of computing an.

Recurrence. Let n ≥ 2. In a domino tiling, the leftmost column of a 2 × n can be covered by a
vertical domino or by two horizontal dominoes. If the leftmost domino is vertical, the rest of the
dominoes tile a 2× (n− 1) rectangle, so there are an−1 such tilings. On the other hand, if the two
leftmost dominoes are horizontal, the rest of the dominoes tile a 2× (n− 2) rectangle, so there are
an−2 such tilings. We obtain the recurrence relation

a0 = 1, a1 = 1, an = an−1 + an−2 for n ≥ 2. (2)

which allows us to compute each term in the sequence in terms of the previous ones. We see that
an = Fn+1 is the (n+ 1)th Fibonacci number.

This recursive answer is not as nice as “ 2n ” either; it is not even an explicit formula for an.
If we want to use it to compute an, we need to compute all the first n terms of the sequence
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .. However, we can compute those very quickly; we only need
to perform n− 1 additions. This is an extremely efficient method for computing an.

Explicit formula 2. There is a well established method that turns linear recurrence relations with
constant coefficients, such as (2), into explicit formulas. We will review it in Theorem 2.4.1. In
this case, the method gives

an =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
 . (3)

This is clearly the simplest possible explicit formula for an; in that sense it is a great formula.
A drawback is that this formula is really not very useful if we want to compute the exact value

of, say, a1000. It is not even clear why (3) produces an integer, and to get it to produce the correct
integer would require arithmetic calculations with extremely high precision.

An advantage is that, unlike (1), (3) tells us very precisely how an grows with n.

Asymptotic formula. It follows immediately from (3) that

an ∼ c · ϕn, (4)

where c = 1+
√

5
2
√

5
and ϕ = 1+

√
5

2 ≈ 1.6179 . . . is the golden ratio. This notation means that

limn→∞ an/(c · αn) = 1. In fact, since |1−
√

5
2 | < 1, an is the closest integer to c · αn.

Generating function. The last kind of answer we discuss is the generating function. This is perhaps
the strangest kind of answer, but it is often the most powerful one.

Consider the infinite power series A(x) = a0 + a1x + a2x
2 + · · · . We call this the generating

function of the sequence a0, a1, a2, . . ..
1 We now compute this power series: From (2) we obtain

1For the moment, let us not worry about where this series converges. The issue of convergence can be easily
avoided (as combinatorialists often do, in a way which will be explained in Section 2.1) or resolved and exploited to
our advantage; let us postpone that discussion for the moment.
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that A(x) = 1 + x+
∑

n≥2(an−1 + an−2)xn = 1 + x+ x(A(x)− 1) + x2A(x) which implies:

A(x) = a0 + a1x+ a2x
2 + · · · = 1

1− x− x2
. (5)

With a bit of theory and some practice, we will be able to write the equation (5) immediately,
with no further computations (Example 18 in Section 2.2). To show this is an excellent answer,
let us use it to derive all our other answers, and more.

• Generating functions help us obtain explicit formulas. For instance, rewriting

A(x) =
1

1− (x+ x2)
=
∑
k≥0

(x+ x2)k

we recover (1). If, instead, we use the method of partial fractions, we get

A(x) =

(
1/
√

5

1− 1+
√

5
2 x

)
−

(
1/
√

5

1− 1−
√

5
2 x

)
which brings us to our second explicit formula (3).

• Generating functions help us obtain recursive formulas. In this example, we simply compare
the coefficients of xn on both sides of the equation A(x)(1−x−x2) = 1, and we get the recurrence
relation (2).

• Generating functions help us obtain asymptotic formulas. In this example, (5) leads to
(3), which gives (4). In general, almost everything that we know about the rate of growth of
combinatorial sequences comes from their generating functions, because analysis tells us that the
asymptotic behavior of an is intimately tied to the singularities of the function A(x).

• Generating functions help us enumerate our combinatorial objects in more detail, and under-
stand some of their statistical properties. For instance, say we want to compute the number am,n
of domino tilings of a 2×n rectangle which use exactly m vertical tiles. Once we really understand
(5) in Section 2.2, we will get the answer immediately:

1

1− vx− x2
=
∑
m,n≥0

am,nv
mxn.

Now suppose we wish to know what fraction of the tiles is vertical in a large random tiling. Among
all the an domino tilings of the 2 × n rectangle, there are

∑
m≥0mam,n vertical dominoes. We

compute ∑
n≥0

∑
m≥0

mam,n

xn =

[
∂

∂v

(
1

1− vx− x2

)]
v=1

=
x

(1− x− x2)2
.

Partial fractions then tell us that
∑

m≥0mam,n ∼
n
5

(
1+
√

5
2

)n+1
∼ 1√

5
nan. Hence the fraction of

vertical tiles in a random domino tiling of a 2× n rectangle converges to 1/
√

5 as n→∞.

So what is a good answer to an enumerative problem? Not surprisingly, there is no definitive
answer to this question. When we count a family of combinatorial objects, we look for explicit
formulas, recursive formulas, asymptotic formulas, and generating functions. They are all useful.
Generating functions are the most powerful framework we have to relate these different kinds of
answers and, ideally, find them all.
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2 Generating functions

In combinatorics, one of the most useful ways of “determining” a sequence of numbers a0, a1, a2, . . .
is to compute its ordinary generating function

A(x) =
∑
n≥0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + · · · .

or its exponential generating function

Aexp(x) =
∑
n≥0

an
xn

n!
= a0 + a1x+ a2

x2

2
+ a3

x3

6
+ a4

x4

24
+ · · · .

This simple idea is extremely powerful because some of the most common algebraic operations on
ordinary and exponential generating functions correspond to some of the most common operations
on combinatorial objects. This allows us to count many interesting families of objects; this is
the content of Section 2.2 (for ordinary generating functions) and Section 2.3 (for exponential
generating functions). In Section 2.4 we see how nice generating functions can be turned into
explicit, recursive, and asymptotic formulas for the corresponding sequences.

Before we get to this interesting theory, we have to understand what we mean by power se-
ries. Section 2.1 provides a detailed discussion, which is probably best skipped the first time one
encounters power series. In the meantime, let us summarize it in one paragraph:

There are two main attitudes towards power series in combinatorics: the analytic attitude and
the algebraic attitude. To harness the full power of power series, one should really understand both.
Chapter 2 of this Handbook of Enumerative Combinatorics is devoted to the analytic approach,
which treats A(x) as an honest analytic function of x, and uses analytic properties of A(x) to derive
combinatorial properties of an. In this chapter we follow the algebraic approach, which treats A(x)
as a formal algebraic expression, and manipulates it using the usual laws of algebra, without having
to worry about any convergence issues.

2.1 The ring of formal power series

Enumerative combinatorics is full of intricate algebraic computations with power series, where
justifying convergence is cumbersome, and usually unnecessary. In fact, many natural power series
in combinatorics only converge at 0, such as

∑
n≥0 n!xn; so analytic methods are not available to

study them. For these reasons we often prefer to carry out our computations algebraically in terms
of formal power series. We will see that even in this approach, analytic considerations are often
useful.

In this section we review the definition and basic properties of the ring of formal power
series C[[x]]. For a more in depth discussion, including the (mostly straightforward) proofs of the
statements we make here, see [Niv69].

Formal power series. A formal power series is an expression of the form

A(x) = a0 + a1x+ a2x
2 + · · · , a0, a1, a2, . . . ∈ C.

Formally, this series is just a sequence of complex numbers a0, a1, a2, . . . . We will see that it is
convenient to denote it A(x), but we do not consider it to be a function of x.
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Let C[[x]] be the ring of formal power series, where the sum and the product of A(x) =∑
n≥0 anx

n and B(x) =
∑

n≥0 bnx
n are:

A(x) +B(x) =
∑
n≥0

(an + bn)xn, A(x)B(x) =
∑
n≥0

(
n∑
k=0

akbn−k

)
xn.

It is implicit in the definition, but worth mentioning, that
∑

n≥0 anx
n =

∑
n≥0 bnx

n if and only if
an = bn for all n ≥ 0.

We define the degree of A(x) =
∑

n≥0 anx
n to be the smallest n such that an 6= 0. We also

write
[xn]A(x) := an, A(0) := [x0]A(x) = a0.

We also define formal power series inspired by series from analysis, such as

ex :=
∑
n≥0

xn

n!
, − log(1− x) :=

∑
n≥1

xn

n
, (1 + x)r :=

∑
n≥0

(
r

n

)
xn,

for any complex number r, where
(
r
n

)
:= r(r − 1) · · · (r − n+ 1)/n!.

The ring C[[x]] is commutative with 0 = 0 + 0x + · · · and 1 = 1 + 0x + · · · . It is an integral
domain; that is, A(x)B(x) = 0 implies that A(x) = 0 or B(x) = 0. It is easy to describe the units:∑

n≥0

anx
n is invertible ⇐⇒ a0 6= 0.

For example 1
1−x = 1 + x+ x2 + · · · because (1− x)(1 + x+ x2 + · · · ) = 1 + 0x+ 0x2 + · · · .

Convergence. When working in C[[x]], we will not consider convergence of sequences or series of
complex numbers. In particular, we will never substitute a complex number x into a formal power
series A(x).

However, we do need a notion of convergence for sequences in C[[x]]. We say that a sequence
A0(x), A1(x), A2(x), . . . of formal power series converges toA(x) =

∑
n≥0 anx

n if limn→∞ deg(An(x)−
A(x)) = ∞; that is, if for any n ∈ N, the coefficient of xn in Am(x) equals an for all sufficiently
large m. This gives us a useful criterion for convergence of infinite sums and products in C[[x]]:

∞∑
j=0

Aj(x) converges ⇐⇒ lim
j→∞

degAj(x) =∞

∞∏
j=0

(1 +Aj(x)) converges ⇐⇒ lim
j→∞

degAj(x) =∞ (Aj(0) = 0)

For example, the infinite sum
∑

n≥0(x + 1)n/2n does not converge in this topology. Notice that

the coefficient of x0 in this sum cannot be obtained through a finite computation; it would require
interpreting the infinite sum

∑
n≥0 1/2n. On the other hand, the following infinite sum converges:

∑
n≥0

1

n!

−∑
m≥1

xm

m

n

= 1− x. (6)
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It is clear from the criterion above that this series converges; but why does it equal 1− x?

Borrowing from analysis. In C[[x]], (6) is an algebraic identity which says that the coefficients of
xk in the left hand side – for which we can give an ugly but finite formula – equal 1,−1, 0, 0, 0, . . ..
If we were to follow a purist algebraic attitude, we would give an algebraic or combinatorial proof
of this identity. This is probably possible, but intricate and rather dogmatic. A much simpler
approach is to shift towards an analytic attitude, at least momentarily, and recognize that (6) is
the Taylor series expansion of

e− log(1−x) = 1− x

for |x| < 1. Then we can just invoke the following simple fact from analysis.

Theorem 2.1.1. If two analytic functions are equal in an open neighborhood of 0, then their Taylor
series at 0 are equal coefficient-by-coefficient; that is, they are equal as formal power series.

Composition. The composition of two series A(x) =
∑

n≥0 anx
n and B(x) =

∑
n≥0 bnx

n with
b0 = 0 is naturally defined to be:

A(B(x)) =
∑
n≥0

an

∑
m≥0

bmx
m

n

.

Note that this sum converges if and only if b0 = 0. Two very important special cases in combina-
torics are the series 1

1−B(x) and eB(x).

“Calculus”. We define the derivative of A(x) =
∑

n≥0 anx
n to be

A′(x) =
∑
n≥0

(n+ 1)an+1x
n.

This formal derivative satisfies the usual laws of derivatives, such as:

(A+B)′ = A′ +B′, (AB)′ = A′B +AB′, [A(B(x))]′ = A′(B(x))B′(x).

We can still solve differential equations formally. For example, if we know that F ′(x) = F (x) and
F (0) = 1, then (logF (x))′ = F ′(x)/F (x) = 1, which gives logF (x) = x and F (x) = ex.

This concludes our discussion on the formal properties of power series. Now let us return to
combinatorics.

2.2 Ordinary generating functions

Suppose we are interested in enumerating a family A = A0 t A1 t A2 t · · · of combinatorial
structures, where An is a finite set consists of the objects of “size” n. Denote by |a| the size of
a ∈ A. The ordinary generating function (ogf) of A is

A(x) =
∑
a∈A

x|a| = a0 + a1x+ a2x
2 + · · ·
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where an is the number of elements of size n.
We are not interested in the philosophical question of determining what it means for A to be

“combinatorial”; we are willing to call A a combinatorial structure as long as an is finite for all n.
We consider two structures A and B combinatorially equivalent, and write A ∼= B, if A(x) = B(x).

More generally, we may consider a family A where each element a is given a weight wt(a) –
often a constant multiple of x|a|, or a monomial in one or more variables x1, . . . , xn. Again, we
require that there are finitely many objects of any given weight. Then we define the weighted
ordinary generating function of A to be the formal power series

Awt(x1, . . . , xn) =
∑
a∈A

wt(a)

Examples of combinatorial structures (with their respective size functions) are words on the
alphabet {0, 1} (length), domino tilings of rectangles of height 2 (width), or Dyck paths (length).
We may weight these objects by tk where k is, respectively, the number of 1s, the number of vertical
tiles, or the number of returns to the x axis.

2.2.1 Operations on combinatorial structures and their generating functions.

There are a few simple but very powerful operations on combinatorial structures, all of which have
nice counterparts at the level of ordinary generating functions. Many combinatorial objects of
interest may be built up from basic structures using these operations.

Theorem 2.2.1. Let A and B be combinatorial structures.

1. (C = A+B: Disjoint union) If a C-structure of size n is obtained by choosing an A-structure
of size n or a B-structure of size n, then

C(x) = A(x) +B(x)

2. (C = A×B: Product) If a C-structure of size n is obtained by choosing an A-structure of size
k and a B-structure of size n− k for some k, then

C(x) = A(x)B(x)

This result also holds for weighted structures if the weight of a C-structure is the product of
the weights of the respective A and B-structures.

3. (C = Seq(B): Sequence) Assume |B0| = 0. If a C-structure of size n is obtained by choosing
a sequence of B-structures of total size n, then

C(x) =
1

1−B(x)

This result also holds for weighted structures if the weight of a C-structure is the product of
the weights of the respective B-structures.
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4. (C = A◦B: Composition) Compositional Formula. Assume that |B0| = 0. If a C-structure
of size n is obtained by choosing a sequence of B-structures of total size n and placing an A-
structure on this set of B-structures, then

C(x) = A(B(x))

This result also holds for weighted structures if the weight of a C-structure is the product of the
weights of the A-structure on its blocks and the weights of the B-structures on the individual
blocks.

5. (C = A−1: Inversion) Lagrange Inversion Formula.

(a) Algebraic version. If A<−1>(x) is the compositional inverse of A(x) then

n[xn]A<−1>(x) = [xn−1]

(
x

A(x)

)n
.

(b) Combinatorial version. Assume |A0| = 0, |A1| = 1, and let

A(x) = x− a2x
2 − a3x

3 − a4x
4 − · · ·

where an is the number of A-structures of size n for n ≥ 2.

Let an A-decorated plane rooted tree (or simply A-tree) be a rooted tree T where every
internal vertex v has an ordered set Dv of at least two “children”, and each set Dv is given
an A-structure. The size of T is the number of leaves.

Let C(x) be the generating function for A-decorated plane rooted trees. Then

C(x) = A<−1>(x).

This result also holds for weighted structures if the weight of a tree is the product of the weights
of the A-structures on its vertices.

In Theorem 2.2.1.5(b), to simplify matters, we introduced signs into A(x). Instead we could let
A(x) be the ordinary generating function for A-structures, but we would need to give each A-tree
the sign (−1)m, where m is the number of internal vertices. Similarly, we could allow a1 6= 1 at the
cost of some factors of a1 on the A-trees.

Proof. 1. is clear. The identity in 2. is equivalent to cn =
∑

k akbn−k, which corresponds to the
given combinatorial description. Iterating 2., the generating function for k-sequences of B-structures
is B(x)k, so in 3. we have C(x) =

∑
k B(x)k = 1/(1−B(x)) and in 4. we have C(x) =

∑
k akB(x)k.

The weighted statements follow similarly.
5(b). Observe that, by the Compositional Formula, an A ◦ C structure is either (i) an A-tree,

or (ii) a sequence of k ≥ 2 A-trees T1, . . . , Tk with an A-structure on {T1, . . . , Tk}.
The structure in (ii) is equivalent to an A-tree T , obtained by grafting T1, . . . , Tk at a new root

and placing the A-structure on its offspring (which contributes a negative sign). This T also arises
in (i) with a positive sign. These two appearances of T cancel each other out in A(C(x)), and the
only surviving tree is the trivial tree • with one vertex, which only arises once and has weight x.
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5(a). Let a sprig be a rooted plane tree consisting of a path r = v1v2 · · · vk = l starting at the
root r and ending at the leaf l, and at least one leaf hanging from each vi and to the right of vi+1

for 1 ≤ i ≤ k − 1. The trivial tree • is an allowable sprig with k = 1.
An A-sprig is a sprig where the children of vi are given an A-structure for 1 ≤ i ≤ k − 1; its

size is the number of leaves other than l minus 1.2 The right panel of Figure 2.1 shows several
A-sprigs. An A-sprig is equivalent to a sequence of A-structures, with weights shifted by −1, so
Theorem 2.2.1.3 tells us that

1

A(x)
=

1

x
· 1

1− (a2x+ a3x2 + · · · )
=
∑
n≥−1

(# of A-sprigs of size n)xn

Hence [xn−1](x/A(x))n = [x−1](1/A(x))n is the number of sequences of n sprigs of total size −1 by
Theorem 2.2.1.2. We need to show that

n · (# of A-trees with n vertices) = (# of sequences of n A-sprigs of total size −1)

Figure 2.1: The map from A-trees to sequences of A-sprigs.

An A-tree T can be trimmed into a sequence of n A-sprigs S1, . . . , Sn as follows. At each step,
look at the leftmost leaf and the path P to its highest remaining ancestor. Remove P and all the
branches hanging directly from P (which form an A-sprig), but do not remove any other vertices.
Repeat this until the tree is completely decomposed into A-sprigs. The total size of these sprigs
is −1. Figure 2.1 shows a tree of weight x5+(−1)+0+(−1)+2+(−1)+(−1)+(−1)+(−1)+(−1)+0+(−1) = x−1.
Notice that all the partial sums of the sum 5 + (−1) + 0 + (−1) + 2 + (−1) + (−1) + (−1) + (−1) +
(−1) + 0 + (−1) = −1 are non-negative.

Conversely, suppose we wish to recover theA-tree corresponding to a sequence of sprigs S1, . . . , Sn
with |S1| + · · · + |Sn| = −1 We must reverse the process, adding S1, . . . , Sn to T one at a time;
at each step we must graft the new sprig at the leftmost free branch. Note that after grafting
S1, . . . , Sk we are left with 1 + |S1|+ · · ·+ |Sk| free branches, so a sequence of sprigs corresponds to
a tree if and only if the partial sums |S1|+ · · ·+ |Sk| are non-negative for k = 1, . . . , n− 1. Finally,
it remains to observe that any sequence a1, . . . , an of integers adding to −1 has a unique cyclic shift
ai, . . . , an, a1, . . . , ai−1 whose partial sums are all non-negative. Therefore, out of the n cyclic shifts
of S1, . . . , Sn, exactly one of them corresponds to an A-tree. The desired result follows.

The last step of the proof above is a special case of the Cycle Lemma of Dvoretsky and Motzkin
[Sta99, Lemma 5.3.7], which is worth stating explicitly. Suppose a1, . . . , an is a string of 1s and
−1s with a1 + · · ·+ an = k > 0. Then there are exactly k cyclic shifts ai, ai+1, . . . , an, a1, . . . , ai−1

whose partial sums are all non-negative.

2We momentarily allow negative sizes, since the trivial A-sprig • has size −1. Thus we need to compute with
Laurent series, which are power series with finitely many negative exponents.
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2.2.2 Examples.

Classical applications. With practice, these simple ideas give very easy solutions to many classical
enumeration problems.

1. (Trivial classes) It is useful to introduce the trivial class ◦ having only one element of size 0,
and the trivial class • having only one element of size 1. Their generating functions are 1 and
x, respectively.

2. (Sequences) The slightly less trivial class Seq = {∅, •, • •, • • •, . . .} = Seq(•) contains one set
of each size. Its generating function is

∑
n x

n = 1/(1− x).

3. (Subsets and binomial coefficients) Let Subset consist of the pairs ([n], A) where n is a natural
number and A is a subset of [n]. Let the size of that pair be n. A Subset-structure is equivalent
to a word of length n in the alphabet {0, 1}, so Subset ∼= Seq({0, 1}) where |0| = |1| = 1, and

Subset(x) =
1

1− (x1 + x1)
=
∑
n≥0

2nxn.

We can use the extra variable y to keep track of the size of the subset A, by giving ([n], A) the
weight xny|A|. This corresponds to giving the letters 0 and 1 weights x and xy respectively,
so we get the generating function

Subsetwt(x) =
1

1− (x+ xy)
=
∑

n≥k≥0

(
n

k

)
xnyk

for the binomial coefficients
(
n
k

)
= n!

k!(n−k)! , which count the k-subsets of [n].

From this generating function, we can easily obtain the main results about binomial coeffi-
cients. Computing the coefficient of xnyk in

(∑(
n
k

)
xnyk

)
(1− x− xy) = 1 gives Pascal’s

recurrence (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
, n ≥ k ≥ 1

with initial values
(
n
0

)
=
(
n
n

)
= 1. Expanding Subsetwt(x) = 1

1−x(1+y) =
∑

n≥0 x
n(1 + y)n

gives the Binomial Theorem

(1 + y)n =

n∑
k=0

(
n

k

)
yk.

4. (Multinomial coefficients) Let Wordsk ∼= Seq({1, . . . , k}) consist of the words in the alphabet
{1, 2, . . . , k}. The words of length n are in bijection with the ways of putting n numbered
balls into k numbered boxes. The placements having ai balls in box i, where a1 + · · ·+ak = n,
are enumerated by the multinomial coefficient

(
n

a1,...,ak

)
= n!

a1!···ak! .

Giving the letter i weight xi, we obtain the generating function:

Wordsk(x1, . . . , xk) =
∑

a1,...,ak≥0

(
a1 + · · ·+ ak
a1, . . . , ak

)
xa11 · · ·x

ak
k =

1

1− x1 − · · · − xk

11



from which we obtain the recurrence(
n

a1, . . . , ak

)
=

(
n− 1

a1 − 1, a2, . . . , ak

)
+ · · ·+

(
n− 1

a1, . . . ak−1, ak − 1

)
and the multinomial theorem

(x1 + · · ·+ xk)
n =

∑
a1,...,ak≥0

a1+···+ak=n

(
n

a1, . . . , ak

)
xa11 · · ·x

ak
k .

5. (Compositions) A composition of n is a way of writing n = a1 + · · ·+ak as an ordered sum
of positive integers a1, . . . , ak. For example, 523212 is a composition of 15. A composition is
just a sequence of natural numbers, so Comp ∼= Seq(N) where |a| = a. Therefore

Comp(x) =
1

1− (x+ x2 + x3 + · · · )
=

1− x
1− 2x

=
∑
n≥1

2n−1xn.

and there are 2n−1 compositions of n.

If we give a composition of n with k summands the weight xnyk, the weighted generating
function is:

Compwt(x) =
1

1− (xy + x2y + x3y + · · · )
=

1− x
1− x(1 + y)

=
∑
n≥1

(
n− 1

k − 1

)
xnyk

so there are
(
n−1
k−1

)
compositions of n with k summands.

6. (Compositions into restricted parts) Given a subset A ⊆ N, an A-composition of n is a way
of writing n as an ordered sum n = a1 + · · · + ak where a1, . . . , ak ∈ A. The corresponding
combinatorial structure is A-Comp ∼= Seq(A) where |a| = a, so

A-Comp(x) =
1

1− (
∑

a∈A x
a)

For example, the number of compositions of n into odd parts is the Fibonacci number Fn−1,
because the corresponding generating functions is

OddComp(x) =
1

1− (x+ x3 + x5 + · · · )
=

1− x2

1− x− x2
= 1 +

∑
n≥1

Fn−1x
n.

7. (Multisubsets) Let Multisetm be the collection of multisets consisting of possibly repeated
elements of [m]. The size of a multiset is the number of elements, counted with repetition.
For example, {1, 2, 2, 2, 3, 5} is a multisubset of [7] of size 6. Then Multisetm ∼= Seq({1}) ×
· · · × Seq({m}), where |i| = 1 for i = 1, . . . ,m, so the corresponding ogf is

Multisetm(x) =

(
1

1− x

)m
=
∑
n≥0

(
−m
n

)
(−x)n,

and the number of multisubsets of [m] of size n is
((
m
n

))
:= (−1)n

(−m
n

)
=
(
m+n−1

n

)
.
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8. (Partitions) A partition of n is a way of writing n = a1 + · · · + ak as an unordered sum
of positive integers a1, . . . , ak. We usually write the parts in weakly decreasing order. For
example, 532221 is a partition of 15 into 6 parts. Let Partition be the family of partitions
weighted by xnyk where n is the sum of the parts and k is the number of parts. Then
Partition ∼= Seq({1})×Seq({2})×· · · , where wt(i) = xiy for i = 1, 2, . . ., so the corresponding
ogf is

Partition(x, y) =

(
1

1− xy

)(
1

1− x2y

)(
1

1− x3y

)
· · ·

There is no simple explicit formula for the number p(n) of partitions of n, although there is
a very elegant and efficient recursive formula. Setting y = −1 in the previous identity, and
invoking Euler’s pentagonal theorem [Aig07]∏

n≥0

(1− xn) = 1 +
∑
j≥1

(−1)j
(
xj(3j−1)/2 + xj(3j+1)/2

)
(7)

we obtain:

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− · · ·

where 1, 2, 5, 7, 12, 15, 22, 26, . . . are the pentagonal numbers.

9. (Partitions into distinct parts) Let DistPartition be the family of partitions into distinct parts,
weighted by xnyk where n is the sum of the parts and k is the number of parts. Then
DistPartition ∼= {1, 1} × {2, 2} × · · · , where wt(i) = xiy and wt(i) = 1 for i = 1, 2, . . ., so the
corresponding ogf is

DistPartition(x, y) = (1 + xy)(1 + x2y)(1 + x3y) · · ·

10. (Partitions into restricted parts) It is clear how to adapt the previous generating functions to
partitions where the parts are restricted. For example, the identity

1

1− x
= (1 + x)(1 + x2)(1 + x4)(1 + x8)(1 + x16) · · ·

expresses the fact that every positive integer can be written uniquely in binary notation, as
a sum of distinct powers of 2. The identity

(1 + x)(1 + x2)(1 + x3)(1 + x4) · · · = 1

1− x
· 1

1− x3
· 1

1− x5
· 1

1− x7
· · · ,

which may be proved by writing 1 + xk = (1 − x2k)/(1 − xk), expresses that the number of
partitions of n into distinct parts equals the number of partitions of n into odd parts.

11. (Partitions with restrictions on the size and the number of parts) Let p≤k(n) be the number
of partitions of n into at most k parts. This is also the number of partitions of n into parts
of size at most k. To see this, represent a partition n = a1 + · · ·+ aj as a left-justified array
of squares, where the ith row has ai squares. Each partition λ has a conjugate partition λ′

obtained by exchanging the rows and the columns of the Ferrers diagram. Figure 2.2 shows
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the Ferrers diagram of 431 and its conjugate partition 3221. It is clear that λ has at most k
parts if and only if λ′ has parts of size at most k.

From the previous discussion it is clear that∑
n≥0

p≤k(n)xn =
1

1− x
· 1

1− x2
· · · 1

1− xk

Figure 2.2: The Ferrers diagrams of the conjugate partitions 431 and 3221.

Now let p≤j,≤k(n) be the number of partitions of n into at most j parts of size at most k.
Then ∑

n≥0

p≤j,≤k(n)xn =
(1− x)(1− x2) · · · (1− xj+k)

(1− x)(1− x2) · · · (1− xj) · (1− x)(1− x2) · · · (1− xk)

This is easily proved by induction, using that p≤j,≤k(n) = p≤j,≤k−1(n) + p≤j,≤k(n− k).

12. (Even and odd partitions) Setting y = −1 into the generating function for partitions into
distinct parts of Example 9, we get∑

n≥0

(epd(n)− opd(n))xn =
∏
j≥1

(1− xj) = 1− x− x2 + x5 + x7 − x12 − x15 + · · ·

where epd(n) (resp. opd(n)) counts the partitions of n into an even (resp. odd) number of
distinct parts. Euler’s pentagonal formula (7) says that epd(n) − opd(n) equals 0 for all n
except for the pentagonal numbers, for which it equals 1 or −1.

There are similar results for partitions into distinct parts coming from a given set S.

• When S is the set of Fibonacci numbers, the coefficients of the generating function∏
n≥1

(1− xFn) = 1− x− x2 + x4 + x7 − x8 + x11 − x12 − x13 + x14 + · · ·

are also equal to 0, 1, or −1. [Rob96, Ard04]

• This is also true for any “k-Fibonacci sequence” S = {a1, a2, . . .} given by an = an−1 +
· · ·+ an−k for n > k and aj > aj−1 + · · ·+ a1 for 1 ≤ j ≤ k. [Dia09]

• The result also holds trivially for S = {2j : j ∈ N} since there is a unique partition of any
n into distinct powers of 2.

These three results seem qualitatively different from (and increasingly less surprising than)
Euler’s result, as these sequences S grow much faster than {1, 2, 3, . . .}, and S-partitions are
sparser. Can more be said about the sets S of positive integers for which the coefficients of∏
n∈S(1− xn) are all 1, 0 or −1?

14



13. (Set partitions) A set partition of a set S is an unordered collection of pairwise disjoint
sets S1, . . . , Sk whose union is S. The family of set partitions with k parts is SetPartitionk ∼=
•×Seq({1})×•×Seq({1, 2})×· · ·×•×Seq({1, 2, . . . , k}), where the singleton • and all numbers
i have size 1. To see this, we regard a word such as w = • 11 • 1221 • 31 as an instruction
manual to build a set partition S1, . . . , Sk. The jth symbol wj tells us where to put the
number j: if wj is a number h, we add j to the part Sh; if wj is the ith •, then we add j to a
new part Si. The sample word above leads to the partition {1, 2, 3, 5, 8, 11}, {4, 6, 7}, {9, 10}.
This process is easily reversible. It follows that∑

n≥0

S(n, k)xn =
x

1− x
· x

1− 2x
· · · · · x

1− kx
,

where S(n, k) is the number of set partitions of [n] into k parts. These numbers are called
the Stirling numbers of the second kind.

The equation (1− kx)
∑

n≥0 S(n, k)xn = x
∑

n≥0 S(n, k − 1)xn gives the recurrence

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1), 1 ≤ k ≤ n,

with initial values S(n, 0) = S(n, n) = 1. Note the great similarity with Pascal’s recurrence.

14. (Catalan structures) It is often said that if you encounter a new family of mathematical
objects, and you have to guess how many objects of size n there are, you should guess “the
Catalan number Cn = 1

n+1

(
2n
n

)
.” The Catalan family has more than 200 incarnations in

combinatorics and other fields [Sta99, Sta]; let us see three important ones.

(a) (Plane binary trees) A plane binary tree is a rooted tree where every internal vertex
has a left and a right child. Let PBTree be the family of plane binary trees, where a
tree with n internal vertices (and n + 1 leaves) has size n. A tree is either the trivial
tree ◦ of size 0, or the grafting of a left subtree and a right subtree at the root •, so
PBTree ∼= ◦+ (PBTree × • × PBTree). It follows that the generating function for plane
binary trees satisfies

T (x) = 1 + T (x)xT (x).

We may use the quadratic formula and the binomial theorem3 to get

T (x) =
1−
√

1− 4x

2x
=
∑
n≥0

1

n+ 1

(
2n

n

)
xn.

It follows that the number of plane binary trees with n internal vertices (and n + 1
leaves) is the Catalan number Cn = 1

n+1

(
2n
n

)
.

(b) (Triangulations) A triangulation of a convex polygon is a subdivision into triangles
using only the diagonals of P . A triangulation of an (n+ 2)-gon has n triangles; we say
it has size n. If we fix an edge e of P , then a triangulation of P is obtained by choosing
the triangle T that will cover e, and then choosing a triangulation of the two polygons
to the left and to the right of T . Therefore Triang ∼= ◦+ (Triang × • × Triang) and the
number of triangulations of an (n+ 2)-gon is also the Catalan number Cn.

3Since this is the first time we are using the quadratic formula, let us do it carefully. Rewrite the equation as
(1− 2xT (x))2 = 1− 4x , or (1− 2xT (x)−

√
1− 4x)(1− 2xT (x) +

√
1− 4x) = 0. Since C[[x]] is an integral domain,

one of the factors must be 0. From the constant coefficients we see that it must be the first factor.
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(c) (Dyck paths) A Dyck path P of length n is a path from (0, 0) to (2n, 0) which uses
the steps (1, 1) and (1,−1) and never goes below the x-axis. Say P is irreducible if it
touches the x axis exactly twice, at the beginning and at the end. Let D(x) and I(x)
be the generating functions for Dyck paths and irreducible Dyck paths.

A Dyck path is equivalent to a sequence of irreducible Dyck paths. Also, an irreducible
path of length n is the same as a Dyck path of length n − 1 with an additional initial
and final step. Therefore

D(x) =
1

1− I(x)
, I(x) = xD(x)

from which it follows that D(x) = 1−
√

1−4x
2x as well, and the number of Dyck paths of

length n is also the Catalan number.

Generatingfunctionology gives us fairly easy algebraic proofs that these three families are
enumerated by the Catalan numbers. Once we have discovered this fact, the temptation to
search for nice bijections is hard to resist.

Our algebraic analysis suggests a bijection φ from (b) to (a). The families of plane binary trees
and triangulations grow under the same recursive recipe, and so we can let the bijection grow
with them, mapping a triangulation T ×•× T ′ to the tree φ(T )×•×φ(T ′). A non-recursive
description of the bijection is the following. Consider a triangulation T of the polygon P ,
and fix an edge e. Put a vertex inside each triangle of T , and a vertex outside P next to each
edge other than e. Then connect each pair of vertices separated by an edge. Finally, root the
resulting tree at the vertex adjacent to e. This bijection is illustrated in Figure 2.3.

e

Figure 2.3: The bijection from triangulations to plane binary trees.

A bijection from (a) to (c) is less obvious from our algebraic computations, but is still not
difficult to obtain. Given a plane binary tree T of size n, prune all the leaves to get a tree T ′

with n vertices. Now walk around the periphery of the tree, starting on the left side from the
root, and continuing until we traverse the whole tree. Record the walk in a Dyck path D(T )
: every time we walk up (resp. down) a branch we take a step up (resp. down) in D(T ). One
easily checks that this is a bijection.

Even if it may be familiar, it is striking that two different (and straightforward) algebraic
computations show us that two families of objects that look quite different are in fact equiv-
alent combinatorially. Although a simple, elegant bijection can often explain the connection
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Figure 2.4: The bijection from plane binary trees to Dyck paths.

between two families more transparently, the algebraic approach is sometimes simpler, and
better at discovering such connections.

15. (k-Catalan structures) Let PTreek be the class of plane k-ary trees, where every vertex that
is not a leaf has k ordered children; let the size of such a tree be its number of leaves. In the
sense of Theorem 2.2.1.5(a), this is precisely an A-tree, where A = {•, •k} consisting of one
structure of size 1 and one of size k. Therefore PTreek = (x − xk)<−1>. Lagrange inversion
then gives

m[xm]A<−1>(x) = [xm−1]

(
1

1− xk−1

)m
= [xm−1]

∑
n≥0

(
m+ n− 1

n

)
x(k−1)n.

It follows that the a plane k-ary tree must have m = (k − 1)n+ 1 leaves for some integer n,
and the number of such trees is the k-Catalan number

Ckn =
1

(k − 1)n+ 1

(
kn

n

)
.

This is an alternative way to compute the ordinary Catalan numbers Cn = C2
n.

The k-Catalan number Ckn also has many different interpretations [HLM08]; we mention two
more. It counts the subdivisions of an (n(k − 1) + 2)-gon P into (necessarily n) (k + 1)-gons
using diagonals of P , and the paths from (0, 0) to (n, (k − 1)n) with steps (0, 1) and (1, 0)
that never rise above the line y = (k − 1)x.

Other applications. Let us now discuss a few other interesting applications which illustrate the
power of Theorem 2.2.1.

16. (Motzkin paths) The Motzkin number Mn is the number of paths from (0, 0) to (n, 0) using
the steps (1, 1), (1,−1), and (1, 0) which never go below the x-axis. Imitating our argument
for Dyck paths, we obtain a formula for the generating function:

M(x) =
1

1− (x+ xM(x)x)
=⇒ M(x) =

1− x−
√

1− 2x− 3x2

2x2
.

The quadratic equation x2M2 + (x − 1)M + 1 = 0 gives rise to the quadratic recurrence
Mn = Mn−1 +

∑
iMiMn−2−i. The fact that M(x) satisfies a polynomial equation leads to a

more efficient recurrence:

(n+ 2)Mn = (2n+ 1)Mn−1 + (3n− 3)Mn−2.
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We will see this in Section 2.4.2.

17. (Schröder paths) The (large) Schröder number rn is the number of paths from (0, 0) to
(2n, 0) using steps NE = (1, 1), SE = (1,−1), and E = (2, 0) which stays above the x axis.
Their generating function satisfies R(x) = 1/(1− x− xR(x)), and therefore

R(x) =
1− x−

√
1− 6x+ x2

2x
.

Theorem 2.2.1.3 is useful when we are counting combinatorial objects which “factor” uniquely
into an ordered “product” of “irreducible” objects. It tells us that we can count all objects if and
only if we can count the irreducible ones. We have already used that idea several times; let us see
it in action in some other examples.

18. (Domino tilings of rectangles) In Section 1 we let an be the number of domino tilings of a
2 × n rectangle. Such a tiling is uniquely a sequence of blocks, where each block is either a
vertical domino (of width 1) or two horizontal dominoes (of width 2). This truly explains the
formula:

A(x) =
1

1− (x+ x2)
.

Similarly, if am,n is the number of domino tilings of a 2 × n rectangle using v vertical tiles,
we immediately obtain: ∑

m,n≥0

am,nv
mxn =

1

1− (vx+ x2)
.

Sometimes the enumeration of irreducible structures is not immediate, but still tractable.

19. (Monomer-dimer tilings of rectangles) Let T (2, n) be the number of tilings of a 2×n rectangles
with dominoes and unit squares. Say a tiling is irreducible if it does not contain an internal
vertical line from top to bottom. Then Tilings ∼= Seq(IrredTilings). It now takes some thought
to recognize the irreducible tilings:

Figure 2.5: The irreducible tilings of 2× n rectangles into dominoes and unit squares.

There are 3 irreducible tilings of length 2, and 2 of every other length greater than or equal
to 1. Therefore∑

n≥0

T (2, n)xn =
1

1− (2x+ 3x2 + 2x3 + 2x4 + · · · )
=

1− x
1− 3x− x2 + x3

We will see in Theorem 2.4.1.2 that this gives T (2, n) ∼ c · αn where α ≈ 3.214 . . . is the
inverse of the smallest positive root of the denominator.
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Sometimes the enumeration of all objects is easier than the enumeration of the irreducible ones.
In that case we can use Theorem 2.2.1.3 in the opposite direction.

20. (Irreducible permutations) A permutation π of [n] is irreducible if it does not factor as a
permutation of {1, . . . ,m} and a permutation of {m + 1, . . . , n} for 1 ≤ m < n; that is, if
π([m]) 6= [m] for all 1 ≤ m < n. Clearly every permutation factors uniquely into irreducibles,
so ∑

n≥0

n!xn =
1

1− IrredPerm(x)
.

This gives the series for IrredPerm.

There are many interesting situations where it is possible, but not at all trivial, to decompose
the objects that interest us into simpler structures. To a combinatorialist this is good news – the
techniques of this section are useful tools, but are not enough; there is no shortage of interesting
work to do. Here is a great example.

21. (Domino towers) [GBV88, BP93, Zei] A domino tower is a stack of horizontal 2× 1 bricks
in a brickwork pattern, so that no brick is directly above another brick, such that the bricks
on the bottom level are contiguous, and every higher brick is (half) supported on at least one
brick in the row below it. Let the size of a domino tower be the number of bricks.

Figure 2.6: A domino tower of 19 bricks.

Remarkably, there are 3n−1 domino towers consisting of n bricks. Equally remarkably, no
simple bijection is known. The nicest argument known is as follows.

Figure 2.7: The decomposition of a domino tower into a pyramid and three half-pyramids.
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We decompose a domino tower x into smaller pieces, as illustrated in Figure 2.7. Each new
piece is obtained by pushing up the leftmost remaining brick in the bottom row, dragging
with it all the bricks encountered along the way. The first piece p will be a pyramid, which
we define to be a domino tower with only one brick in the bottom row. All subsequent pieces
h1, . . . , hk are half-pyramids, which are pyramids containing no bricks to the left of the
bottom brick. This decomposition is reversible. To recover x, we drop hk, hk−1, . . . , h1, p
from the top in that order; each piece is dropped in its correct horizontal position, and
some of its bricks may get stuck on the previous pieces. This shows that the corresponding
combinatorial classes satisfy X ∼= P × Seq(H).

Figure 2.8: A pyramid and its decomposition into half-pyramids.

Similarly, we may decompose a pyramid p into half-pyramids, as shown in Figure 2.8. Each
new half-pyramid is obtained by pushing up the leftmost remaining brick (which is not nec-
essarily in the bottom row), dragging with it all the bricks that it encounters along the way.
This shows that P ∼= Seq≥1(H) := H + (H ×H) + · · · .

Figure 2.9: A (non-half-pyramid) pyramid and its decomposition into two half-pyramids and a
bottom brick.

Finally consider a half-pyramid h; there are two cases. If there are other bricks on the
same horizontal position as the bottom brick, consider the lowest such brick, and push it up,
dragging with it all the bricks it encounters along the way, obtaining a half-pyramid h1. Now
remove the bottom brick; what remains is a half-pyramid h2. This is shown in Figure 2.9.
As before, we can recover h from h1 and h2. On the other hand, if there are no bricks above
the bottom brick, removing the bottom brick leaves either a half-pyramid or the empty set.
Therefore H ∼= (H × • ×H) + (• ×H) + •.
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The above relations correspond to the following identities for the corresponding ogfs:

X =
P

1−H
, P =

H

1−H
, H = xH2 + xH + x

Surprisingly cleanly, we obtain X(x) = x/(1 − 3x) =
∑

n≥1 3n−1xn. This proves that there

are 3n−1 domino towers of size n.

Although we do not need this here, it is worth noting that half-pyramids are enumerated by
Motzkin numbers; their generating functions are related by H(x) = xM(x).

2.3 Exponential generating functions

Ordinary generating functions are usually not well suited for counting combinatorial objects with a
labelled ground set. In such situations, exponential generating functions are a more effective tool.

Consider a family A = A0tA1tA2t· · · of labelled combinatorial structures, where An consists
of the structures that we can place on the ground set [n] = {1, . . . , n} (or, equivalently, on any
other labeled ground set of size n). The exponential generating function (egf) of A is

A(x) =
∑
a∈A

x|a|

|a|!
= a0

x0

0!
+ a1

x1

1!
+ a2

x2

2!
+ a3

x3

3!
+ · · ·

where an is the number of elements of size n.
We may again assign a weight wt(a) to each object a, usually a monomial in variables x1, . . . , xn,

and consider the weighted egf of A to be the formal power series

Awt(x1, . . . , xn, x) =
∑
a∈A

wt(a)
x|a|

|a|!

Examples of combinatorial structures (with their respective size functions) are permutations (num-
ber of elements), graphs (number of vertices), or set partitions (size of the set). We may weight
these objects by tk where k is, respectively, the number or cycles, the number of edges, or the
number of parts.

2.3.1 Operations on labeled structures and their exponential generating functions.

Again, there are some simple operations on labelled combinatorial structures, which correspond to
simple algebraic operations on the exponential generating functions. Starting with a few simple
structures, these operations are sufficient to generate many interesting combinatorial structures.
This will allow us to compute the exponential generating functions for those structures.

Theorem 2.3.1. Let A and B be labeled combinatorial structures.

1. (C = A + B: Disjoint union) If a C-structure on a finite set S is obtained by choosing an
A-structure on S or a B-structure on S, then

C(x) = A(x) +B(x)
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2. (C = A ∗ B: Labelled Product) If a C-structure on a finite set S is obtained by partitioning S
into disjoint sets S1 and S2 and putting an A-structure on S1 and a B-structure on S2, then

C(x) = A(x)B(x)

This result also holds for weighted structures if the weight of a C-structure is the product of
the weights of the respective A and B-structures.

3. (C = Seq∗(B): Labeled Sequence) If a C-structure on a finite set S is obtained by choosing an
ordered partition of S into a sequence of blocks and putting a B-structure on each block, then

C(x) =
1

1−B(x)

This result also holds for weighted structures if the weight of a C-structure is the product of
the weights of the respective B structures.

4. (C = Set(B): Set) Exponential Formula. If a C-structure on a finite set S is obtained by
choosing an unordered partition of S into a set of blocks and putting a B-structure on each
block, then

C(x) = eB(x)

This result also holds for weighted structures if the weight of a C-structure is the product of
the weights of the respective B-structures.

In particular, if ck(n) is the number of C-structures of an n-set which decompose into k
components (B-structures), we have∑

n,k,≥0

ck(n)
xn

n!
yk = eyB(x) = C(x)y

5. (C = A ◦ B: Composition) Compositional Formula. If a C-structure on a finite set S is
obtained by choosing an unordered partition of S into a set of blocks, putting a B-structure
on each block, and putting an A-structure on the set of blocks, then

C(x) = A(B(x))

This result also holds for weighted structures if the weight of a C-structure is the product of
the weights of the A structure on its set of blocks and the weights of the B structures on the
individual blocks.

Again, Theorem 2.3.2.3 is useful when we are counting combinatorial objects which “decompose”
uniquely as a set of “indecomposable” objects. It tells us that we can count all objects if and only
if we can count the indecomposable ones (or vice versa). Amazingly, in Theorem 2.3.2.4 we also
obtain for free the finer enumeration of the objects by their number of components.

Proof. 1. is clear. The identity in 2. is equivalent to cn =
∑

k

(
n
k

)
akbn−k, which corresponds to

the given combinatorial description. Iterating 2., we see that the exponential generating functions
for k-sequences of B-structures is B(x)k, and hence the one for k-sets of B-structures is B(x)k/k!.
This readily implies 3, 4, and 5. The weighted statements follow similarly.
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The following statements are perhaps less fundamental, but also useful.

Theorem 2.3.2. Let A be a labeled combinatorial structure.

1. (C = A+: Shifting) If a C-structure on S is obtained by adding a new element t to S and
choosing an A-structure on S ∪ {t}, then

C(x) = A′(x).

2. (C = A•: Rooting) If a C-structure on S is a rooted A-structure, obtained by choosing an
A-structure on S and an element of S called the root, then

C(x) = xA(x).

3. (Sieving by parity of size) If the C-structures are precisely the A-structures of even size,

C(x) =
A(x) +A(−x)

2
.

4. (Sieving by parity of components) Suppose A-structures decompose uniquely into components,
so A = Set(B) for some B. If the C-structures are the A-structures having only components
of even size,

C(x) =
√
A(x)A(−x).

5. (Sieving by parity of number of components) Suppose A-structures decompose uniquely into
components, so A = Set(C) for some C. If the C-structures are precisely the A-structures
having an even number of components,

C(x) =
1

2

(
A(x) +

1

A(x)

)
.

Similar sieving formulas hold modulo k for any k ∈ N.

Proof. We have cn = an+1 in 1., cn = nan in 2., and cn = 1
2(an + (−1)nan) in 3., from which the

generating function formulas follow. Combining 3. with the Exponential Formula we obtain 4. and
5.

Similarly we see that the generating function for A-structures whose size is a multiple of k is
1
k

(
A(x) +A(ωx) + · · ·+A(ωk−1x)

)
where ω is a primitive kth root of unity. If we wish to count

elements of size i mod k, we use 1. to shift this generating function i times.

2.3.2 Examples.

Classical applications. Once again, these simple ideas give very easy solutions to many classical
enumeration problems.

1. (Trivial classes) Again we consider the trivial classes ◦ with only one element of size 0, and
• with only one element of size 1. Their exponential generating functions are 1 and x,
respectively.
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2. (Sets) A slightly less trivial class of Sets contains one set of each size. We also let Sets≥1 denote
the class of non-empty sets, with generating function ex − 1. The exponential generating
functions are

Sets(x) = ex, Sets≥1(x) = ex − 1.

3. (Set Partitions) In Section 2.3.2 we found the ordinary generating function for Stirling num-
bers S(n, k) for a given k; but in fact it is easier to use exponential generating functions.
Simply notice that SetPartition ∼= Set(Set≥1), and the Weighted Exponential Formula then
gives

SetPartition(x, y) =
∑
n,k≥0

S(n, k)
xn

n!
yk = ey(ex−1).

4. (Permutations) Let Permn consist of the n! permutations of [n]. A permutation is a labeled
sequence of singletons, so Perm = Seq∗(•), and the generating function for permutations is

Perm(x) =
∑
n≥0

n!
xn

n!
=

1

1− x
.

5. (Cycles) Let Cyclen consist of the cyclic orders of [n]. These are the ways of arranging 1, . . . , n
around a circle, where two orders are the same if they differ by a rotation of the circle. There
is an n-to-1 mapping from permutations to cyclic orders obtained by wrapping a permutation
around a circle, so

Cycle(x) =
∑
n

(n− 1)!xn/n! = − log(1− x).

There is a more indirect argument which will be useful to us later. Recall that a per-
mutation π can be written uniquely as a (commutative) product of disjoint cycles of the
form (i, π(i), π2(i), . . . , πk−1(i)) where k is the smallest index such that πk(i) = i. For in-
stance, the permutation 835629741 can be written in cycle notation as (18469)(235)(7). Then
Perm = Set(Cycle) so 1/(1− x) = eCycle(x).

6. (Permutations by number of cycles) The (signless) Stirling number of the first kind c(n, k)
is the number of permutations of n having k cycles. The Weighted Exponential Formula gives∑

n,k≥0

c(n, k)
xn

n!
yk = eyCycle(x) =

(
1

1− x

)y
=
∑
n≥0

y(y + 1) · · · (y + n− 1)
xn

n!

so the Stirling numbers c(n, k) of the first kind are the coefficients of the polynomial y(y +
1) · · · (y + n− 1).

Other applications. The applications of these techniques are countless; let us consider a few more
applications, old and recent.

7. (Permutations by cycle type) The type of a permutation π ∈ Sn is type(w) = (c1, . . . , cn)
where ci is the number of cycles of length i. For indeterminates t = (t1, . . . , tn), let ttype(w) =
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tc11 · · · tcnn . The cycle indicator of the symmetric group Sn is Zn = 1
n!

∑
w∈Sn ttype(w). The

Weighted Exponential Formula immediately gives∑
n≥0

Znx
n = et1x+ t2x2/2 + t3x3/3+···

Let us discuss two special cases of interest.

8. (Derangements) A derangement of [n] is a permutation such that π(i) 6= i for all i ∈ [n].
Equivalently, a derangement is a permutation with no cycles of length 1. It follows that
Derangement = Set(Cycle≥2), so the number dn of derangements of [n] is given by

Derangement(x) =
∑
n≥0

dn
xn

n!
= e− log(1−x)−x = e−x + xe−x + x2e−x + · · · .

which leads to the explicit formula:

dn = n!

(
1− 1

1!
+

1

2!
− 1

3!
+ · · · ± 1

n!

)
∼ n!

e
.

9. (Involutions) An involution of [n] is a permutation w such that w2 is the identity. Equiv-
alently, an involution is a permutation with cycles of length 1 and 2, so the number in of
involutions of [n] is given by

Inv(x) =
∑
n≥0

in
xn

n!
= ex+x2

2

Note that Inv′(x) = (x + 1)Inv(x), which gives in = in−1 + (n − 1)in−2. In Section 2.4.2 we
will explain the theory of D-finite power series, which turns differential equations for power
series into recurrences for the corresponding sequences.

10. (Trees.) A tree is a connected graph with no cycles. Consider a “birooted” tree (T, a, b) on [n]
with two (possibly equal) root vertices a and b. Regard the unique path a = v0, v1, . . . , vk = b
as a “spine” for T ; the rest of the tree consists of rooted trees hanging from the vis; direct
their edges towards the spine. Now regard v1 . . . vk as a permutation in one-line notation,
and rewrite it in cycle notation. This transforms (T, a, b) into a directed graph consisting of
a disjoint collection of cycles with trees directed towards them. Every vertex has outdegree
1, so this defines a function f : [n]→ [n]. A moment’s thought will convince us that this is a
bijection. Therefore there are nn birooted trees on [n], and hence there are nn−2 trees on [n].

11. (Trees, revisited.) Let us count trees in a different way. Let a rooted tree be a tree with
a special vertex called the root, and a planted forest be a graph with no cycles where
each connected component has a root. Let tn, rn, fn and T (x), R(x) = xT (x), F (x) be the
sequences and exponential generating functions enumerating trees, rooted trees, and planted
forests, respectively.

Planted forests are vertex-disjoint unions of rooted trees, so F (x) = eR(x). Also, as illustrated
in Figure 2.11, a rooted tree T consists of a root attached to the roots of a planted forest, so
R(x) = xF (x). It follows that x = R(x)e−R(x), so

R(x) = (xe−x)<−1>.
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Figure 2.10: A tree on [8] birooted at 3 and 5, and the corresponding function f : [8]→ [8].
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Figure 2.11: A rooted tree seen as a root attached to the roots of a planted forest.

Lagrange inversion gives n · rnn! = [xn−1]enx = nn−1

(n−1)! , so

rn = nn−1, fn = (n+ 1)n−1, tn = nn−2.

We state a finer enumeration; see [Sta99, Theorem 5.3.4] for a proof. The degree sequence
of a rooted forest on [n] is (deg 1, . . . ,deg n) where deg i is the number of children of i. For
example the degree sequence of the rooted tree in Figure 2.11 is (3, 1, 0, 0, 0, 0, 2, 0, 2). Then
the number of planted forests with a given degree sequence (d1, . . . , dn) and (necessarily)
k = n− (d1 + · · ·+ dn) components is(

n− 1

k − 1

)(
n− k

d1, . . . , dn

)
.

The number of forests on [n] is given by a more complicated alternating sum; see [Tak90].

12. (Permutations, revisited) Here is an unnecessarily complicated way of proving there are
n! permutations of [n]. A permutation π of [n + 1] decomposes uniquely as a concate-
nation π = L(n + 1)R for permutations L and R of two complementary subsets of [n].
Therefore Shift(Perm) = (Perm) ∗ (Perm), and the generating function P (x) for permu-
tations satisfies P ′(x) = P (x)2 with P (0) = 1. Solving this differential equation gives
P (x) = 1

1−x =
∑

n≥0 n!x
n

n!

13. (Alternating permutations) The previous argument was gratuitous for permutations, but it
will now help us to enumerate the class Alt of alternating permutations w, which satisfy
w1 < w2 > w3 < w4 > · · · . The Euler numbers are En = |Altn|; let E(x) be their
exponential generating function. We will need the class RevAlt of permutations w with
w1 > w2 < w3 > w4 < · · · . The map w = w1 . . . wn 7→ w′ = (n+ 1− w1) . . . (n+ 1− wn), on
permutations of [n] shows that Alt ∼= RevAlt.
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Now consider alternating permutations L and R of two complementary subsets of [n]. For
n ≥ 1, exactly one of the permutations L(n + 1)R and L′(n + 1)R is alternating or reverse
alternating, and every such permutation arises uniquely in that way. For n = 0 both are
alternating. Therefore Shift(Alt + RevAlt) = Alt ∗ Alt, so 2E′(x) = E(x)2 + 1 with E(0) = 1.
Solving this differential equation we get

E(x) =
∑
n≥0

En
xn

n!
= secx+ tanx

Therefore secx and tanx enumerate the alternating permutations of even and odd length,
respectively. The Euler numbers are also called secant and tangent numbers. This surprising
connection allows us to give combinatorial interpretations of various trigonometric identities,
such as 1 + tan2 x = sec2 x.

14. (Graphs) Let g(v) and gconn(v) be the number of simple4 graphs and connected graphs on [v],
respectively. The Exponential Formula tells us that their exponential generating functions
are related by G(x) = eGconn(x). In this case it is hard to count the connected graphs directly,
but it is easy to count all graphs: to choose a graph we just have to decide whether each edge

is present or not, so g(v) = 2(v2). This gives us

∑
v≥0

gconn(v)
xv

v!
= log

∑
v≥0

2(v2)
xv

v!


We may easily adjust this computation to account for edges and components. There are(
v(v−1)/2

e

)
graphs on [v] with e edges; say g(v, c, e) of them have c components, and give them

weight ycze. Then

∑
v,c,e≥0

g(v, c, e)
xv

v!
ycze =

∑
v,e≥0

((v
2

)
e

)
xv

v!
ze

y

= F (x, 1 + z)y

where

F (α, β) =
∑
n≥0

αn β(n2)

n!
.

is the deformed exponential function of [Sok12].

15. (Signed Graphs) A simple signed graph G is a set of vertices, with at most one “positive”
edge and one “negative” edge connecting each pair of vertices. We say G is connected if and
only if its underlying graph G (ignoring signs) is connected. A cycle in G corresponds to a
cycle of G; we call it balanced if it contains an even number of negative edges, and unbalanced
otherwise. We say that G is balanced if all its cycles are balanced. Let s(v, c+, c−, e) be the
number of signed graphs with v vertices, e edges, c+ balanced components, and c− unbalanced
components; we wish to compute

S(x, y+, y−, z) =
∑

G signed graph

s(v, c+, c−, e)
xv

v!
y
c+
+ y

c−
− ze.

4containing no multiple edges or loops
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We follow [ACH14].

Let S(x, y+, y−, z), B(x, y+, z), C+(x, z), and C−(x, z) be the generating functions for signed,
balanced, connected balanced, and connected unbalanced graphs, respectively. The Weighted
Exponential Formula gives:

B = ey+C+ , S = ey+C++y−C−

so if we can compute C+ and C− we will obtain B and S. In turn, these equations give

C+(x, z) =
1

2
logB(x, 2, z), C+(x, z) + C−(x, z) = logS(x, 1, 1, z).

and we now compute the right hand side of these two equations. (In the first equation, we
set t+ = 2 because, surprisingly, B(x, 2, z) is easier to compute than B(x, 1, z).) One is easy:

S(x, 1, 1, z) =
∑
e,v≥0

(
v(v − 1)

e

)
xv

v!
ze = F (x, (1 + z)2).
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3 4

_ +_
+
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Figure 2.12: The two marked graphs that give rise to one balanced signed graph.

For the other one, we count balanced signed graphs by relating them with marked graphs,
which are simple graphs with a sign + or − on each vertex. [HK81] A marked graph M
gives rise to a balanced signed graph G by assigning to each edge the product of its ver-
tex labels. Furthermore, if G has c components, then it arises from precisely 2c different
marked graphs, obtained from M by choosing some connected components and changing
their signs. This correspondence is illustrated in Figure 2.12. It follows that B(x, 2y, z) =∑

B balanced 2c b(v, c, e)x
v

v! y
cze =

∑
M markedm(v, c, e)x

v

v! y
cze is the generating function for

marked graphs, and hence B(x, 2, z) may be computed easily:

B(x, 2, z) =
∑
e,v

((v
2

)
e

)
2v
xv

v!
ze = F (2x, 1 + z)

Putting these equations together yields

S(x, y+, y−, z) = F (2x, 1 + z)(y+−y−)/2F (x, (1 + z)2)y− .
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2.4 Nice families of generating functions

2.4.1 Rational generating functions

Many sequences in combinatorics and other fields satisfy three equivalent properties: they satisfy
a recursive formula with constant coefficients, they are given by an explicit formula in terms of
polynomials and exponentials, and their generating functions are rational. We understand these
sequences very well. The following theorem tells us how to translate any one of these formulas into
the others.

Theorem 2.4.1. [Sta12, Theorem 4.1.1] Let a0, a1, a2, . . . be a sequence of complex numbers and
let A(x) =

∑
n≥0 anx

n be its ordinary generating function. Let q(x) = 1 + c1x + · · · + cdx
d =

(1− r1x)d1 · · · (1− rkx)dk be a complex polynomial of degree d. The following are equivalent:

1. The sequence satisfies the linear recurrence with constant coefficients

an + c1an−1 + · · ·+ cdan−d = 0 (n ≥ d).

2. There exist polynomials f1(x), . . . , fk(x) with deg fi(x) < di for 1 ≤ i ≤ n such that

an = f1(n) rn1 + · · ·+ fk(n) rnk .

3. There exists a polynomial p(x) with deg p(x) < d such that A(x) = p(x)/q(x).

Notice that Theorem 2.4.1.2 gives us the asymptotic growth of an immediately. Let us provide
more explicit recipes.

(1⇒ 2) Extract the inverses ri of the roots of q(x) = 1+ c1x+ · · ·+ cdx
d and their multiplicities di.

The d1 + · · · + dk = d coefficients of the fis are the unknowns in the system of d linear equations
an = f1(n) rn1 + · · ·+ fk(n)rnk (n = 0, 1, . . . , d− 1), which has a unique solution.

(1 ⇒ 3) Read off q(x) = 1 + c1x + · · · + cdx
d from the recurrence; the coefficients of p(x) are

[xk]p(x) = ak + c1ak−1 + · · ·+ cdak−d for 0 ≤ k < d, where ai = 0 for i < 0.

(2⇒ 1) Compute the cis using q(x) =
∏k
i (1− rix)deg fi+1.

(2 ⇒ 3) Let q(x) =
∏
i(1 − rix)deg fi+1, and compute the first k terms of p(x) = A(x)q(x); the

others are 0.

(3⇒ 1) Extract the cis from the denominator q(x).

(3 ⇒ 2) Compute the partial fraction decomposition p(x)/q(x) =
∑k

i=1 pi(x)/(1 − rix)di where

deg pi(x) < di and use (1− rix)−di =
∑

n

(
di+n−1
di−1

)
rni x

n to extract an = [xn]p(x)/q(x).

Characterizing polynomials. As a special case of Theorem 2.4.1, we obtain a useful characterization
of sequences given by a polynomial. The difference operator ∆ acts on sequences, sending the
sequence {an : n ∈ N} to the sequence {∆an : n ∈ N} where ∆an = an+1 − an.

Theorem 2.4.2. [Sta12, Theorem 4.1.1] Let a0, a1, a2, . . . be a sequence of complex numbers and let
A(x) =

∑
n≥0 anx

n be its ordinary generating function. Let d be a positive integer. The following
are equivalent:
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1. We have ∆d+1an = 0 for all n ∈ N.

2. There exists a polynomial f(x) with deg f ≤ d such that an = f(n) for all n ∈ N.

3. There exists a polynomial p(x) with deg p(x) ≤ d such that A(x) = p(x)/(1− x)d+1.

We have already seen some combinatorial polynomials and generating functions whose denom-
inator is a power of 1− x; we will see many more examples in the following sections.

2.4.2 Algebraic and D-finite generating functions

When the generating function A(x) =
∑

n anx
n we are studying is not rational, the next natural

question to ask is whether A(x) is algebraic. If it is, then just as in the rational case, the sequence
an still satisfies a linear recurrence, although now the coefficients are polynomial in n. This general
phenomenon is best explained by introducing the wider family of “D-finite” (also known as “differ-
entially finite” or “holonomic”) power series. Let us discuss a quick example before we proceed to
the general theory.

We saw that the ordinary generating function for the Motzkin numbers satisfies the quadratic
equation

x2M2 + (x− 1)M + 1 = 0 (8)

which gives rise to the quadratic recurrence Mn = Mn−1 +
∑

iMiMn−2−i with M0 = 1. This is not
a bad recurrence, but we can find a better one. Differentiating (8) we can express M ′ in terms of
M . Our likely first attempt leads us to M ′ = −(2xM2 +M)/(2x2M + x− 1), which is not terribly
enlightening. However, using (8) and a bit of purposeful algebraic manipulation, we can rewrite
this as a linear equation with polynomial coefficients:

(x− 2x2 − 3x3)M ′ + (2− 3x− 3x2)M − 2 = 0.

Extracting the coefficient of xn we obtain the much more efficient recurrence relation

(n+ 2)Mn − (2n+ 1)Mn−1 − (3n− 3)Mn−2 = 0. (n ≥ 2)

We now explain the theoretical framework behind this example.

Rational, algebraic, and D-finite series. Consider a formal power series A(x) over the complex
numbers. We make the following definitions.

A(x) is rational There exist polynomials p(x) and q(x) 6= 0 such that

q(x)A(x) = p(x).

A(x) is algebraic There exist polynomials p0(x), . . . , pd(x) such that

p0(x) + p1(x)A(x) + p2(x)A(x)2 + · · ·+ pd(x)A(x)d = 0.

A(x) is D-finite There exist polynomials q0(x), . . . , qd(x), q(x) such that

q0(x)A(x) + q1(x)A′(x) + q2(x)A′′(x) + · · ·+ qd(x)A(d)(x) = q(x).
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Now consider the corresponding sequence a0, a1, a2 . . . and make the following definitions.

{a0, a1, . . .} is c-recursive There are constants c0, . . . , cd ∈ C such that

c0an + c1an−1 + · · ·+ cdan−d = 0 (n ≥ d)

{a0, a1, . . .} is P-recursive There are complex polynomials c0(x), . . . , cd(x) such that

c0(n)an + c1(n)an−1 + · · ·+ cd(n)an−d = 0 (n ≥ d)

These families contain most (but certainly not all) series and sequences that we encounter in
combinatorics. They are related as follows.

Theorem 2.4.3. Let A(x) = a0 + a1x + a2x
2 + · · · be a formal power series. The following

implications hold.

A(x) is rational =⇒ A(x) is algebraic =⇒ A(x) is D-finite

m m

{a0, a1, . . .} is c-recursive =⇒ {a0, a1, . . .} is P-recursive

Proof. We already discussed the correspondence between rational series and c-recursive functions,
and rational series are trivially algebraic. Let us prove the remaining statements.

(Algebraic⇒ D-finite) Suppose A(x) satisfies an algebraic equation of degree d. Then A is algebraic
over the field C(x), and the field extension C(x,A) is a vector space over C(x) having dimension
at most d.

Taking the derivative of the polynomial equation satisfied by A, we get an expression for A′

as a rational function of A and x. Taking derivatives repeatedly, we find that all derivatives of A
are in C(x,A). It follows that 1, A,A′, A′′, . . . , A(d) are linearly dependent over C(x), and a linear
relation between them is a certificate for the D-finiteness of A.

(P-recursive ⇔ D-finite): If q0(x)A(x) + q1(x)A′(x) + · · · + qd(x)A(d)(x) = q(x), comparing the
coefficients of xn gives a P -recursion for the ais. In the other direction, given a P-recursion for the
ais of the form c0(n)an + · · · + cd(n)an−d = 0, it is easy to obtain the corresponding differential
equation after writing ci(x) in terms of the basis {(x + i)k : k ∈ N} of C[x], where (y)k =
y(y − 1) · · · (y − k + 1).

The converses are not true. For instance,
√

1 + x is algebraic but not rational, and ex and
log(1− x) are D-finite but not algebraic.

Corollary 2.4.4. The ordinary generating function
∑

n anx
n is D-finite if and only if the expo-

nential generating function
∑

n an
xn

n! is D-finite.

Proof. This follows from the observation that {an : n ∈ N} is P-recursive if and only if {an/n! :
n ∈ N} is P-recursive
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A few examples. Before we discuss general tools, we collect some examples. We will prove all of
the following statements later in this section.

The power series for subsets, Fibonacci numbers, and Stirling numbers are rational:∑
n≥0

2nxn =
1

1− 2x
,
∑
n≥0

Fnx
n =

x

1− x− x2
,
∑
n≥k

S(n, k)xn =
x

1− x
· x

1− 2x
· · · x

1− kx
.

The “diagonal binomial”, k-Catalan, and Motzkin series are algebraic but not rational:

∑
n≥0

(
2n

n

)
xn =

1√
1− 4x

,
∑
n≥0

Mnx
n =

1− x−
√

1− 2x− 3x2

2x2
,
∑
n≥0

1

(k − 1)n+ 1

(
kn

n

)
xn.

The following series are D-finite but not algebraic:

ex, log(1 + x), sinx, cosx, arctanx,
∑
n≥0

(
2n

n

)2

xn,
∑
n≥0

(
3n

n, n, n

)
xn

The following series are not D-finite:√
1 + log(1 + x2), secx, tanx,

∑
n≥0

p(n)xn =
∏
k≥0

1

1− xk
.

Recognizing algebraic and D-finite series. It is not always obvious whether a given power series
is algebraic or D-finite, but there are some tools available. Fortunately, algebraic functions behave
well under a few operations, and D-finite functions behave even better. This explains why these
families contain most examples arising in combinatorics.

The following table summarizes the properties of formal power series that are preserved under
various key operations. For example, the fifth entry on the bottom row says that if A(x) and B(x)
are D-finite, then the composition A(B(x)) is not necessarily D-finite.

cA A+B AB 1/A A ◦B A ? B A′
∫
A A〈−1〉

rational Y Y Y Y Y Y Y N N
algebraic Y Y Y Y Y N Y N Y
D-finite Y Y Y N N Y Y Y N

Here A?B(x) :=
∑

n≥0 anbnx
n denotes the Hadamard product of A(x) and B(x),

∫
A(x) :=∑

n≥1
an−1

n xn is the formal integral of A(x), and A〈−1〉(x) is the compositional inverse of A(x).
In the fourth column we are assuming that A(0) 6= 0 so that 1/A(x) is well-defined, in the fifth

column we are assuming that B(0) = 0 so that A(B(x)) is well-defined, and in the last column we
are assuming that A(0) = 0 and A′(0) 6= 0, so that A〈−1〉(x) is well-defined.

For proofs of the “Yes” entries, see [Sta80a], [Sta99], [FS09]. For the “No” entries, we momentar-
ily assume the statements of the previous subsection. Then we have the following counterexamples:

• cosx is D-finite but 1/ cosx = secx is not.
•
√

1 + x and log(1 + x2) are D-finite but their composition
√

1 + log(1 + x2) is not.

• A(x) =
∑

n≥0

(
2n
n

)
xn is algebraic but A ? A(x) =

∑
n≥0

(
2n
n

)2
xn is not.
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• 1 + x is rational and algebraic but its integral log(1 + x) is neither.
• x+ x2 is rational but its compositional inverse (−1 +

√
1− 4x)/2 is not.

• arctanx is D-finite but its compositional inverse tanx is not.

Some of these negative results have weaker positive counterparts:

• If A(x) is algebraic and B(x) is rational, then A(x) ? B(x) is algebraic.
• If A(x) is D-finite and A(0) 6= 0, 1/A(x) is D-finite if and only if A′(x)/A(x) is algebraic.
• If A(x) is D-finite and B(x) is algebraic with B(0) = 0, then A(B(x)) is D-finite.

See [Sta99, Proposition 6.1.11], [HS85], and [Sta99, Theorem 6.4.10] for the respective proofs.

The following result is also useful:

Theorem 2.4.5. Consider a multivariate formal power series and its diagonal:

F (x1, . . . , xd) =
∑

n1,...,nd≥0

an1,...,ndx
n1
1 · · ·x

nd
d , diag F (x) =

∑
n≥0

an,...,nx
n.

1. If F (x1, . . . , xd) is a rational function of x1, . . . , xd, then diag F (x) is D-finite.

2. If d = 2 and F (x1, . . . , xd) is rational, then diag F (x) is algebraic, but not necessarily D-finite.

Now we are ready to prove our positive claims about the series at the beginning of this section.
The first three expressions are visibly rational, and the diagonal binomial and Motzkin series are
visibly algebraic. We proved that the k-Catalan series is algebraic in Section 2.3.2. The functions
ex, log(1 + x), sinx, cosx, arctanx satisfy the differential equations y′ = y, (1 + x)y′ = 1, y′′ =

−y, y′′ = −y, (1 + x2)y′ = 1, respectively. The series
∑

n≥0

(
2n
n

)2
xn is the Hadamard product of

(1− 4x)−1/2 with itself, and hence D-finite. Finally,
∑

n≥0

(
3n
n,n,n

)
xn is the diagonal of the rational

function 1
1−x−y−z =

∑
a,b,c≥0

(
a+b+c
a,b,c

)
xaybzc, and hence D-finite.

Proving the negative claims requires more effort and, often, a bit of analytic machinery. We
briefly outline some key results.

Recognizing series that are not algebraic. There are a few methods available to prove that a
series is not algebraic. The simplest algebraic and analytic criteria are the following.

Theorem 2.4.6 (Eisenstein’s Theorem). [PS98] If a series A(x) =
∑

n≥0 anx
n with rational co-

efficients is algebraic, then there exists a positive integer m such that anm
n is an integer for all

n.

This shows that ex, log(1 + x), sinx, cosx, and arctanx are not algebraic.

Theorem 2.4.7. [Jun31] If the coefficients of an algebraic power series A(x) =
∑

n≥0 anx
n satisfy

an ∼ cnrαn for nonzero c, α ∈ C and r < 0, then r + 1
2 is an integer.

Stirling’s approximation n! ∼
√

2πn (n/e)n gives
(

2n
n

)2 ∼ c · 16n/n and
(

3n
n,n,n

)
∼ c · 27n/n, so

the corresponding series are not algebraic.
Another useful analytic criterion is that an algebraic series A(x) must have a Newton-Puiseux

expansion at any of its singularities. See [FS09, Theorem VII.7] and [FGS06] for details.

Recognizing series that are not D-finite. The most effective methods to show that a function is
not D-finite are analytic.
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Theorem 2.4.8. [Hen91, Theorem 9.1] Suppose that A(x) is analytic at x = 0, and it is D-finite,
satisfying the equation q0(x)A(x) + q1(x)A′(x) + · · · + qd(x)A(d)(x) = q(x) with qd(x) 6= 0. Then
A(x) can be extended to an analytic function in any simply connected region of the complex plane
not containing the (finitely many) zeroes of qd(x).

Since secx and tanx have a pole at every odd multiple of π, they are not D-finite. Similarly,∑
n p(n)xn =

∏∞
k=1

1
1−xk is not D-finite because it has the circle |x| = 1 as a natural boundary of

analyticity.
There are other powerful analytic criteria to prove a series is not D-finite. See [FGS06, Theorem

VII.7] for details and further examples.
Sometimes it is possible to give ad hoc proofs that series are D-finite. For instance, consider

y =
√

1 + log(1 + x2). By induction, for any k ∈ N there exist polynomials r1(x), . . . , rk(x) such

that y(k) = r1/y + r2/y
3 + · · · + rk/y

2k−1. An equation of the form
∑d

i=0 qi(x)y(i) = q(x) would
then give rise to a polynomial equation satisfied by y. This would also make y2 − 1 = log(1 + x2)
algebraic; but this contradicts Theorem 2.4.6.

34



3 Linear algebra methods

3.1 Determinants in combinatorics

There are several important theorems in enumerative combinatorics which express a combinatorial
quantity in terms of a determinant. Of course, evaluating a determinant is not always straightfor-
ward, but there is a wide array of tools at our disposal.

The goal of Section 3.1 is to reduce many combinatorial problems to “just computing a de-
terminant”; examples include walks in a graph, spanning trees, Eulerian cycles, matchings, and
routings. In particular, we discuss the Transfer Matrix Method, which allows us to encode many
combinatorial objects as walks in graphs, so that these linear algebraic tools apply. These problems
lead us to many beautiful, mysterious, and highly non-trivial determinantal evaluations. We will
postpone the proofs of the evaluations until Section 3.2, which is an exposition of some of the main
techniques in the subtle science of computing combinatorial determinants.

3.1.1 Preliminaries: Graph matrices.

An undirected graph, or simply a graph G = (V,E) consists of a set V of vertices and a set E
of edges {u, v} where u, v ∈ V and u 6= v. In an undirected graph, we write uv for the edge {u, v}.
A walk is a set of edges of the form v1v2, v2v3, . . . , vk−1vk. This walk is closed if vk = v1.

A directed graph or digraph G = (V,E) consists of a set V of vertices and a set E of oriented
edges (u, v) where u, v ∈ V and u 6= v. In an undirected graph, we write uv for the directed edge
(u, v). A walk is a set of directed edges of the form v1v2, v2v3, . . . , vk−1vk. This walk is closed if
vk = v1.

We will see in this section that many graph theory problems can be solved using tools from
linear algebra. There are several matrices associated to graphs which play a crucial role; we review
them here.

Directed graphs. Let G = (V,E) be a directed graph.

• The adjacency matrix A = A(G) is the V × V matrix whose entries are

auv = number of edges from u to v.

• The incidence matrix M = M(G) is the V × E matrix with

mve =


1 if v is the final vertex of edge e,

−1 if v is the initial vertex of edge e,

0 otherwise.

• The directed Laplacian matrix
−→
L =

−→
L (G) is the V × V matrix whose entries are

−→
l uv =

{
−(number of edges from u to v) if u 6= v,

outdeg(u) if u = v.

Undirected graphs. Let G = (V,E) be an undirected graph.
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• The (undirected) adjacency matrix A = A(G) is the V × V matrix whose entries are

auv = number of edges connecting u and v.

This is the directed adjacency matrix of the directed graph on V containing edges u→ v and
v → u for every edge uv of G.

• The (undirected) Laplacian matrix L = L(G) is the V × V matrix with entries

luv =

{
−(number of edges connecting u and v) if u 6= v

deg u if u = v

If M is the incidence matrix of any orientation of the edges of G, then L = MMT .

3.1.2 Counting walks: the Transfer Matrix Method.

Counting walks in a graph is a fundamental problem, which (often in disguise) includes many im-
portant enumerative problems. The Transfer Matrix Method addresses this problem by expressing
the number of walks in a graph G in terms of its adjacency matrix A(G), and then uses linear
algebra to count those walks.

Directed or undirected graphs. The Transfer Matrix Method is based on the following simple,
powerful observation, which applies to directed and undirected graphs:

Theorem 3.1.1. Let G = (V,E) be a graph and let A = A(G) be the V × V adjacency matrix of
G, where auv is the number of edges from u to v. Then

(An)uv = number of walks of length n in G from u to v.

Proof. Observe that

(An)uv =
∑

w1,...,wn−1∈V
auw1aw1w2 · · · awn−1v

and there are auw1aw1w2 · · · awn−1v walks visiting vertices u,w1, . . . , wn−1, v in that order.

Corollary 3.1.2. The generating function
∑

n≥0(An)uvx
n for walks of length n from u to v in G

is a rational function.

Proof. Using Cramer’s formula, we have∑
n≥0

(An)uvx
n = ((I − xA)−1)uv = (−1)u+v det(I − xA : v, u)

det(I − xA)

where (M : v, u) denotes the cofactor of M obtained by removing row v and column u.

Corollary 3.1.3. If CG(n) is the number of closed walks of length n in G, then

CG(n) = λn1 + · · ·+ λnk ,
∑
n≥1

CG(n)xn =
−xQ′(x)

Q(x)

where λ1, . . . , λk are the eigenvalues of the adjacency matrix A and Q(x) = det(I − xA).
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Proof. Theorem 3.1.1 implies that CG(n) = tr(An) = λn1 + · · · + λnk . The second equation then
follows from Q(x) = (1− λ1x) · · · (1− λkx).

In view of Theorem 3.1.1, we want to be able to compute powers of the adjacency matrix A.
As we learn in linear algebra, this is very easy to do if we are able to diagonalize A. This is not
always possible, but we can do it when A is undirected.

Undirected graphs. When our graph G is undirected, the adjacency matrix A(G) is symmetric,
and hence diagonalizable.

Theorem 3.1.4. Let G = (V,E) be an undirected graph and let λ1, . . . , λk be the eigenvalues of
the adjacency matrix A = A(G). Then for any vertices u and v there exist constants c1, . . . , ck such
that

number of walks of length n from u to v = c1λ
n
1 + · · ·+ ckλ

n
k .

Proof. The key fact is that a real symmetric k × k matrix A has k real orthonormal eigenvectors
q1, . . . , qk with real eigenvalues λ1, . . . , λk. Equivalently, the k×k matrix Q with columns q1, . . . , qk
is orthogonal (so QT = Q−1) and diagonalizes A:

Q−1AQ = D = diag(λ1, . . . , λk)

where D = diag(λ1, . . . , λk) is the diagonal matrix with diagonal entries λ1, . . . , λk. The result then
follows from An = QDnQ−1 = Qdiag(λn1 , . . . , λ

n
k)QT , with ct = qitqjt.

Applications. Many families of combinatorial objects can be enumerated by first recasting the
objects as walks in a “transfer graph”, and then applying the transfer matrix method. We illustrate
this technique with a few examples.

1. (Colored necklaces) Let f(n, k) be the number of ways of coloring the beads of a necklace of
length n with k colors so that no two adjacent beads have the same color. (Different rotations
and reflections of a coloring are considered different.) There are several ways to compute this
number, but a very efficient one is to notice that such a coloring is a graph walk in disguise.
If we label the beads 1, . . . , n in clockwise order and let ai be the color of the ith bead, then
the coloring corresponds to the closed walk a1, a2, . . . , an, a1 in the complete graph Kn. The
adjacency graph of Kn is A = J − I where J is the matrix all of whose entries equal 1, and
I is the identity. Since J has rank 1, it has n− 1 eigenvalues equal to 0. Since the trace is n,
the last eigenvalue is n. It follows that the eigenvalues of A = J− I are −1,−1, . . . ,−1, n−1.
Then Corollary 3.1.3 tells us that

f(n, k) = (n− 1)k + (n− 1)(−1)k.

It is possible to give a bijective proof of this formula, but this algebraic proof is much simpler.

2. (Words with forbidden subwords, 1.) Let hn be the number of words of length n in the
alphabet {a, b} which do not contain aa as a consecutive subword. This is the same as a walk
of length n− 1 in the transfer graph with vertices a and b and edges a→ b, b→ a and b→ b.
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The absence of the edge a→ a guarantees that these walks produce only the valid words we
wish to count. The adjacency matrix and its powers are

A =

(
0 1
1 1

)
, An =

(
Fn−1 Fn
Fn Fn+1

)
,

where the Fibonacci numbers F0, F1, . . . are defined recursively by F0 = 0, F1 = 1, and
Fk = Fk−1 + Fk−2 for k ≥ 2.

Since hn is the sum of the entries of An−1, we get that hn = Fn+2, and gn ∼ c · αn where
α = 1

2(1 +
√

5) ≈ 1.6179 . . . is the golden ratio. Of course there are easier proofs of this fact,
but this approach works for any problem of enumerating words in a given alphabet with given
forbidden consecutive subwords. Let us study a slightly more intricate example, which should
make it clear how to proceed in general.

3. (Words with forbidden subwords, 2.) Let gn be the number of cyclic words of length n in
the alphabet {a, b} which do not contain aa or abba as a consecutive subword. We wish to
model these words as walks in a directed graph. At first this may seem impossible because,
as we construct the word sequentially, the validity of a new letter depends on more than
just the previous letter. However, a simple trick resolves this difficulty: we can introduce
more memory into the vertices of the transfer graph. In this case, since the validity of a
new letter depends on the previous three letters, we let the vertices of the transfer graph be
aba, abb, bab, bba, bbb (the allowable “windows” of length 3) and put an edge wxy → xyz in
the graph if the window wxy is allowed to precede the window xyz; that is, if wxyz is an
allowed subword. The result is the graph of Figure 3.1, whose adjacency matrix A satisfies

det(I − xA) = det


1 0 −x 0 0
0 1 0 0 −x
−x −x 1 0 0
0 0 −x 1 0
0 0 0 −x 1− x

 = −x4 + x3 − x2 − x+ 1.

abb

bba

bbbbababa

Figure 3.1: The transfer graph for words on the alphabet {a, b} avoiding aa and abba as consecutive
subwords.
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The valid cyclic words of length n correspond to the closed walks of length n in the transfer
graph, so Corollary 3.1.3 tells us that the generating function for gn is∑
n≥0

gnx
n =

x+ 2x2 − 3x3 + 4x4

1− x− x2 + x3 − x4
= x+3x2 +x3 +7x4 +6x5 +15x6 +15x7 +31x8 +37x9 + · · · .

Theorem 2.4.1.2 then tells us that gn ≈ c · αn where α ≈ 1.5129 is the inverse of the smallest
positive root of 1 − x − x2 + x3 − x4 = 0. The values of g1, g2, g3 may surprise us. Note
that the generating function does something counterintuitive: it does not count the words a
(because aa is forbidden), aba (because aa is forbidden), or abb (because abba is forbidden).

This example serves as a word of caution: when we use the transfer-matrix method to enumerate
“cyclic” objects using Corollary 3.1.3, the initial values of the generating function may not be the
ones we expect. In a particular problem of interest, it will be straightforward to adjust those values
accordingly.

To illustrate the wide applicability of this method, we conclude this section with a problem
where the transfer graph is less apparent.

4. (Monomer-dimer problem) An important open problem in statistical mechanics is the monomer-
dimer problem of computing the number of tilings T (m,n) of an m × n rectangle into
dominoes (2× 1 rectangles) and unit squares. Equivalently, T (m,n) is the number of partial
matchings of an m× n grid, where each node is matched to at most one of its neighbors.

There is experimental evidence, but no proof, that T (n, n) ∼ c ·α1/n2
where α ≈ 1.9402... is a

constant for which no exact expression is known. The transfer-matrix method is able to solve
this problem for any fixed value of m, proving that the generating function

∑
n≥0 T (m,n)xn

is rational. We carry this out for m = 3.

Let t(n) be the number of tilings of a 3×n rectangle into dominoes and unit squares. As with
words, we can build our tilings sequentially from left to right by covering the first column,
then the second column, and so on. The tiles that we can place on a new column depend
only on the tiles from the previous column that are sticking out, and this can be modeled by
a transfer graph.

Figure 3.2: A tiling of a 3× 5 rectangle into dominoes and unit squares.

More specifically, let T be a tiling of a 3 × n rectangle. We define n + 1 triples v0, . . . , vn
which record how T interacts with the n+ 1 vertical grid lines of the rectangle. The ith grid
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line consists of three unit segments, and each coordinates of vi is 0 or 1 depending on whether
these three segments are edges of the tiling or not. For example, Figure 3.2 corresponds to
the triples 111, 110, 011, 101, 010, 111.

The choice of vi is restricted only by vi−1. The only restriction is that vi−1 and vi cannot both
have a 0 in the same position, because this would force us to put two overlapping horizontal
dominoes in T . These compatibility conditions are recorded in the transfer graph of Figure
3.3. When vi−1 = vi = 111, there are 3 ways of covering column i. If vi−1 and vi share two 1s
in consecutive positions, there are 2 ways. In all other cases, there is a unique way. It follows
that the tilings of a 3 × n rectangle are in bijection with the walks of length n from 111 to
111 in the transfer graph.

111

100
011

101

010

001
110

000

Figure 3.3: The transfer graph for tilings of 3× n rectangles into dominoes and unit squares.

Since the adjacency matrix is

A =



000 001 110 010 101 001 110 111

000 0 0 0 0 0 0 0 1
001 0 0 1 0 0 0 0 1
110 0 1 0 0 1 0 1 2
010 0 0 0 0 1 0 0 1
101 0 0 1 1 0 0 1 1
001 0 0 0 0 0 0 1 1
110 0 0 1 0 1 1 0 2
111 1 1 2 1 1 1 2 3


Theorem 3.1.1 tells us that∑

n≥0

t(n)xn =
det(I − xA : 111, 111)

det(I − xA)
=

(1 + x− x2)(1− 2x− x2)

(1 + x)(1− 5x− 9x2 + 9x3 + x4 − x5)

= 1 + 3x+ 22x2 + 131x3 + 823x4 + 5096x5 + 31687x6 + 196785x7 + · · ·

By Theorem 2.4.1.2, tn ∼ c · αn where α ≈ 6.21207 . . . is the inverse of the smallest positive
root of the denominator (1 + x)(1− 5x− 9x2 + 9x3 + x4 − x5).
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3.1.3 Counting spanning trees: the Matrix-Tree theorem.

In this section we discuss two results: Kirkhoff’s determinantal formula for the number of spanning
trees of a graph, and Tutte’s generalization to oriented spanning trees of directed graphs.

Undirected Matrix-Tree theorem. Let G = (V,E) be a connected graph with no loops. A
spanning tree T of G is a collection of edges such that for any two vertices u and v, T contains
a unique path between u and v. If G has n vertices, then:
• T contains no cycles,
• T spans G; that is, there is a path from u to v in T for any vertices u 6= v, and
• T has n− 1 edges.

Furthermore, any two of these properties imply that T is a spanning tree. Our goal in this section
is to compute the number c(G) of spanning trees of G.

Orient the edges of G arbitrarily. Recall that the incidence matrix M of G is the V ×E matrix
whose eth column is eu − ev if e = u→ v, and the Laplacian L = MMT has entries

luv =

{
−(number of edges connecting u and v) if u 6= v

deg u if u = v

Note that L(G) is singular because all its row sums are 0. A principal cofactor Lv(G) is obtained
from L(G) by removing the vth row and vth column for some vertex v.

Theorem 3.1.5. (Kirkhoff’s Matrix-Tree Theorem) The number c(G) of spanning trees of a con-
nected graph G is

c(G) = detLv(G) =
1

n
λ1 · · ·λn−1.

where Lv(G) is any principal cofactor of the Laplacian L(G), and λ1, . . . , λn−1, λn = 0 are the
eigenvalues of L(G).

Proof. We use the Binet-Cauchy formula, which states that if A and B are m × n and n × m
matrices, respectively, with m < n, then

detAB =
∑

S⊆[n] : |S|=m

detA[S] detB[S]

where A[S] (resp. B[S]) is the n× n matrix obtained by considering only the columns of A (resp.
the rows of B) indexed by S.

We also use the following observation: if Mv is the “reduced” adjacency matrix M with the vth
row removed, and S is a set of n− 1 edges of E, then

detMv[S] =

{
±1 if S is a spanning tree,

0 otherwise.

This observation is easily proved: if S is not a spanning tree, then it contains a cycle C, which gives
a linear dependence among the columns indexed by the edges of C. Otherwise, if S is a spanning
tree, think of v as its root, and “prune” it by repeatedly removing a leaf vi 6= v and its only incident
edge ei for 1 ≤ i ≤ n− 1. Then if we list the rows and columns of M [S] in the orders v1, . . . , vn−1

and e1, . . . , en−1, respectively, the matrix will be lower triangular with 1s and −1s in the diagonal.
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Combining these two equations, we obtain the first statement:

detLv(G) =
∑

S⊆[n] : |S|=m

detM [S] detMT [S] =
∑

S⊆[n] : |S|=m

detM [S]2 = c(G).

To prove the second one, observe that the coefficient of −x1 in the characteristic polynomial
det(L − xI) = (λ1 − x) · · · (λn−1 − x)(0 − x) is the sum of the n principal cofactors, which are all
equal to c(G).

The matrix-tree theorem is a very powerful tool for computing the number of spanning trees of
a graph. Let us state a few examples.

The complete graph Kn has n vertices and an edge joining each pair of vertices. The com-
plete bipartite graph Km,n has m “top” vertices and n “bottom” vertices, and mn edges
joining each top vertex to each bottom vertex. The hyperoctahedral graph ♦n has vertices
{1, 1′, 2, 2′, . . . , n, n′} and its only missing edges are ii′ for 1 ≤ i ≤ n. The n-cube graph Cn has
vertices (ε1, . . . , εn) where εi ∈ {0, 1}, and an edge connecting any two vertices that differ in exactly
one coordinate. The n-dimensional grid of size m, denoted mCn, has vertices (ε1, . . . , εn) where
εi ∈ {1, . . . ,m}, and an edge connecting any two vertices that differ in exactly one coordinate i,
where they differ by 1.

Theorem 3.1.6. The number of spanning trees of some interesting graphs are as follows.

1. (Complete graph): c(Kn) = nn−2

2. (Complete bipartite graph): c(Km,n) = mn−1nm−1

3. (Hyperoctahedral graph): c(♦n) = 22n−2(n− 1)nnn−2.

4. (n-cube): c(Cn) = 22n−n−1
∏n
k=1 k

(nk)

5. (n-dimensional grid of size m): c(mCn) = mmn−n−1
∏n
k=1 k

(nk)(m−1)k

We will see proofs of the first and third example in Section 3.2. For the others, and many
additional examples, see [CDS95].

Directed Matrix-Tree theorem. Now let G = (V,E) be a directed graph containing no loops.
An oriented spanning tree rooted at v is a collection of edges T such that for any vertex u
there is a unique path from u to v. The underlying unoriented graph T is a spanning tree of the
unoriented graph G. Let c(G, v) be the number of spanning trees rooted at G.

Recall that the directed Laplacian matrix
−→
L has entries

−→
l uv =

{
−(number of edges from u to v) if u 6= v

outdeg u if u = v

Now the matrix
−→
L (G) is not necessarily symmetric, but it is still singular.
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Theorem 3.1.7. (Tutte’s Directed Matrix-Tree Theorem) Let G be a directed graph and v be a
vertex. The number c(G, v) of oriented spanning trees rooted at v

c(G, v) = det
−→
L v(G)

where
−→
L v(G) is obtained from L(G) by removing the vth row and column. Furthermore, if G is

balanced, so indeg v = outdeg v for all vertices v, then

c(G, v) =
1

n
λ1 · · ·λn−1

where λ1, . . . , λn−1, λn = 0 are the eigenvalues of L(G).

Proof. Proceed by induction. Consider a vertex w 6= v and an edge e starting at w. Let G′ = G− e
be obtained from G by removing e. If e is the only edge starting at w, then every spanning tree
must use it, and we have

c(G, v) = c(G′, v) = det
−→
L v(G

′) = det
−→
L v(G).

Otherwise, let G′′ be obtained from G by removing all edges starting at w other than e. There are
c(G′, v) oriented spanning trees rooted at v which do not contain e, and c(G′′, v) which do contain
e, so we have

c(G, v) = c(G′, v) + c(G′′, v) = det
−→
L v(G

′) + det
−→
L v(G

′′) = det
−→
L v(G)

where the last equality holds since determinants are multilinear.
We postpone the proof of the second statement to the next section, where it will be an immediate

consequence of Theorem 3.1.9.

3.1.4 Counting Eulerian cycles: the BEST theorem.

One of the earliest combinatorial questions is the problem of the Seven Bridges of Königsberg. In
the early 1700s, the Prussian city of Königsberg was separated by the Pregel river into four regions,
connected to each other by seven bridges. In the map of Figure 3.4 we have labeled the regions
N,S,E, and I; there are two bridges between N and I, two between S and I, and three bridges
connecting E to each of N, I, and S,. The problem was to find a walk through the city that crossed
each bridge exactly once. Euler proved in 1735 that it was impossible to find such a walk; this is
considered to be the first paper in graph theory.

Euler’s argument is simple, and relies on the fact that every region of Königsberg is adjacent to
an odd number of bridges. Suppose there existed such a walk, starting at region A and ending at
region B. Now consider a region C other than A and B. Then our path would enter and leave C
the same number of times; but then it would not use all the bridges adjacent to C, because there
is an odd number of such bridges.

In modern terminology, each region of the city is represented by a vertex, and each bridge is
represented by an edge connecting two vertices. We will be more interested in the directed case,
where every edge has an assigned direction. An Eulerian path is a path in the graph which visits
every edge exactly once. If the path starts and ends at the same vertex, then it is called a Eulerian
cycle. We say G is an Eulerian graph if it has an Eulerian cycle.
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N

I

S

E

Figure 3.4: The seven bridges of Königsberg.

Theorem 3.1.8. A directed graph is Eulerian if and only if it is connected and every vertex v
satisfies indeg(v) = outdeg(v).

Proof. If a graph has an Eulerian cycle C, then C enters and leaves each vertex v the same number
of times. Therefore indeg(v) = outdeg(v).

To prove the converse, let us start by arbitrarily “walking around G until we get stuck”. More
specifically, we start at any vertex v0, and at each step, we exit the current vertex by walking along
any outgoing edge which we have not used yet. If there is no available outgoing edge, we stop.

Whenever we enter a vertex v 6= v0, we will also be able to exit it since indeg(v) = outdeg(v);
so the walk can only get stuck at v0. Hence the resulting walk C is a cycle. If C uses all edges
of the graph, we are done. If not, then since G is connected we can find a vertex v′ of C with an
unused outgoing edge, and we use this edge to start walking around the graph G− C until we get
stuck, necessarily at v′. The result will be a cycle C ′. Starting at v′ we can traverse C and then C ′,
thus obtaining a cycle C ∪C ′ which is longer than C. Repeating this procedure, we will eventually
construct an Eulerian cycle.

There is a remarkable formula for the number of Eulerian cycles, due to de Bruijn, van Ardenne-
Ehrenfest, Smith, and Tutte:

Theorem 3.1.9. (BEST Theorem) If G is an Eulerian directed graph, then the number of Eulerian
cycles of G is

c(G, v) ·
∏
w∈V

(outdeg(w)− 1)!

for any vertex v, where c(G, v) is the number of oriented spanning trees rooted at v.
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Proof. We fix an edge e starting at v, and let each Eulerian cycle start at e. For each vertex w let
Ew be the set of outgoing edges from w.

Consider an Eulerian cycle C. For each vertex w 6= v, let ew be the last outgoing edge from
w that C visits, and let πw (resp. πv) be the ordered set Ew − ew (resp. Ev − e) of the other
outgoing edges from w (resp. v), listed in the order that C traverses them. It is easy to see that
T = {ew : w 6= v} is an oriented spanning tree rooted at v.

Conversely, an oriented tree T and permutations {πw : w ∈ V } serve as directions to tour G.
We start with edge e. Each time we arrive at vertex w, we exit it by using the first unused edge
according to πw. If we have used all the edges Ew − ew of πw, then we use ew ∈ T . It is not hard
to check that this is a bijection. This completes the proof.

Corollary 3.1.10. In an Eulerian directed graph, the number of oriented spanning trees rooted at
v is the same for all vertices v; it equals

c(G, v) =
1

n
λ1 · · ·λn−1

where λ1, . . . , λn−1, λn = 0 are the eigenvalues of
−→
L (G).

Proof. The BEST theorem implies that c(G, v) is independent of v, and then the argument in the
proof of Theorem 3.1.5 applies to give the desired formula.

The BEST theorem can be used beautifully to enumerate a very classical, and highly nontrivial,
family of objects. A k-ary de Bruijn sequence of order n is a cyclic word W of length kn in the
alphabet {1, . . . , k} such that the kn consecutive subwords of W of length n are the kn distinct words
of length n. For example, the 2-ary deBruijn sequences of order 3 are 11121222 and 22212111; these
“memory wheels” were described in Sanskrit poetry several centuries ago [Kak00]. Their existence
and enumeration was proved by Flye Saint-Marie in 1894 for k = 2 and by van Aardenne-Ehrenfest
and de Bruijn in 1951 in general.

Theorem 3.1.11. [FSM94, dB46] The number of k-ary de Bruijn sequences of order n is (k!)k
n−1

/kn.

Proof. Consider the de Bruijn graph whose vertices are the kn−1 sequences of length n − 1
in the alphabet {1, . . . , k}, and where there is an edge from a1a2 . . . an−1 to the word a2a3 . . . an
for all a1, . . . , an. It is natural to label this edge a1a2 . . . an. It then becomes apparent that k-
ary de Bruijn sequence are in bijection with the Eulerian cycles of the de Bruijn graph. Since
indeg(v) = outdeg(v) = k for all vertices v, this graph is indeed Eulerian, and we proceed to count
its Eulerian cycles.

Notice that for any vertices u and v there is a unique path of length n from u to v. Therefore
the kn−1 × kn−1 adjacency matrix A satisfies An = J , where J is the matrix whose entries are all
equal to 1. We already saw that the eigenvalues of J are 0, . . . , 0, kn. Since the trace of A is k, the
eigenvalues of A must be 0, . . . , 0, k. Therefore the Laplacian L = kI−A has eigenvalues k, . . . , k, 0.
It follows from Corollary 3.1.10 that the de Bruijn graph has c(G, v) = 1

kn−1k
(kn−1−1) = kk

n−1−n

oriented spanning trees rooted at any vertex v, and

c(G, v) ·
∏
w∈V

(outdeg(w)− 1)! = kk
n−1−n · (k − 1)!k

n−1

Eulerian cycles, as desired.
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3.1.5 Counting perfect matchings: the Pfaffian method

A perfect matching of a graph G = (V,E) is a set M of edges such that every vertex of G is on
exactly one edge from M . We are interested in computing the number m(G) of perfect matchings
of a graph G. We cannot expect to be able to do this in general; in fact, even for bipartite graphs G,
the problem of computing m(G) is #P-complete. However, for many graphs of interest, including
all planar graphs, there is a beautiful technique which produces a determinantal formula for m(G).

Determinants and Pfaffians. Let A be a skew-symmetric matrix of size 2m× 2m, so AT = −A.
The Pfaffian is a polynomial encoding the matchings of the complete graph K2m. A perfect match-
ing M of the complete graph K2m is a partition M of [2m] into disjoint pairs {i1, j1}, . . . , {im, jm},
where ik < jk for 1 ≤ k ≤ m. Draw the points 1, . . . , 2m in order on a line and connect each ik to
jk by a semicircle above the line. Let cr(M) be the number of crossings in this drawing, and let
sign(M) = (−1)cr(M). Let aM = ai1j1 · · · ainjn . The Pfaffian of A is

Pf(A) =
∑
M

sign(M)aM

summing over all perfect matchings M of the complete graph Kn.

Theorem 3.1.12. If A is a skew-symmetric matrix, so AT = −A, then

det(A) = Pf(A)2. (9)

Sketch of Proof. The first step is to show that the skew symmetry of A causes many cancellations
in the determinant, and

detA =
∑

π∈ECSn

sign(π)aπ

where ECSn ⊂ Sn is the set of permutations of [n] having only even cycles. Then, to prove that
this equals (

∑
M sign(M)aM )2, we need a bijection between ordered pairs (M1,M2) of matchings

and permutations π in ECSn such that aM1aM2 = aπ and sign(M1)sign(M2) = sign(π). We now
describe such a bijection.

1 8765432

1 3

75

2 6

84

Figure 3.5: The matchings {1, 3}, {2, 6}, {4, 8}, {5, 7} and {1, 5}, {2, 4}, {3, 7}, {6, 8} give the per-
mutation (1375)(2684) with (−a13a26a48a57)(−a15a24a37a68) = a13a37a75a51a26a68a84a42.

Draw the matchings M1 and M2 above and below the points 1, . . . , n on a line, respectively.
Let π be the permutation given by the cycles of the resulting graph, where each cycle is oriented
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following the direction of M1 at its smallest element. This is illustrated in Figure 3.5. It is clear
that aM1aM2 = aπ, while some care is required to show that sign(M1)sign(M2) = sign(π). For
details, see for example [Aig07].

Counting perfect matchings via Pfaffians. Suppose we wish to compute the number m(G) of
perfect matchings of a graph G = (V,E) with no loops. After choosing an orientation of the edges,
we define the V × V signed adjacency matrix S(G) whose entries are

sij =


1 if i→ j is an edge of G

−1 if j → i is an edge of G

0 otherwise.

Then sM = si1j1 · · · simjm is nonzero if and only if {i1, j1}, . . . , {im, jm} is a perfect matching of G.
We say that our edge orientation is Pfaffian if all the perfect matchings of G have the same

sign. At the moment there is no efficient test to determine whether a graph admits a Pfaffian
orientation. There is a simple combinatorial restatement: an orientation is Pfaffian if every even
cycle C such that G\V (C) has a perfect matching has an odd number of edges in each direction.

Fortunately, we have the following result of Kasteleyn [Kas63, LP09]:

Every planar graph has a Pfaffian orientation.

This is very desirable, because Theorem 3.1.12 implies:

For a Pfaffian orientation of G, m(G) =
√

detS(G).

Therefore the number of matchings of a planar graph is reduced to the evaluation of a combi-
natorial determinant. We will see in Section 3.2 that there are many techniques at our disposal to
carry out this evaluation.

Let us illustrate this method with an important example, due to Kasteleyn [Kas63] and Temperley–
Fisher [TF61].

Theorem 3.1.13. The number m(Ra,b) of matchings of the a× b rectangular grid Ra,b (where we
assume b is even) is

m(Ra,b) = 4ba/2c(b/2)

ba/2c∏
j=1

b/2∏
k=1

(
cos2 πj

a+ 1
+ cos2 πk

b+ 1

)
≈ e

G
π
ab ≈ 1.3385ab,

where G = 1− 1
9 + 1

25 −
1
49 + · · · is Catalan’s constant.

Clearly this is also the number of domino tilings of an a× b rectangle.

Sketch of Proof. Orient all columns of Ra,b going up, and let the rows alternate between going
right or left, assigning the same direction to all edges of the same row. The resulting orientation is
Pfaffian because every square has an odd number of edges in each direction. The adjacency matrix
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S satisfies m(Ra,b) =
√

detS. To compute this determinant, it is slightly easier5 to consider the
following mn×mn matrix B:

bij =


1 if i and j are horizontal neighbors

i if i and j are vertical neighbors

0 otherwise.

We can obtain B from the S by scaling the rows and columns by suitable powers of i, so we still
have m(Ra,b) =

√
| detB|. We will compute this determinant in Section 3.2.

We then use this product formula to give an asymptotic formula for m(Ra,b). Note that
logm(Ra,b)/ab may be regarded as a Riemann sum; as m,n→∞ it converges to

c =
1

π2

∫ π/2

0

∫ π/2

0
log(4 cos2 x+ 4 cos2 y) dx dy =

G

π

where G is Catalan’s constant. Therefore

m(Ra,b) ≈ e
G
π
ab ≈ 1.3385ab.

Loosely speaking, this means that in a matching of the rectangular grid there are about 1.3385
degrees of freedom per vertex.

Obviously, this beautiful formula is not an efficient method of computing the exact value of
m(Ra,b) for particular values of a and b; it is not even clear why it gives an integer! There are
alternative determinantal formulas for this quantity that are more tractable; see for example [Aig07,
Section 10.1].

3.1.6 Counting routings: the Lindström–Gessel–Viennot lemma

Let G be a directed graph with no directed cycles, which has a weight wt(e) on each edge e. We
are most often interested in the unweighted case, where all weights are 1. Let S = {s1, . . . , sn} and
T = {t1, . . . , tn} be two (not necessarily disjoint) sets of vertices, which we call sources and sinks,
respectively. A routing from S to T is a set of paths P1, . . . , Pn from the n sources s1, . . . , sn to
the n sinks t1, . . . , tn such that no two paths share a vertex. Assume that Pi starts at source si and
ends at sink tπ(i) where π is a permutation of [n]. Define sign(R) = sign(π).

Let the weight of a path or a routing be the product of the weights of the edges it contains.
Consider the n× n path matrix Q whose (i, j) entry is

qij =
∑

P path from si to tj

wt(P ).

Theorem 3.1.14. (Lindström–Gessel–Viennot Lemma) Let G be a directed acyclic graph with
edge weights, and let S = {s1, . . . , sn} and T = {t1, . . . , tn} be sets of vertices in G. Then the
determinant of the n× n path matrix Q is

detQ =
∑

R routing from S to T

sign(R)wt(R).

5In fact, this is the matrix that Kasteleyn uses in his computation.
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In particular, if all edge weights are 1 and if every routing takes si to ti for all i, then

detQ = number of routings from S to T .

Proof. We have detA =
∑

P sign(P )wt(P ) summing over all path systems P = {P1, . . . , Pn} from
S to T ; we need to cancel out the path systems which are not routings. For each such P , consider
the lexicographically first pair of paths Pi and Pj which intersect, and let v be their first vertex of
intersection. Now exchange the subpath of Pi from si to v and the subpath of Pj from sj to v, to
obtain new paths P ′i and P ′j . Replacing {Pi, Pj} with {P ′i , P ′j}, we obtain a new path system ϕ(P )
from S to T . Notice that ϕ(ϕ(P )) = P , and sign(ϕ(P ))wt(ϕ(P )) + sign(P )wt(P ) = 0; so for all
non-routings P , the path systems P and ϕ(P ) cancel each other out.

This theorem was also anticipated by Karlin and McGregor [KM59] in the context of birth-and-
death Markov processes.

Determinants via routings. The Lindström-Gessel-Viennot Lemma is also a useful combinatorial
tool for computing determinants of interest, usually by enumerating routings in a lattice. We
illustrate this with several examples.

1. (Binomial determinants) Consider the binomial determinant(
a1, . . . , an
b1, . . . , bn

)
= det

[(
ai
bj

)]
1≤i,j≤n

where 0 ≤ a1 < · · · < an and 0 ≤ b1 < · · · < bn are integers. These determinants arise
as coefficients of the Chern class of the tensor product of two vector bundles. [Las78] This
algebro-geometric interpretation implies these numbers are positive integers; as combinatori-
alists, we would like to know what they count.

A SE path is a lattice path in the square lattice N2 consisting of unit steps south and east.
Consider the sets of points A = {A1, . . . , An} and B = {B1, . . . , Bn} where Ai = (0, ai) and
Bi = (bi, bi) for 1 ≤ i ≤ n. Since there are

(
ai
bj

)
SE paths from Ai to Bj , and since every SE

routing from A to B takes Ai to Bi for all i, we have(
a1, . . . , an
b1, . . . , bn

)
= number of SE routings from A to B.

This is the setting in which Gessel and Viennot discovered Theorem 3.1.14; they also evaluated
these determinants in several special cases. [GV85] We now discuss one particularly interesting
special case.

2. (Counting permutations by descent set) The descent set of a permutation π is the set of
indices i such that πi > πi+1. We now prove that(

c1, . . . , ck, n

0, c1, . . . , ck

)
= number of permutations of [n] with descent set {c1, . . . , ck},

for any 0 < c1 < · · · < ck < n. It is useful to define c0 = 0, ck+1 = n.

Encode such a permutation π by a routing as follows. For each i let fi be the number of
indices j ≤ i such that πj ≤ πi. Note that the descents c1, . . . , ck of π are the positions where
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f does not increase. Splitting f at these positions, we are left with k+ 1 increasing subwords
f1, . . . , fk+1. Now, for 1 ≤ i ≤ n+ 1 let Pi be the NW path from (ci−1, ci−1) to (0, ci) taking
steps north precisely at the steps listed in f i. These paths give one of the routings enumerated
by the binomial determinant in question, and this is a bijection. [GV85]

A2

A4

A3

A1

B1

B4

B3

B2

1
2

2
3

1

4

5
7

Figure 3.6: The routing corresponding to π = 28351674 and f(π) = 12.23.157.4.

3. (Rhombus tilings and plane partitions) Let Rn be the number of tilings of a regular hexagon
of side length n using unit rhombi with angles 60◦ and 120◦. There are several equivalent
combinatorial models for this problem, illustrated in Figure 3.7, which we now discuss.

Firstly, it is almost inevitable to view these tilings as three-dimensional pictures. This shows
that Rn is also the number of ways of stacking unit cubes into the corner of a cubical box
of side length n. Incidentally, this three-dimensional view makes it apparent that there are
exactly n2 rhombi of each one of the 3 possible orientations.

Secondly, we may consider the triangular grid inside our hexagon, and place a dot on the center
of each triangle. These dots form a hexagonal grid, where two dots are neighbors if they are
at distance 1 from each other. Finally, join two neighboring dots when the corresponding
triangles are covered by a tile. The result is a perfect matching of the hexagonal grid.

Next, on each one of the n2 squares of the floor of the box, write down the number of cubes
above it. The result is a plane partition: an array of non-negative integers (finitely many
of which are non-zero) which is weakly decreasing in each row and column. We conclude that
Rn is also the number of plane partitions whose non-zero entries are at most n, and fit inside
an n× n square.

Finally, given such a rhombus tiling, construct n paths as follows. Each path starts at the
center of one of the vertical edges on the western border of the hexagon, and successively
crosses each tile splitting it into equal halves. It eventually comes out at the southeast side of
the diamond, at the same height where it started (as is apparent from the 3-D picture). The
final result is a routing from the n sources S1, . . . , Sn on the left to the sinks T1, . . . , Tn on
the right in the “rhombus” graph shown below. It is clear how to recover the tiling from the
routing. Since there are

(
2n

n+i−j
)

paths from Si to Tj , the Lindström–Gessel-Viennot lemma
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Figure 3.7: Four models for the rhombus tilings of a hexagon.

tells us that Rn is given by the determinant

Rn = det

[(
2n

n+ i− j

)]
1≤i,j≤n

=
n∏

i,j,k=1

i+ j + k − 1

i+ j + k − 2
.

We will prove this product formula in Section 3.2.

4. (Catalan determinants, multitriangulations, and Pfaffian rings) The Hankel matrices of a
sequence A = (a0, a1, a2, . . .) are

Hn(A) =


a0 a1 · · · an
a1 a2 · · · an+1
...

...
. . .

...
an an+1 · · · a2n

 , H ′n(A) =


a1 a2 · · · an+1

a2 a3 · · · an+2
...

...
. . .

...
an+1 an+2 · · · a2n+1

 .

Note that if we know the Hankel determinants detHn(A) and detH ′n(A) and they are nonzero
for all n, then we can use them as a recurrence relation to recover each ak from a0, . . . , ak−1.

There is a natural interpretation of the Hankel matrices of the Catalan sequence C =
(C0, C1, C2, . . .). Consider the “diagonal” grid on the upper half plane with steps (1, 1) and
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(1,−1). Let Ai = (−2i, 0) and Bi = (2i, 0). Then there are Ci+j paths from Ai to Bj ,
and there is clearly a unique routing from (A0, . . . , An) to (B0, . . . , Bn). This proves that
detHn(C) = 1, and an analogous argument proves that detH ′n(C) = 1. Therefore

detHn(A) = detH ′n(A) = 1 for all n ≥ 0 ⇐⇒ A is the Catalan sequence.

Figure 3.8: Routing interpretation of the Hankel determinant Hn(C).

The Hankel determinants of the shifted Catalan sequences also arise naturally in several
contexts; they are given by:

det


Cn−2k Cn−2k+1 · · · Cn−k−1

Cn−2k+1 Cn−2k+2 · · · Cn−k
...

...
. . .

...
Cn−k−1 Cn−k · · · Cn−2

 =
∏

i+j≤n−2k−1

i+ j + 2(k − 1)

i+ j
. (10)

There are several ways of proving this equality; for instance, it is a consequence of [Kra99,
Theorem 26]. We describe three appearances of this determinant.

(a) A k-fan of Dyck paths of length 2n is a collection of k Dyck paths from (−n, 0) to
(n, 0) which do not cross (although they necessarily share some edges). Shifting the (i+ 1)st
path i units up and adding i upsteps at the beginning and i downsteps at the end, we obtain
a routing of k Dyck paths starting at the points A = {−(n + k − 1), . . . ,−(n + 1),−n} and
ending at the points B = {n, n+ 1, . . . , n+ k − 1} on the x axis. It follows that the number
of k-fans of Dyck paths of length 2(n− 2k) is given by (10).

Figure 3.9: A k-fan of Dyck paths.

(b) There is also an extension of the classical one-to-one correspondence between Dyck paths
and triangulations of a polygon. Define a k-crossing in an n-gon to be a set of k diagonals
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which cross pairwise. A k-triangulation is a maximal set of diagonals with no (k + 1)-
crossings. The main enumerative result, due to Jonsson [Jon05], is that the number of k-
triangulations of an n-gon is also given by (10). [Jon05]. A subtle bijection with fans of Dyck
paths is given in [SS12].

Several properties of triangulations extend non-trivially to this context. For example, every
k-triangulation has exactly k(2n− 2k− 1) diagonals. [Nak00, DKM02]. The k-triangulations
are naturally the facets of a simplicial complex called the multiassociahedron, which is
topologically a sphere [Jon03]; it is not currently known whether it is polytopal. There is a
further generalization in the context of Coxeter groups, with connections to cluster algebras
[CLS14].

(c) These determinants also arise naturally in the commutative algebraic properties of Pfaf-
fians, defined earlier in this section. Let A be a skew-symmetric n× n matrix whose entries
above the diagonal are indeterminates {aij : 1 ≤ i < j ≤ n} over a field k. Consider the
Pfaffian ideal Ik(A) generated by the

(
n
2k

)
Pfaffian minors of A of size 2k × 2k, and the

Pfaffian ring Rk(A) = k[aij ]/Ik(A). Then the multiplicity of the Pfaffian ring Rk(X) is also
given by (10). [HT92, GK04]

5. (Schröder determinants and Aztec diamonds.) Recall from Section 2.2.2 that a Schröder
path of length n is a path from (0, 0) to (2n, 0) using steps NE = (1, 1), SE = (1,−1),
and E = (2, 0) which stays above the x axis. The Hankel determinant detHn(R) counts
the routings of Schröder paths from the points A = {0,−2, . . . ,−(2n)} to the points B =
{0, 2, . . . , 2n} on the x-axis.

These Hankel determinants have a natural interpretation in terms of tilings. Consider the
Aztec diamond6 ADn consisting of 2n rows centered horizontally, consisting successively
of 2, 4, . . . , 2n, 2n, . . . , 4, 2 squares. We are interested in counting the tilings of the Aztec
diamond into dominoes.

Figure 3.10: A tiling of the Aztec diamond and the corresponding routing.

Given a domino tiling of ADn, construct n paths as follows. Each path starts at the center

6This shape is called the Aztec diamond because it is reminiscent of designs of several Native American groups.
Perhaps the closest similarity is with Mayan pyramids, such as the Temple of Kukulcán in Chichén Itz
’; the name Mayan diamond would have beenAztec more appropriate.
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of one of the vertical unit edges on the southwest border of the diamond, and successively
crosses each tile that it encounters following a straight line through the center of the tile.
It eventually comes out at the southeast side of the diamond, at the same height where it
started. If we add i initial NE steps NE steps and i final SE steps to the (i + 1)st path
for each i, the result will be a routing of Schröder paths from A = {−(2n), . . . ,−2, 0} to
B = {0, 2, . . . , 2n}. In fact this correspondence is a bijection [EF05].

We will prove in Section 3.2 that{
detHn(A) = 2n(n−1)/2

detH ′n(A) = 2n(n+1)/2
for all n ≥ 0 ⇐⇒ A is the Schröder sequence.

It will follow that

number of domino tilings of the Aztec diamond ADn = 2n(n+1)/2.

3.2 Computing determinants

In light of Section 3.1, it is no surprise that combinatorialists have become talented at computing
determinants. Fortunately, this is a very classical problem with connections to many branches of
mathematics and physics, and by now there are numerous general techniques and guiding examples
available to us. Krattenthaler’s surveys [Kra99] and [Kra05] are excellent references which have
clearly influenced the exposition in this section. We now highlight some of the key tools and
examples.

3.2.1 Is it known?

Of course, when we wish to evaluate a new determinant, one first step is to check whether it is a
special case of some known determinantal evaluation. Starting with classical evaluations such as
the Vandermonde determinant

det(xj−1
i )1≤i,j≤n =

∏
1≤i<j≤n

(xj − xi), (11)

there is now a wide collection of powerful results at our disposal. A particularly useful one [Kra99,
Lemma 3] states that for any x1, . . . , xn, a2, . . . , an, b2, . . . , bn we have:

det [(xi + b2) · · · (xi + bj)(xi + aj+1) · · · (xi + an)]1≤i,j≤n =
∏

1≤i<j≤n
(xj − xi)

∏
1≤i<j≤n

(bi − aj). (12)

For instance, as pointed out in [GK04] and [Kra99], the Catalan determinant (10) is a special case
of this formula. Recognizing it as such is not immediate, but the product formula for Catalan
numbers gives an indication of why this is feasible.

In fact, here is a counterintuitive principle: often the easiest way to prove a determinantal
identity is to generalize it. It is very useful to introduce as many parameters as possible into a
determinant, while making sure that the more general determinant still evaluates nicely. We will
see this principle in action several times in what follows.
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3.2.2 Row and column operations.

A second step is to check whether the standard methods of computing determinants are useful:
Laplace expansion by minors, or performing row and column operations until we get a matrix
whose determinant we can compute easily. For example, recall the determinant L0(Kn) of the
(n− 1)× (n− 1) reduced Laplacian of the complete graph Kn, discussed in Section 3.1.3. We can
compute it by first adding all rows to the first row, and then adding the first row to all rows:

detL0(Kn) =

∣∣∣∣∣∣∣∣∣
n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
0 n · · · 0
...

...
. . .

...
0 0 · · · n

∣∣∣∣∣∣∣∣∣ = nn−2,

reproving Theorem 3.1.6.1.

3.2.3 Identifying linear factors.

Many n× n determinants of interest have formulas of the form detM(x) = cL1(x) · · ·Ln(x) where
c is a constant and the Li(x) are linear functions in the variables x = (x1, . . . , xk). We may prove
such a formula by first checking that each Li(x) is indeed a factor of M , and then computing the
constant c.

The best known application of this technique is the proof of the formula (11) for Vandermonde’s
determinant V (x1, . . . , xn). If xi = xj for i 6= j, then rows i and j are equal, and the determinant
is 0. It follows that xi − xj must be a factor of the polynomial detV (x1, . . . , xn). Since this
polynomial is homogeneous of degree

(
n
2

)
, it must equal a constant times

∏
i<j(xi−xj). Comparing

the coefficients of x0
1x

1
2 · · ·xn−1

n we see that the constant equals 1.
A similar argument may be used to prove the more general formula (12).
To use this technique, it is sometimes necessary to introduce new variables into our determinant.

For example, the formula det(i j−1)1≤i,j≤n = 1n−12n−2 · · · (n − 1)1 cannot immediately be treated
with this technique. However, the factorization of the answer suggests that this may be a special case
of a more general result where this method does apply; in this case, Vandermonde’s determinant.

3.2.4 Computing the eigenvalues.

Sometimes we can compute explicitly the eigenvalues of our matrix, and multiply them to get the
determinant. One common technique is to produce a complete set of eigenvectors.

1. (The Laplacian of the complete graph Kn) Revisiting the example above, the Laplacian of
the complete graph is L(Kn) = nI − J where I is the identity matrix and J is the matrix all
of whose entries equal 1. We first find the eigenvalues of J : 0 is an eigenvalue of multiplicity
n− 1, as evidenced by the linearly independent eigenvectors e1− e2, . . . , en−1− en. Since the
sum of the eigenvalues is tr(J) = n, the last eigenvalue is n; an eigenvector is e1 + · · ·+ en−1.
Now, if v is an eigenvector for J with eigenvalue λ, then it is an eigenvector for nI − J with
eigenvalue n−λ. Therefore the eigenvalues of nI −J are n, n, . . . , n, 0. Using Theorem 3.1.5,
we have reproved yet again that detL0(Kn) = 1

n(nn−1) = nn−2.

2. (The Laplacian of the n-cube Cn) A more interesting example from Section 3.1.3 is the reduced
Laplacian L0(Cn) of the graph of the n-dimensional cube. By producing explicit eigenvectors,
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one may prove that if the Laplacians L(G) and L(H) have eigenvalues {λi : 1 ≤ i ≤ a} and
{µj : i ≤ j ≤ b} then the Laplacian of the product graph L(G×H) has eigenvalues {λi+µj :
1 ≤ i ≤ a, 1 ≤ j ≤ b}. Since C1 has eigenvalues 0 and 2, this implies that Cn = C1 × · · · ×C1

has eigenvalues 0, 2, 4, . . . , 2n with multiplicities
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
, respectively. Therefore the

number of spanning trees of the cube Cn is

detL0(Cn) =
1

2n
2(n1)4(n2) · · · (2n)(

n
n) = 22n−n−11(n1)2(n2) · · ·n(nn).

3. (The perfect matchings of a rectangle) An even more interesting example comes from the
perfect matchings of the a × b rectangle, which we discussed in Section 3.1.5. Let V be
the 4mn-dimensional vector space of functions f : [2m] × [2n] → C, and consider the linear
transformation L : V → V given by

(Lf)(x, y) = f(x− 1, y) + f(x+ 1, y) + if(x, y − 1) + if(x, y + 1),

where f(x, y) = 0 when x ∈ {0, a+1} or y ∈ {0, b+1}. The matrix of this linear transformation
is precisely the one we are interested in. A straightforward computation shows that the
following are eigenfunctions and eigenvalues of L:

gk,l(x, y) = sin
kπx

a+ 1
sin

lπy

b+ 1
, λk,l = 2 cos

kπ

a+ 1
+ 2i cos

lπ

b+ 1

for 1 ≤ k ≤ a and 1 ≤ l ≤ b. (Note that gk,l(x, y) = 0 for x ∈ {0, a} or y ∈ {0, b}.) This is
then the complete list of eigenvalues for L, so

detL = 2ab
a∏
k=1

b∏
l=1

(
cos

kπ

a+ 1
+ i cos

lπ

b+ 1

)
.

3.2.5 LU factorizations.

A classic result in linear algebra states that, under mild hypotheses, a square matrix M has a
unique factorization

M = LU

where L is a lower triangular matrix and U is an upper triangular matrix with all diagonal entries
equal to 1. Computer algebra systems can compute the LU-factorization of a matrix, and if we can
guess and prove such a factorization it will follow immediately that detM equals the product of
the diagonal entries of L.

An interesting application of this technique is the determinant

det(gcd(i, j))1≤i,j≤n =
n∏
i=1

ϕ(i), (13)

where ϕ(k) = {i ∈ N : (gcd(i, k) = 1 and 1 ≤ i ≤ k} is Euler’s totient function. This is a special
case of a more general formula for semilattices which is easier to prove. For this brief computation,
we assume familiarity with the Möbius function µ and the zeta function ζ of a poset; these will be
treated in detail in Section 4.6.
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Let P be a finite meet semilattice and consider any function F : P ×P → k. We will prove the
Lindström–Wilf determinantal formula:

detF (p ∨ q, p)p,q∈P =
∏
p∈P

∑
r≥p

µ(p, r)F (r, p)

 (14)

Computing some examples will suggest that the LU factorization of F is F = MZ where

Mpq =

{∑
r≥q µ(q, r)F (r, p) if p ≤ q,

0 otherwise,
Zpq =

{
1 if p ≥ q,
0 otherwise.

This guess is easy to prove, and it immediately implies (14). In turn, applying the Lindström–Wilf
to the poset of integers {1, . . . , n} ordered by reverse divisibility and the function F (x, y) = x, we
obtain (13).

Another interesting special case is the determinant:

det(xrank(p∨q))p,q∈P =
∏
p∈P

(
xrank(p) χ[p,1̂](1/x).

)
where χ[p,1̂](x) is the characteristic polynomial of the interval [x, 1̂]. When P is the partition lattice

Πn, this determinant arises in Tutte’s work of the Birkhoff-Lewis equations [Tut91].

3.2.6 Hankel determinants and continued fractions.

For Hankel determinants, the following connection with continued fractions [Wal48] is extremely
useful. If the expansion of the generating function for a sequence f0, f1, . . . as a J-fraction is

∞∑
n=0

fnx
n =

µ0

1 + a0x− b1x2

1+a1x− b2x
2

1+a2x−···

,

then the Hankel determinants of a0, a1, . . . equal

detHn(A) = µn0b
n−1
1 bn−2

2 · · · b2n−2bn−1

For instance, using the generating function for the Schrörder numbers rn, it is easy to prove that

∞∑
n=0

rnx
n =

1

1− 2x− 2x2

1−3x− 2x2

1−3x−···

,

∞∑
n=0

rn+1x
n =

2

1− 3x− 2x2

1−3x− 2x2

1−3x−···

.

Therefore
detHn(R) = 2n(n−1)/2, detH ′n(R) = 2n(n+1)/2,

as stated in Section 3.1.6.
By computer calculation, it is often easy to guess J-fractions experimentally. With a good guess

in place, there is an established procedure for proving their correctness, rooted in the theory of
orthogonal polynomials; see [Kra99, Section 2.7].
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Dodgson condensation. It is often repeated that Lewis Carroll, author of Alice in Wonderland,
was also an Anglican deacon and a mathematician, publishing under his real name, Rev. Charles L.
Dodgson. His contributions to mathematics are discussed less often, and one of them is an elegant
method for computing determinants.

To compute an n × n determinant A, one creates a square pyramid of numbers, consisting of
n+ 1 levels of size n+ 1, n . . . , 1, respectively. On the bottom level we place an (n+ 1)× (n+ 1)
array of 1s, and on the next level we place the n× n matrix A. Each subsequent floor is obtained
from the previous two by the following rule: each new entry is given by f = (ad− bc)/e where f is

directly above the entries

(
a b
c d

)
and two floors above the entry e.7 The top entry of the pyramid

is the determinant. For example, the computation


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

→


2 7 5 4
1 9 7 7
2 3 2 1
5 7 6 3

→
 11 4 7
−15 −3 −7
−1 4 0

→ (
3 −1
−21 28

)
→
(
21
)

shows that the determinant of the 4× 4 determinant is 21.

Dodgson’s condensation method relies on the following fact, due to Jacobi. If A is an n × n
matrix and Ai1,...,ik ; j1,...,jk denotes the matrix A with rows i1, . . . , ik and columns j1, . . . , jk removed,
then

detA · detA1,n ; 1,n = detA1 ; 1 · detAn ;n − detA1 ;n · detAn ; 1. (15)

This proves that the numbers appearing in the pyramid are precisely the determinants of the
“contiguous” submatrices of A, consisting of consecutive rows and columns.

If we have a guess for the determinant of A, as well as the determinants of its contiguous
submatrices, Dodgson condensation is an extremely efficient method to prove it. All we need to do
is to verify that our guess satisfies (15).

To see how this works in an example, let us use Dodgson condensation to prove the formula in
Section 3.1.6 for Rn = det

(
2n

n+i−j
)

1≤i,j≤n
, the number of stacks of unit cubes in the corner of an

n×n×n box. The first step is to guess the determinant of the matrix in question, as well as all its
contiguous submatrices; they are all of the form R(a, b, c) = det

(
a+b
a+i−j

)
1≤i,j≤c

, where a + b = 2n.

This more general determinant is equally interesting combinatorially: it counts the stacks of unit
cubes in the corner of an a × b × c box. By computer experimentation, it is not too difficult to
arrive at the following guess:

R(a, b, c) = det

[(
a+ b

a+ i− j

)]
1≤i,j≤c

=

a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2
.

Proving this formula by Dodgson condensation is straightforward; we just need to check that our
conjectural product formula holds for c = 0, 1 and that it satisfies (15); that is,

R(a, b, c+ 1)R(a, b, c− 1) = R(a, b, c)2 −R(a+ 1, b− 1, c)R(a− 1, b+ 1, c).

7Special care is required when 0s appear in the interior of the pyramid.
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For more applications of Dodgson condensation, see for example [AZ01]

There is a wonderful connection between Dodgson condensation, Aztec diamonds, and alter-
nating sign matrices, which we now describe. Let us construct a square pyramid of numbers
where levels n + 2 and n + 1 are given by two matrices y = (yij)1≤i,j≤n+2 and x = xij)1≤i,j≤n+1,
respectively, and levels n − 1, . . . , 2, 1 are computed in terms of the lower rows using Dodgson’s
recurrence f = (ad− bc)/e. Let fn(x,y) be the entry at the top of the pyramid.

Remarkably, all the entries of the resulting pyramid will be Laurent monomials in the xijs and
yijs; that is, their denominators are always monomials. This is obvious for the first few levels, but
it becomes more and more surprising as we divide by more and more intricate expressions.

The combinatorial explanation for this fact is that each entry in the (n − k)th level of the
pyramid encodes the domino tilings of a Aztec diamond ADk. For instance, if n = 3, the entry at
the top of the pyramid is

f2(x,y) =
x11x22x33

y22y33
− x11x22x23x32

x22y22y33
− x12x21x22x33

x22y22y33
+
x12x21x23x32

x22y22y33

− x12x21x23x32

x22y23y32
+
x12x22x23x31

x22y23y32
+
x13x21x22x32

x22y23y32
− x13x31x32

y23y32

3 4 3
3 2

3 3 4
2 3

4 3 3 

0 1 0
0 -1

0 0 1
-1 0

1 0 0

Figure 3.11: A domino tiling of AD2 and the corresponding monomial in f2(x,y).

There is a simple bijection between the 8 terms of f3 and the 8 domino tilings of AD2. Regard a
tiling of AD2 as a graph with vertices on the underlying lattice, and add a vertical edge above and
below the tiling, and a horizontal edge to the left and to the right of T . Now rotate the tiling 45◦.
Record the degree of each vertex, ignoring the outside corners on the boundary of the diamond, and
subtract 3 from each vertex. This leaves us with an n×n grid of integers within an (n+1)× (n+1)
grid of integers. Assign to it the monomial whose x exponents are given by the outer grid and
whose y exponents are given by the inner grid. For example, the tiling in Figure 3.11 corresponds
to the monomial (x12x21x23x32)/(x22y23y32).

In general, this gives a bijection between the terms of fn(x,y) and the domino tilings of the
Aztec diamond ADn. One may also check that there are no cancellations, so Dodgson condensation
tell us that the number mn of terms in fn satisfies mn−1mn+1 = 2m2

n. This gives an alternative
proof that the Aztec diamond Aztecn has 2n(n+1)/2 domino tilings.

We may also consider the patterns formed by the xijs by themselves (or of the yijs by them-
selves). In each individual monomial of fn(x,y), the exponents of the xijs form an n×n alternating
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sign matrix (ASM): a matrix of 1s, 0s, and −1s such that the nonzero entries in any row or column
alternate 1,−1, . . . ,−1, 1. Similarly, the exponents of the yijs form an ASM of size n− 1.

Alternating sign matrices are fascinating objects in their own right, with connections to repre-
sentation theory, statistical mechanics, and other fields. The number of alternating sign matrices
of size n is

1! 4! 7! · · · (3n− 2)!

n! (n+ 1)! (n+ 2)! · · · (2n− 1)!
.

For details on the history and solution of this difficult enumeration problem see [BP99, Rob91,
Zei96].
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4 Posets

This section is devoted to the enumerative aspects of the theory of partially ordered sets (posets).
Section 4.1 introduces key definitions and examples. Section 4.2 discusses some families of lattices
that are of special importance. In Section 4.3 we count chains and linear extensions of posets.

The remaining sections are centered around the Möbius Inversion Formula, which is perhaps
the most useful enumerative tool in the theory of posets. This formula helps us count sets which
have an underlying poset structure; it applies to many combinatorial settings of interest.

In Section 4.4 we discuss the Inclusion-Exclusion Principle, a special case of great importance.
In Section 4.5 we introduce Möbius functions and the Möbius Inversion Formula. In particular, we
catalog the Möbius functions of many important posets. The incidence algebra, a nice algebraic
framework for understanding and working with the Möbius function, is discussed in Section 4.6.
In Section 4.7 we discuss methods for computing Möbius functions of posets, and sketch proofs for
the posets of Section 4.5. Finally, in Section 4.8, we discuss Eulerian posets and the enumeration
of their flags, which gives rise to the ab-index and cd-index.

4.1 Basic definitions and examples

A partially ordered set or poset (P,≤) is a set P together with a binary relation ≤, called a
partial order, such that

• For all p ∈ P , we have p ≤ p.

• For all p, q ∈ P , if p ≤ q and q ≤ p then p = q.

• For all p, q, r ∈ P , if p ≤ q and q ≤ r then p ≤ r.

We say that p < q if p ≤ q and p 6= q. We say that p and q are comparable if p < q or p > q, and
they are incomparable otherwise. We say that q covers p if q > p and there is no r ∈ P such
that q > r > p. When q covers p we write q m p.

Example 4.1.1. Many sets in combinatorics come with a natural partial order, and often the
resulting poset structure is very useful for enumerative purposes. Some of the most important
examples are the following:

1. (Chain) The poset n = {1, 2, . . . , n} with the usual total order. (n ≥ 1)

2. (Boolean lattice) The poset 2A of subsets of a set A, where S ≤ T if S ⊆ T .

3. (Divisor lattice) The poset Dn of divisors of n, where c ≤ d if c divides d. (n ≥ 1)

4. (Young’s lattice) The poset Y of integer partitions, where λ ≤ µ if λi ≤ µi for all i.

5. (Partition lattice) The poset Πn of set partitions of [n], where π ≤ ρ if π refines ρ; that is, if
every block of ρ is a union of blocks of π. (n ≥ 1)

6. (Non-crossing partition lattice) The subposet NCn of Πn consisting of the non-crossing set
partitions of [n], where there are no elements a < b < c < d such that a, c are together in one
block and b, d are together in a different block. (n ≥ 1)
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7. (Bruhat order on permutations) The poset Sn of permutations of [n], where π covers ρ if π
is obtained from ρ by choosing two adjacent numbers ρi = a < b = ρi+1 in ρ and exchanging
their positions. (n ≥ 1)

8. (Subspace lattice) The poset L(Fnq ) of subspaces of a finite dimensional vector space Fnq , where
U ≤ V if U is a subspace of V . (n ≥ 1, q a prime power)

9. (Distributive lattice) The poset J(P ) of order ideals (subsets I ⊆ P such that j ∈ P and i < j
imply i ∈ P ) ordered by containment.

10. (Face poset of a polytope) The poset F (P ) of faces of a polytope P , ordered by inclusion.

11. (Face poset of a subdivision of a polytope) The poset T̂ of faces of a subdivision T of a
polytope P ordered by inclusion, with an additional maximum element.

12. (Subgroup lattice of a group) The poset L(G) of subgroups of a group G, ordered by contain-
ment.

The Hasse diagram of a finite poset P is obtained by drawing a dot for each element of P and
an edge going down from p to q if p covers q. The diagram below shows the Hasse diagrams of some
of the posets above. In particular, the Hasse diagram of 2[n] is the 1-skeleton of the n-dimensional
cube. Figure 4.1 shows some examples.

1

2

3

4

1 2 3

12 13 23

123

Ø 1

3

9
2

6

18

1|2|3

13|2 1|2312|3

123

132 213

312 231

321

123 

Figure 4.1: The Hasse diagrams of the chain 4, Boolean lattice 2[3], divisor lattice D18, partition
lattice Π3, and Bruhat order S3.

A subset Q of P is a chain if every pair of elements is comparable, and it is an antichain
if every pair of elements is incomparable. The length of a chain C is |C| − 1. If there is a rank
function r : P → N such that r(x) = 0 for any minimal element x and r(y) = r(x) + 1 whenever
y m x, then P is called graded or ranked. The largest rank is called the rank or height of P .
The rank-generating function of a finite graded poset is

R(P ;x) =
∑
p∈P

xr(p)

All the posets of Example 4.1.1 are graded.
A poset P induces a poset structure on any subset Q ⊆ P ; a special case of interest is the

interval [p, q] = {r ∈ P : p ≤ r ≤ q}. We call a poset locally finite if all its intervals are finite.
Given posets P and Q on disjoint sets, the direct sum P +Q is the poset on P ∪Q inheriting

the order relations from P and Q, and containing no additional order relations between elements
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of P and Q. The direct product P ×Q is the poset on P ×Q where (p, q) ≤ (p′, q′) if p ≤ p′ and
q ≤ q′.

We have already seen examples of product posets. The Boolean lattice is 2A ∼= 2 × · · · × 2.
Also, if n = pt11 · · · p

tk
k is the prime factorization of n, then Dn

∼= (t1 + 1)× · · · × (tk + 1).

4.2 Lattices

A poset is a lattice if every two elements p and q have a least upper bound p ∨ q and a greatest
lower bound p ∧ q, called their meet and join, respectively. We will see this additional algebraic
structure can be quite beneficial for enumerative purposes.

Example 4.2.1. All the posets in Example 4.1.1 are lattices, except for the Bruhat order. In most
cases, the meet and join have easy descriptions. In n, the meet and join are the minimum and
maximum, respectively. In 2A they are the intersection and union. In Dn they are the greatest
common divisor and least common multiple. In Y they are the componentwise minimum and
maximum. In Πn and in NCn the meet of two partitions π and ρ is the collection of intersections
of a block of π and a block of ρ. In L(Fnq ) the meet and join are the intersection and the span. In
J(P ) they are the intersection and the union. In F (P ) the meet is the intersection. In L(G) the
meet is the intersection.

Any lattice must have a unique minimum element 0̂ and maximum element 1̂. An element
covering 0̂ is called an atom; an element covered by 1̂ is called a coatom. To prove that a finite
poset P is a lattice, it is sufficient to check that it has a 1̂ and that any x, y ∈ P have a meet;
then the join of x and y will be the (necessarily non-empty) meet of their common upper bounds.
Similarly, it suffices to check that P has a 0̂ and that any x, y ∈ P have a join.

Distributive Lattices. A lattice L is distributive if the join and meet operations satisfy the
distributive properties:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (16)

for all x, y, z ∈ L. To prove that L is distributive, it is sufficient to check that to verify that one of
the equations in (16) holds for all x, y, z ∈ L.

Example 4.2.2. There are several distributive lattices in Example 4.1.1: the chains n, the Boolean
lattices 2A, the divisor lattices Dn, and Young’s lattice Y . This follows from the fact that the pairs
of operations (min,max), (gcd, lcm) and (∩,∪) satisfy the distributive laws. On the other hand, Π3

is not distributive.

The most important – and in fact, the only – source of finite distributive lattices is the following.
Given a poset P , a downset or order ideal I is a subset of P such that if i ∈ I and j < i then
j ∈ I. A principal order ideal is one of the form P≤p = {q ∈ P : q ≤ p}. Let J(P ) be the poset
of order ideals of P , ordered by inclusion.

Theorem 4.2.3. (Fundamental Theorem for Finite Distributive Lattices.) A poset L is a distribu-
tive lattice if and only if there exists a poset P such that L ∼= J(P ).
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Sketch of Proof. Since the collection of order ideals of a poset P is closed under union and inter-
section, J(P ) is a sublattice of 2P . The distributivity of 2P then implies that J(P ) is a distributive
lattice.

For the converse, let L be a lattice, and let P be the set of join-irreducible elements of L; that
is, the elements p > 0̂ which cannot be written as p = q ∨ r for q, r < p. These are precisely the
elements of L that cover exactly one element. The set P inherits a partial order from L, and this
is the poset such that L ∼= J(P ). The isomorphism is given by

φ : J(P ) −→ L

I 7−→
∨
p∈I

p

and the inverse map is given by φ−1(l) = {p ∈ P : p ≤ l}.

Ø

a

d

b

c

a

abcd

abdabc

bdab

b

Figure 4.2: A poset and the corresponding distributive lattice.

Theorem 4.2.3 extends to some infinite posets with minor modifications. Let Jf (P ) be the set
of finite order ideals of a poset P . Then the map P 7→ Jf (P ) is a bijection between the posets
whose principal order ideals are finite and the locally finite distributive lattices with 0̂.

Example 4.2.4. The posets P of join-irreducibles of the distributive lattices L ∼= J(P ) of Example
4.2.2 are as follows. For L = n, P = n− 1 is a chain. For L = 2A, P = 1+ · · ·+1 is an antichain.
For L = Dn, where n = pt11 · · · p

tk
k , P = t1 + · · · + tk is the disjoint sum of k chains. For L = Y ,

P = N× N is a “quadrant”.

Theorem 4.2.3 explains the abundance of cubes in the Hasse diagram of a distributive lattice L.
For any element l ∈ L covered by n elements l1, . . . , ln of L, the joins of the 2n subsets of {l1, . . . , ln}
are distinct, and form a copy of the Boolean lattice 2[n] inside L. The dual result holds as well.

The width of a poset P is the size of the largest antichain of P . Dilworth’s Theorem [Dil50]
states that this is the smallest integer w such that P can be written as the disjoint union of w
chains.

Theorem 4.2.5. The distributive lattice J(P ) can be embedded as an induced subposet of the poset
Nw, where w is the width of P .
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Proof. Decompose P as the disjoint union of w chains C1, . . . , Cc. The map

φ : J(P ) −→ Nw

I 7−→ (|I ∩ C1|, . . . , |I ∩ Cw|)

gives the desired inclusion.

Geometric Lattices. Now we introduce another family of lattices of great importance in combina-
torics. We say that a lattice L is:
• semimodular if the following two equivalent conditions hold:

o L is graded and r(p) + r(q) ≥ r(p ∧ q) + r(p ∨ q) for all p, q ∈ L.
o If p and q both cover p ∧ q, then p ∨ q covers both p and q.

• atomic if every element is a join of atoms.
• geometric if it is semimodular and atomic.

Example 4.2.6. In Figure 4.1, the posets 2[3] and Π3 are geometric, while the posets 4 and D18

are not.

Not surprisingly, the prototypical example of a geometric lattice comes from a natural geometric
construction, illustrated in Figure 4.3. Let A = {v1, . . . , vn} be a set of vectors in a vector space V .
A flat is an subspace of V generated by a subset of A. We identify a flat with the set of vis that
it contains. Let LA be the set of flats of A, ordered by inclusion. Then LA is a geometric lattice.

Ø

wvut

vwuwtwtuv

tuvw
w

t
v

u

Figure 4.3: A vector configuration t,u,v,w (where t,u,v are coplanar) and the corresponding
geometric lattice.

The theory of geometric lattices is equivalent to the rich theory of matroids, which is the subject
of Section 7.

Supersolvable Lattices. A lattice L is supersolvable if there exists a maximal chain, called an
M-chain, such that the sublattice generated by C and any other chain of L is distributive. [Sta72]

Again unsurprisingly, an important example comes from supersolvable groups, but there are
several other interesting examples. Here is a list of supersolvable lattices, and an M-chain in each
case.

1. Distributive lattices: every maximal chain is an M-chain.
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2. Partition lattice Πn: 1|2| · · · |n < 12|3| · · · |n < 123|4| · · · |n < · · · < 123 · · ·n

3. Noncrossing partition lattice NCn: the same chain as above.

4. Lattice of subspaces L(Fnq ) of the vector space Fnq over a finite field Fq: every maximal chain
is an M-chain.

5. Subgroup lattices of finite supersolvable groups G: an M-chain is given by any normal series
1 = H0 / H1 / · · · / Hk = G where each Hi is normal and Hi/Hi−1 is cyclic of prime order.

Fortunately, there is a simple criterion to verify semimodularity. An R-labeling of a poset P
is a labeling of the edges of the Hasse diagram of P with integers such that for any s ≤ t there
exists a unique maximal chain C from s to t.

Theorem 4.2.7. [McN03] A finite graded lattice of rank n is supersolvable if and only if it has an
R-labeling for which the labels on every maximal chain are a permutation of {1, . . . , n}.

4.3 Chain polynomials, order polynomials

The zeta polynomial of a finite poset P counts the multichains of various lengths in P . A
multichain of length k in P is a sequence of possibly repeated elements t0, t1, . . . , tk ∈ P such that
t0 ≤ t1 ≤ · · · ≤ tk. Let

ZP (k) = number of multichains of length k − 2 in P (k ≥ 2). (17)

There is a unique polynomial ZP (k) satisfying (17) for all integers k ≥ 2; it is given by

ZP (k) =
∑
i≥2

bi

(
k − 2

i− 2

)
, (18)

where bi is the number of chains of length i−2 in P . This polynomial is called the zeta polynomial
of P .

Example 4.3.1. The following posets have particularly nice zeta polynomials:

1. P = n:

Z(k) =

(
n+ k − 2

n− 1

)
2. P = Bn:

Z(k) = kn

3. P = NCn: (Kreweras, [Kre72])

Z(k) =
1

n

(
kn

n− 1

)
The order polynomial of P counts the order-preserving labelings of P ; it is defined by

ΩP (k) = number of maps f : P → [k] such that p < q implies f(p) ≤ f(q)

for k ∈ N. The next proposition shows that, once again, there is a unique polynomial taking these
values at the natural numbers.
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Proposition 4.3.2. For any poset P , ΩP (k) = ZJ(P )(k).

Proof. An order-preserving map f : P → [k] gives rise to a sequence of order ideals f−1({1}) ⊆
f−1({1, 2}) ⊆ · · · f−1({1, . . . , k}), which is a multichain in J(P ). Conversely, every sequence arises
uniquely in this way.

A linear extension of P is an order-preserving labeling of the elements of P with the labels
1, . . . , n = |P | which extends the order of P ; that is, a bijection f : P → [n] such that p < q implies
f(p) < f(q). Let

e(P ) = number of linear extensions of P.

It follows from Proposition 4.3.2 and (18) that the zeta polynomial ΩP has degree |P |, and leading
coefficient e(P )/|P |!.

The following is a method for computing e(P ) recursively.

Proposition 4.3.3. Define e : J(P )→ N recursively by

e(I) =

1 if I = 0̂,∑
JlI

e(J) otherwise.

Then e(1̂) is the number e(P ) of linear extensions of P .

Proof. Let p1, . . . , pk be the maximal elements of P . In a linear extension of P , one of p1, . . . , pk
has to be labelled n, and therefore

e(P ) = e(P\{p1}) + · · ·+ e(P\{pk}).

This is equivalent to the desired recurrence.

It is useful to keep in mind that J(P ) is a subposet of Nw for w = w(P ). The recurrence of
Proposition 4.3.3 generalizes Pascal’s triangle, which corresponds to the case P = N + N. When
we apply it to P = N+ · · ·+ N, we get the recursive formula for multinomial coefficients.

Example 4.3.4. In some special cases, the problem of enumerating linear extensions is of funda-
mental importance.

• e(n1 + · · ·+ nk) =
(
n1+···+nk
n1,...,nk

)
• e(2× n) = Cn = 1

n+1

(
2n
n

)
.

• Let T be a tree poset of n elements, such that the Hasse diagram is a tree rooted at 0̂. For
each vertex v let tv = |T≥v| = |{w ∈ T : w ≥ v}|. Then

e(T ) =
n!∏
v∈T tv

.
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• Let λ be a Ferrers diagram of n cells, partially ordered by decreeing that each cell is covered
by the cell directly below and the cell directly to the right, if they are in λ. The hook of a cell
c consists of cells on the same row and to the right of c, those on the same column and below
c, and c itself. Let hc = |Hc|. Then

e(λ) =
n!∏
c∈D hc

.

This is the dimension of the irreducible representation of the symmetric group Sn correspond-
ing to λ. [Sag01]

4.4 The Inclusion-Exclusion Formula

Our next goal is to discuss one of the most useful enumerative tools for posets: Möbius functions
and the Möbius inversion theorem. Before we do that, we devote this section to a special case that
preceded and motivated them: the inclusion-exclusion formula.

Theorem 4.4.1. (Inclusion-Exclusion Principle) For any finite sets A1, . . . , An ⊆ X, we have

1. |A1 ∪ · · · ∪An| =
∑
i

|Ai| −
∑
i<j

|Ai ∩Aj |+
∑
i<j<k

|Ai ∩Aj ∩Ak| − · · · ± |A1 ∩ · · · ∩An|.

2. |A1 ∩ · · · ∩An| = |X| −
∑
i

|Ai|+
∑
i<j

|Ai ∩Aj | − · · · ± |A1 ∩ · · · ∩An|.

Proof. It suffices to prove one of these two equivalent equations. To prove the first one, consider
an element x appearing in k ≥ 1 of the given sets. The number of times that x is counted in the
right hand side is k −

(
k
2

)
+ · · · ±

(
k
k

)
= 1.

We now present a slightly more general formulation.

Theorem 4.4.2. (Inclusion-Exclusion Principle) Let A be a set and consider two functions f=, f≥ :
2A −→ k be functions from 2A to a field k. Then

1. f≥(S) =
∑
T⊇S

f=(T ) for S ⊆ A ⇐⇒ f=(S) =
∑
T⊇S

(−1)|T−S|f≥(T ) for S ⊆ A.

2. f≤(S) =
∑
T⊆S

f=(T ) for S ⊆ A ⇐⇒ f=(S) =
∑
T⊆S

(−1)|S−T |f≤(T ) for S ⊆ A.

The most common interpretation is the following. Suppose we have a set U of objects and a
set A of properties that each object in U may or may not satisfy. If we know, for each S ⊆ A, the
number f≥(S) of elements having at least the properties in S (or the number f≤(S) of elements
having at most the properties in S), then we obtain, for each S ⊆ A, the number f=(S) of elements
having exactly the properties in S. We are often interested in the number f=(∅) or f=(A) of
elements satisfying none of the given properties.

Theorem 4.4.2 has a simple linear algebraic interpretation. Consider the two 2A × 2A matrices
C,D whose non-zero entries are CS,T = 1 for S ⊆ T , and DS,T = (−1)|T−S| for S ⊆ T . Then the
inclusion-exclusion formula is equivalent to the assertion that C and D are inverse matrices. This
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can be proved directly, but we prefer to deduce it as a special case of the Möbius inversion formula
(Theorem 4.5.2). We now present two applications.

Derangements. One of the classic applications of inclusion-exclusion principle is the enumeration
of the derangements of [n], which are the permutations π ∈ Sn such that π(i) 6= i for all i. Let
A = {A1, . . . , An} where Ai is the property that π(i) = i. Then f≥(T ) = (n− |T |)!, so the number
Dn of derangements of [n] is

Dn = f=(∅) =
∑
T

(−1)|T |f≥(T ) =
n∑
k=0

(
n

k

)
(−1)k(n− k)! = n!

(
1

0!
− 1

1!
+

1

2!
− · · · ± 1

n!

)
.

It follows that Dn is the integer closest to n!/e.

Discrete derivatives. Consider the k-vector space Γ of functions f : Z → k. The discrete
derivative of f is the function ∆f given by ∆f(n) = f(n+ 1)− f(n). We now wish to show that,
just as with ordinary derivatives,

∆d+1f = 0 if and only if f is a polynomial of degree at most d.

Recall that this was part of Theorem 2.4.2. Regarding ∆ as a linear operator on Γ, we have
∆ = E−1 where Ef(n) = f(n+1) and 1 is the identity. Then ∆k = (E−1)k =

∑k
i=0

(
k
i

)
Ei(−1)k−i,

so the k-th discrete derivative is ∆kf(n) =
∑k

i=0(−1)k−i
(
k
i

)
f(n+ i).

The functions f≤(S) = f(n + |S|) and f=(S) = ∆kf(|S|) satisfy Theorem 4.4.2.2, so we have
f(n + k) =

∑k
i=0

(
k
i

)
∆if(n). (This is equivalent to Ek = (∆ + 1)k.) If ∆d+1f = 0, this gives

f(k) =
∑d

i=0

(
k
i

)
∆if(0) which is a polynomial in k of degree at most d. The converse follows from

the observation that ∆ lowers the degree of a polynomial by 1.

4.5 Möbius functions and Möbius inversion

4.5.1 The Möbius function.

Given a locally finite poset P , let Int(P ) = {[x, y] : x, y ∈ P, x ≤ y} be the set of intervals of P .
The (two-variable) Möbius function of a poset P is the function µ : Int(P )→ Z defined by∑

p≤r≤q
µ(p, r) =

{
1 if p = q,

0 otherwise.
(19)

Here we are denoting µ(p, q) = µ([p, q]). We will later see that the Möbius function can be defined
equivalently by the equations: ∑

p≤r≤q
µ(r, q) =

{
1 if p = q,

0 otherwise.
(20)

When P has a minimum element 0̂, the (one-variable) Möbius function µ : P → Z is µ(x) =
µ(0̂, x). If P also has a 1̂, the Möbius number of P is µ(P ) = µ(0̂, 1̂).

Computing the Möbius function is a very important problem, because the Möbius function is
the poset analog of a derivative; and as such, it is a fundamental invariant of a poset. This problem
often leads to very interesting enumerative combinatorics, as can be gleaned from the following
gallery of Möbius functions.
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Theorem 4.5.1. The Möbius functions of some key posets are as follows.

1. (Chain) P = n:

µn(i, j) =


1 if j = i

−1 if j = i+ 1

0 otherwise.

2. (Boolean lattice) P = 2A:
µ2A(S, T ) = (−1)T−S .

3. (Divisor lattice) P = Dn: We have µDn(k, l) = µ(l/k) where

µ(m) =

{
(−1)t if m is a product of t distinct primes, and

0 otherwise.

is the classical Möbius function from number theory.

4. (Young’s lattice) P = Y :

µ(λ, µ) =

{
(−1)|µ−λ| if µ− λ has no two adjacent squares, and

0 otherwise.

5. (Partition lattice) P = Πn: The Möbius number of Πn is

µ(Πn) = (−1)n−1(n− 1)!,

from which a (less elegant) formula for the complete Möbius function can be derived.

6. (Non-crossing partition lattice) P = NCn: The Möbius number of NCn is

µ(NCn) = (−1)n−1Cn−1,

where Cn−1 is the (n − 1)-st Catalan number. This gives a (less elegant) formula for the
complete Möbius function.

7. (Bruhat order) P = Sn:
µ(u, v) = (−1)`(v)−`(u),

where the length `(w) of a permutation w ∈ Sn is the number of inversions (i, j) where
1 ≤ i < j ≤ n and wi > wj. (There is a generalization of this result to the Bruhat order on
any Coxeter group W , or even on a parabolic subgroup W J ; see Section 4.7.)

8. (Subspace lattice) P = L(Fnq ): For the subspace lattice of a finite vector space Fnq ,

µ(U, V ) = (−1)dq(
d
2),

where d = dimV − dimU .
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9. (Distributive lattice) L = J(P ):

µ(I, J) =

{
(−1)|J−I| if J − I is an antichain in P , and

0 otherwise.

10. (Face poset of a polytope) L = F (P ):

µ(F,G) = (−1)dimG−dimF .

11. (Face poset of a subdivision T of a polytope P ) L = T̂ :

µ(F,G) =


(−1)dimG−dimF if G < 1̂

(−1)dimP−dimF+1 if G = 1̂ and F is not on the boundary of P

0 if G = 1̂ and F is on the boundary of P

12. (Subgroup lattice of a finite p-group) If |G| = pn for p prime, n ∈ N, then in L = L(G):

µ(A,B) =

{
(−1)kp(

k
2) if A is a normal subgroup of B and B/A ∼= Zkp, and

0 otherwise.

Some of the formulas above follow easily from the definitions, while others require more so-
phisticated methods. In the following sections we will develop some of the basic theory of Möbius
functions and discuss the most common methods for computing them. Along the way, we will
sketch proofs of all the formulas above.

It is worth remarking that a version of 11. holds more generally for the face poset of any finite
regular cell complexes Γ such that the underlying space |Γ| is a manifold with or without boundary;
see [Sta12, Prop. 3.8.9] for details.

4.5.2 Möbius inversion

In enumerative combinatorics, there are many situations where have a set U of objects, and a
natural way of assigning to each object u of U an element f(u) of a poset P . We are interested in
counting the objects in U that map to a particular element p ∈ P . Often we find that it is much
easier to count the objects in s that map to an element less than or equal to8 p in P . The
following theorem tells us that this easier enumeration is sufficient for our purposes, as long as we
can compute the Möbius function of P .

Theorem 4.5.2. (Möbius Inversion formula) Let P be a poset and let f, g : P → k be functions
from P to a field k. Then

1. g(p) =
∑
q≥p

f(q) for all p ∈ P ⇐⇒ f(p) =
∑
q≥p

µ(p, q)g(q) for all p ∈ P, and

2. g(p) =
∑
q≤p

f(q) for all p ∈ P ⇐⇒ f(p) =
∑
q≤p

µ(q, p)g(q) for all p ∈ P.

8or greater than or equal to
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In his paper [Rot64], which pioneered the use of the Möbius inversion formula as a tool for
counting in combinatorics, Rota described this enumerative philosophy as follows:

It often happens that a set of objects to be counted possesses a natural ordering, in
general only a partial order. It may be unnatural to fit the enumeration of such a set
into a linear order such as the integers: instead, it turns out in a great many cases, that
a more effective technique is to work with the natural order of the set. One is led in
this way to set up a “difference calculus” relative to an arbitrary partially ordered set.

Indeed, one may think of the Möbius function as a poset-theoretic analog of the Fundamental
Theorem of Calculus: g is analogous to the integral of f , as it stores the cumulative value of this
function. Like the Fundamental Theorem of Calculus, the Möbius inversion formula tells us how
to recover the function f from its cumulative values.

It is not difficult to prove Theorem 4.5.2 directly, but we will soon discuss an algebraic framework
that really explains it. In the meantime, we discuss two key applications. We will see several other
applications later on.

Example 4.5.3. Möbius inversion is particularly important for chains, Boolean and divisor lattices.

1. For P = N, Theorem 4.5.2.1 is a simple but important result for partial sums:

g(n) =

n∑
i=0

f(i) for n ∈ N if and only if f(n) = g(n)− g(n− 1) for n ∈ N

where g(−1) = 0.

2. For P = 2A, Theorem 4.5.2.1 is the inclusion-exclusion formula:

g(S) =
∑
T⊇S

f(T ) for S ⊆ A if and only if f(S) =
∑
T⊇S

(−1)|T−S|g(T ) for S ⊆ A.

3. For P = Dn, Theorem 4.5.2.2 is the Möbius inversion formula from number theory:

g(m) =
∑
m|d|n

f(d) for m|n if and only if f(m) =
∑
m|d|n

µ(d/m)g(d) for m|n.

A typical application is the computation of Euler’s totient function

ϕ(n) = |{u : 1 ≤ u ≤ n, gcd(u, n) = 1}|,

or more generally f(m) = |{u : 1 ≤ u ≤ n, gcd(u, n) = m}| for m|n. Here U = [n], and we
assign to each u ∈ U the divisor gcd(n, u) of n. There are g(m) = n/m multiples of m in U ,
so

ϕ(n) = f(1) =
∑
d|n

µ(d)
n

d
= n

(
1− 1

p1

)
· · ·
(

1− 1

pk

)

We will be interested in applying the Möbius inversion formula in many other contexts, and for
that reason it is important that we gain a deeper understanding of Möbius functions, and develop
techniques to compute them. This is one of the main goals of the following sections.

72



4.6 The incidence algebra.

The Möbius function has a very natural algebraic interpretation, which we discuss in this section.
Given a field k, recall that a k-algebra A is a vector space over k equipped with a bilinear product.

The incidence algebra I(P ) of a locally finite poset P is the k-algebra of functions f :
Int(P )→ k from the intervals of P to k, equipped with the convolution product f · g given by

f · g (p, r) =
∑
p≤q≤r

f(p, q) g(q, r) for p ≤ r.

Alternatively, let Mat(P ) be the set of P × P matrices A with entries in k whose only nonzero
entries apq 6= 0 occur in positions where p ≤ q in P . There is no canonical way of listing the rows
and columns of the matrix P in a linear order. We normally list them in the order given by a
linear extension of P , so that the matrices in Mat(P ) will be upper triangular. It is clear from the
definitions that

I(P ) ∼= Mat(P ).

The unit and inverses. The product in I(P ) is clearly associative, and has a unit

1(p, q) =

{
1 if p = q,

0 if p < q.

which is a (two-sided) multiplicative identity. An element f ∈ I(P ) has a (necessarily unique) left
and right multiplicative inverse f−1 if and only if f(p, p) 6= 0 for all p ∈ P .

The zeta function and counting chains. An important element of I(P ) is the zeta function

ζ(p, q) = 1 for all p ≤ q.

Notice that ζk(p, q) is the number of multichains of length k from p to q.
If P has a 0̂ and 1̂, then ζ kP (0̂, 1̂) counts all multichains of length k − 2 in P , so the zeta

polynomial and zeta function are related by

ZP (k) = ζ kP (0̂, 1̂) for k ≥ 2. (21)

Similarly, (ζ − 1)k(p, q) is the number of chains of length k from p to q. The sum 1 + (ζ − 1) +
(ζ − 1)2 + · · · has finitely many non-zero terms, and it equals (2− ζ)−1, where 2 = 2 · 1; so

(2− ζ)−1(p, q) = total number of chains in P from p to q.

The Möbius function and Möbius inversion. The (equivalent) equations (19) and (20) defining
the Möbius function can be rewritten as µζ = 1 and ζµ = 1, respectively. This explains why these
two equations are equivalent: they say that

µ = ζ−1.

Proof of the Möbius inversion formula. Consider the left action of the incidence algebra I(P ) on
the vector space kP of functions f : P → k, given by

a · f (p) =
∑
q≥p

a(p, q)f(q)

for a ∈ I(P ) and f : P → k. The Möbius inversion formula then states that g = ζ · f if and only if
µ · g = f ; this follows immediately from µ = ζ−1.
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4.7 Computing Möbius functions.

To apply the Möbius inversion Formula successfully, it is often necessary to compute the Möbius
functions of the posets involved. In this section, we discuss some of the main tools for computing
Möbius functions. Along the way, we prove the formulas for the Möbius functions of the posets of
Theorem 4.5.1.

1. (Chain n) We can check the formula for µn manually.

Möbius functions of products. A simple but important fact is that Möbius functions behave well
under poset multiplication:

µP×Q((p, q), (p′, q′)) = µP (p, p′)µQ(q, q′)

This is easily verified directly, and also follows from the fact that I(P ×Q) ∼= I(P )⊗k I(Q).

2. (Boolean lattice 2A) Since 2A ∼= 2×· · ·×2, the Möbius function of 2 tells us that the Möbius
function of 2A is µ(S, T ) = (−1)|T−S|.

3. (Divisor lattice Dn) Since Dn
∼= (t1 + 1)×· · ·×(tk + 1) for n = pt11 · · · p

tk
k , we get the formula

for µDn from the formula for the Möbius function of a chain.

Möbius functions through Möbius inversion. So far we have thought of the Möbius function as a
tool to apply Möbius inversion. Somewhat counterintuitively, it is possible to use Möbius inversion
in the other direction, as a tool to compute Möbius functions. We carry out this approach to
compute the Möbius function of the partition lattice Πn.

5. (Partition lattice Πn) Let ΠA denote the lattice of set partitions of a set A ordered by
refinement. Every interval [π, ρ] in ΠA is a product of partition lattices, as illustrated by the
following example: in Π9 we have [18|2|37|4|569, 13478|2569] ∼= Π{18,37,4}×Π{2,569} ∼= Π3×Π2.
Since the Möbius function is multiplicative, to compute the Möbius function of the partition
lattices it suffices to show that µΠn(0̂, 1̂) = (−1)n−1(n− 1)!.

Let W be the set of words w = w1 . . . wn of length n in the alphabet {0, 1, . . . , q−1}. Classify
the words according to the equalities among their coordinates; namely, to each word w,
associate the partition of [n] where i and j are in the same block when wi = wj .

Let f(π) be the number of words whose partition is π, and let g(π) be the number of words
whose partition is a coarsening of π. This is a situation where both f(π) and g(π) are easily
computed: if π has b blocks then we have

f(π) = q(q − 1) · · · (q − b+ 1), g(π) = qb.

Since g(π) =
∑
ρ≥π

f(ρ) we get f(π) =
∑
ρ≥π

µ(π, ρ)g(ρ). For π = 0̂ this says that

q(q − 1) · · · (q − n+ 1) =
∑
ρ∈Πn

µ(0̂, ρ)q|ρ|.

Equating the coefficients of q1 we get the desired result.
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Möbius functions through closures. A function · : P → P is a closure operator if

• p ≤ p for all p ∈ P ,

• p ≤ q implies p ≤ q for all p, q ∈ P , and

• p = p for all p ∈ P .

An element of p is closed if p = p; let Cl(P ) be the subposet of closed elements of P .

Proposition 4.7.1. If · : P → P is a closure operator, then for any p ≤ q in P ,

∑
r : r=q

µ(p, r) =

{
µCl(P)(p, q) if p and q are closed

0 otherwise

Proof. We have an inclusion of incidence algebras I(Cl(P ))→ I(P ) given by f 7→ f where

f(p, q) =

{
f(p, q) if p and q are closed

0 otherwise

Let 1, ζ, and µ be the image of the unit, zeta, and Möbius functions of Cl(P ) in I(P ). Also consider
the “closure function” c ∈ I(P ) whose non-zero values are c(p, p) = 1 for all p. Note that c ζ = ζ 1
because when q is closed, p ≤ q if and only if p ≤ q. Now we compute in I(P ):

µ c 1 = µc ζ µ = µ ζ 1µ = 1µ = µ.

This is equivalent to the desired equality.

Möbius functions of lattices. When L is a lattice, there are two other methods for computing
Möbius functions. The first one gives an alternative to the defining recursion for µ(p, q). This
new recurrence is usually much shorter, at the expense of requiring some understanding of the join
operation.

Proposition 4.7.2. (Weisner’s Theorem) For any p < a ≤ q in a lattice L we have∑
p≤r≤q : r∨a=q

µ(p, r) = 0

Weisner’s Theorem follows from Proposition 4.7.1 because r 7→ r ∨ a is a closure operation,
whose closed sets are the elements greater than or equal to a. There is also a dual version, obtained
by applying the result to the reverse lattice Lop obtained from L by reversing all order relations.

Let us apply Weisner’s Theorem to three examples.

8. (Subspace lattice L(Fnq )) Since an interval of height r in L(Fnq ) is isomorphic to L(Frq), it

suffices to compute µ(L(Fnq )) =: µn. Let p = 0̂, q = 1̂, and let a be any line. The only

subspaces r 6= 1̂ with r ∨ a = 1̂ are the qn−1 hyperplanes not containing a. Each one of these
hyperplanes satisfies [0̂, r] ∼= L(Fn−1

q ), so Weisner’s Theorem gives µn + qn−1µn−1 = 0, from

which µn = (−1)nqn(n−1)/2.
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5. (Partition lattice Πn, revisited) A similar (and easier) argument may be used to compute
µn = µ(Πn), though it is now easier to use the dual to Weisner’s Theorem. Let p = 0̂, q = 1̂,
and let a be the coatom 12 . . . n− 1|n. The only partitions r 6= 0̂ with r ∧ a = 0̂ are those
with only one non-singleton block of the form {i, n} for i 6= n. Each such partition π has
[π, 1̂] ∼= Πn−1. The dual to Weisner’s Theorem tells us that µn+ (n−1)µn−1 = 0, from which
µn = (−1)n(n− 1)!.

11. (Subgroup lattice L(G) of a finite p-groupG) A similar argument may be used for the subgroup
lattice L(G) of a p-group G. However, now one needs to invoke some facts about p-groups;
see [Wei35].

Theorem 4.7.3. (Crosscut Theorem) Let L be a lattice and let X be the set of atoms of L. Then

µ(0̂, 1̂) =
∑
k

(−1)kNk

where Nk is the number of k-subsets of X whose join is 1̂.

We will sketch a proof at the end of this section. Meanwhile, we point out a simple corollary of
the Crosscut Theorem:

If the join of the atoms is not 1̂ then µ(0̂, 1̂) = 0. (22)

9. (Distributive lattice L = J(P )) This result suffices to compute the Möbius function of a
distributive lattice L = J(P ). If J − I is an antichain, then [I, J ] is a Boolean lattice and
µL(I, J) = (−1)J−I . Otherwise, the join of the atoms of [I, J ] is I ∪ min(J − I) 6= J , and
hence µL(I, J) = 0.

4. (Young’s lattice Y ) We obtain this Möbius function for free since Y is distributive.

Naturally, there are dual formulations to the previous two propositions, obtained by reversing
the order of L. Also, there are many different versions of the crosscut theorem; see for example
[Rot64].

Möbius functions through multichains. If we know the zeta polynomial of a poset P with 0̂ and
1̂, we can obtain its Möbius number µ(P ) immediately.

Proposition 4.7.4. If P is a poset with 0̂ and 1̂,

ZP (−1) = µP (0̂, 1̂). (23)

Proof. We saw in (21) that ZP (k) = ζkP (0̂, 1̂) for all integers k ≥ 2. It would be irresponsible to
just set k = −1, but it is very tempting, since ζ−1 = µ.

In the spirit of combinatorial reciprocity, this is an instance where such irresponsible be-
havior pays off, with a bit of extra care. We know that ZP (k) is polynomial for k ∈ Z, and we leave
it as an exercise to show that ζk(0̂, 1̂) is also polynomial for k ∈ Z. Since these two polynomials
agree on infinitely many values, they also agree for k = −1, and the result follows.
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In light of (23), the zeta polynomial of P will give us the Möbius number µ(P ) automatically.
This is advantageous because sometimes the zeta polynomial is easier to compute than the Möbius
function, as it is the answer to an explicit enumerative question.

6. (Non-crossing partition lattice NCn) From the zeta polynomial of NCn in Example 4.3.1
we immediately obtain that µ(NCn) = (−1)n−1Cn−1 where Cn−1 is the (n − 1)st Catalan
number. This gives a formula for the full Möbius function, since every interval in NCn is a
product of smaller non-crossing partition lattices.

Möbius functions through topology. Equation (23) has a topological interpretation which is an
extremely powerful method for computing Möbius functions.

Proposition 4.7.5. (Phillip Hall’s Theorem) Let P be a finite poset with a 0̂ and 1̂, and let ci be
the number of chains 0̂ = p0 < p1 < · · · < pi = 1̂ of length i from 0̂ to 1̂ in P . Then

µP (0̂, 1̂) = c0 − c1 + c2 − · · ·

This formula is equivalent to (23) in light of (18) and the relations bi = ci+ 2ci−1 + ci−2; it may
also be proved directly in the incidence algebra of P .

Let us now interpret this result topologically. The order complex ∆(P ) of a poset P is the
simplicial complex whose vertices are the elements of P , and whose faces are the chains of P .

Theorem 4.7.6. Let P be a finite poset with a 0̂ and 1̂, and let P = P − {0̂, 1̂}. Then

µP (0̂, 1̂) = χ̃(∆(P ))

is the reduced Euler characteristic of ∆(P ).

Proof. In light of Proposition 4.7.5, this follows immediately from the combinatorial formula

χ̃(∆) =
d∑

k=−1

(−1)kfk

for the Euler characteristic of |∆|, where fk is the number of k-dimensional faces of ∆.

Let us use this topological description to sketch proofs of the remaining Möbius functions of
Theorem 4.5.1.

10. (Face lattice of a polytope L(P )) The barycentric subdivision sd(P ) is a simplicial complex
with a vertex v(F ) at the barycenter of each proper face F . It has a simplex connecting
vertices v(F1), . . . , v(Fk) whenever F1 ⊂ · · · ⊂ Fk. As abstract simplicial complexes, sd(P )
equals ∆(F (P )). Geometrically, sd(P ) is a subdivision of the boundary of the polytope P ,
and hence is homeomorphic to the sphere SdimP−1. Therefore

µ(0̂, 1̂) = χ̃(∆(P )) = χ̃(SdimP−1) = (−1)dimP .

We will see in Section 5 that every interval of F (P ) is itself the face poset of a polytope. It
then follows that µ(F,G) = (−1)dimG−dimF .

77



11. (Face lattice of a subdivision T of a polytope P ) A similar argument holds, though the details
are slightly more subtle; see [Sta12, Prop. 3.8.9].

7. (Bruhat order in permutations Sn) There are several known proofs of the fact that µ(u, v) =
(−1)l(u)−l(v), none of which is easy. The first proof was an ad hoc combinatorial due to Verma
[Ver71]. Later Kazhdan and Lusztig [KL79] and Stembridge [Ste07] gave algebraic proofs
using Kazhdan-Lusztig polynomials and Hecke algebras, respectively. Björner and Wachs
[BW82] gave a topological proof, based on Theorem 4.7.6 and further tools from topological
combinatorics. As we remarked earlier, there are similar formulas for the Möbius function of
an arbitrary parabolic quotient of an arbitrary Coxeter group; see [BB05] or [Ste07].

Theorem 4.7.6 tells us that in order to compute Möbius functions of posets of interest, it
can be very useful to understand the topology of their underlying order complexes. Conversely,
combinatorial facts about Möbius functions may lead to stronger statements about topological
spaces. This is the motivation for the very rich study of poset topology. We refer the reader to
the survey [Wac07] for further information on this topic.

4.8 Eulerian posets, flag f-vectors and h-vectors.

Let P be a graded poset of height r. The flag f-vector (fS : S ⊆ [0, r]) and the flag h-vector
(hS : S ⊆ [0, r]) are defined by

fS = number of chains p1 < p2 < · · · < pk with {r(p1), . . . r(pk)} = S, and

hS =
∑
T⊆S

(−1)|S|−|T |fT , fS =
∑
T⊆S

hT

for S ⊆ [0, r].

Example 4.8.1. Let H be a hexagonal prism of Figure 4.4, and let P = L(H)− {0̂, 1̂} be its face
lattice, with the top and bottom element (the empty face and the full face H) removed. It is not
so enlightening to draw the poset, but we can still compute its flag f and h-vectors. For example,
f{0,2} = 36 counts the pairs (v, f) of a vertex v contained in a 2-face f . We get:

∅ 0 1 2 01 02 12 012

fS 1 12 18 8 36 36 36 72
hS 1 11 17 7 7 17 11 1

Figure 4.4: A hexagonal prism.
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This example suggests that there may be additional structure in the flag h-vector; for instance
in this example we have hS = h[0,d]−S for all S. This equation is not true in general, but it does
hold for an important class of posets, which we now discuss.

Eulerian posets. Say a graded poset P is Eulerian if µ(x, y) = (−1)r(y)−r(x) for all x ≤ y.
In Theorem 4.5.1 we saw three important families of Eulerian posets: Boolean lattices, the

Bruhat order, and face posets of polytopes. In particular, the poset P of Example 4.8.1 is Eulerian.
For an Eulerian poset, there are many linear relations among the fSs, which are easier to

describe in terms of the hSs; for example, hS = h[0,d]−S for all S. To describe them all, we further
encode the flag f -vector in a polynomial in non-commuting variables a and b called the ab-index,
which is defined to be

ΦP [a,b] =
∑
S⊆[d]

hSuS

where uS = u1 . . . ud and ui = a if i /∈ S and ui = b if i ∈ S. This is an element of the ring Z〈a,b〉
of integer polynomials in the non-commutative variables a and b.

Theorem 4.8.2. [BB85, BK91, Sta94] The ab-index of an Eulerian poset P can be expressed
uniquely as a polynomial in

c = a + b, d = ab + ba

called the cd-index ΨP (c,d) of P . Furthermore, if P is the face poset of a polytope, then the
coefficients of the cd-index are non-negative.

Example 4.8.3. The ab-index of the hexagonal prism in Example 4.8.1 is

Φ(a,b) = aaa + 11baa + 17aba + 7aab + 7bba + 17bab + 11abb + bbb

= (a + b)3 + 6(a + b)(ab + ba) + 10(ab + ba)(a + b)

so the cd-index is
Ψ(c,d) = c3 + 6cd + 10dc.

In general, the 8 entries of the flag f -vector of a 3-polytope (or any other Eulerian poset of rank
3) are determined completely by only 3 numbers, namely, the coefficients of c3, cd, and dc in the
cd-index.

The cd-index encodes optimally the linear relations among the entries of flag f -vectors of
polytopes. Since the number of monomials in c and d of ab-degree d is the Fibonacci number
Fd+1, this is the smallest number of entries in (fS) from which we can recover the whole flag
f -vector – this is much smaller than 2d.

Corollary 4.8.4. [BB85, BK91] The subspace of R2d spanned by the flag f -vectors of Eulerian
posets of rank d (or by the flag f -vectors of d-polytopes) has dimension equal to the Fibonacci
number Fd+1.
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PART 2. DISCRETE GEOMETRIC METHODS

Part 2 is devoted to discrete geometry, which studies the connections between combinatorics
and the geometry of subspaces (points, lines, planes, . . ., hyperplanes) in a Euclidean space. Con-
figurations in the plane and 3-space have received great attention, and feature many interesting
results and open questions; however, very few of them involve exact enumeration in a meaningful
way. Instead, we will focus on the discrete geometry of higher dimensions, where:

• studying “general” geometric configurations leads to interesting enumerative questions, and

• we have enough room to construct “special” geometric configurations that model various combi-
natorial structures of interest.

This second part is divided into three chapters on closely interrelated topics. In Section 5 we
discuss polytopes, which are the higher dimensional generalization of polygons. Section 6 discusses
arrangements of hyperplanes in a vector space. Finally Section 7 is devoted to matroids, which are
combinatorial objects that simultaneously abstract arrangements of vectors, graphs, and matching
problems, among others.

5 Polytopes

The theory of polytopes is a vast area of study, with deep connections to pure (algebraic geometry,
commutative algebra, representation theory) and applied mathematics (optimization). Again, we
focus on aspects related to enumeration. For a general introduction to polytopes, see [Grü03, Zie95].

After discussing the basic definitions and facts in Section 5.1 and some important examples in
Section 5.2, we turn to enumerative questions. Section 5.3 is devoted to the enumeration of faces
of various dimensions. Section 5.4 is on Ehrhart theory, which measures polytopes by counting the
lattice points that they (and their dilations) contain.

5.1 Basic definitions and constructions

Recall that a set S in Euclidean space Rd is convex if for every pair of points u, v in S, the line
segment uv is in S. The convex hull conv(S) of a set S ⊆ Rd is the minimal convex set containing
S. If S = {v1, . . . ,vn} then

conv{v1, . . . ,vn} = {λ1v1 + · · ·+ λnvn : λ1, . . . , λn ≥ 0, λ1 + · · ·+ λn = 1}
= intersection of all convex sets containing v1, . . . ,vn.

We will only be interested in convex polytopes, and when we talk about polytopes, it will be
assumed that they are convex.

A hyperplane H in Euclidean space Rd is an affine subspace of dimension d− 1; it is given by
a linear equation

H = {x ∈ Rd : a · x = b} for some a ∈ Rd − {0} and b ∈ R.

It separates Rd into the two halfspaces given by the inequalities a ·x ≤ b and a ·x ≥ b, respectively.
There are two equivalent ways of defining convex polytopes: the V-description gives a polytope

in terms of its vertices, and the H-description gives it in terms of its defining inequalities.
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The V-description. A convex polytope P is the convex hull of finitely many points v1, . . . ,vn
in a Euclidean space Rd:

P = conv{v1, . . . ,vn}

The H-description. A convex polytope P is a bounded intersection of finitely many halfspaces
in a Euclidean space Rd:

P =
{

x ∈ Rd : a1 · x ≤ b1, . . . ,am · x ≤ bm
}

=
{
x ∈ Rd : Ax ≤ b

}
where a1, . . . ,am ∈ Rd and b1, . . . , bm ∈ R. In the second expression we think of x as a column
vector, A is the m×d matrix with rows a1, . . .am and b is the column vector with entries b1, . . . , bm.

Theorem 5.1.1. A subset P ⊆ Rd is the convex hull of a finite set of points if and only if it is a
bounded intersection of finitely many halfspaces.

For theoretical and practical purposes, it is useful to have both the V-description and the
H-description of a polytope. For example, it is clear from the H-description (but not at all from
the V-description) that the intersection of two polytopes is a polytope, and it is clear from the
V-description (but not at all from the H-description) that a projection of a polytope is a polytope.
It is a nontrivial task to translate one description into the other; see [Zie95, Notes to Chapter 1]
for a discussion and references on this problem. Here are some simple examples.

Example 5.1.2. The standard simplex ∆d−1, the cube �d, and the crosspolytope ♦d are:

1. ∆d−1 = conv{e1, . . . , ed}
= {x ∈ Rd : x1 + · · ·xd = 1 and xi ≥ 0 for i = 1, . . . , d},

2. �d = conv{±e1 ± · · · ± ed for any choice of signs}
= {x ∈ Rd : −1 ≤ xi ≤ 1 for i = 1, . . . , d},

3. ♦d = conv{−e1, e1, . . . ,−ed, ed}
= {x ∈ Rd : ±x1 ± · · · ± xd ≤ 1 for any choice of signs},

respectively, where e1, . . . , ed are the standard basis in Rd. These polytopes are illustrated in Figure
5.1 for d = 3.

Figure 5.1: The triangle ∆2, the cube �3, and the octahedron ♦3.
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The dimension of a polytope P is the dimension of the affine subspace spanned by P :

aff(P ) =
{
λ1v1 + · · ·+ λkvk : v1, . . . ,vk ∈ Rd, λ1, . . . , λk ∈ R, λ1 + · · ·+ λk = 0

}
.

For example, even though ∆d−1 lives in Rd, its dimension is d− 1 because it lies on the hyperplane
x1 + · · ·+ xd = 1.

The interior int(P ) of a polytope P ⊆ Rd is the topological interior of P . It is often more
useful to consider the relative interior relint(P ), which is its topological interior as a subset of
the affine space aff(P ).

Polar polytopes. The similarity of our descriptions of �d and ♦d is a manifestation of a general
notion of duality between V-descriptions and H-descriptions of polytopes.

Let P be a polytope in Rd such that 0 ∈ int(P ).9 The polar polytope P4 of P is

P4 =
{

a ∈ Rd : a · x ≤ 1 for all x ∈ P
}
.

If P has vertices v1, . . .vn and facets a1 · x ≤ 1, . . . ,am · x ≤ 1 (and hence contains 0), then the
polar P4 has vertices a1, . . .am and facets v1 · x ≤ 1, . . . ,vn · x ≤ 1. It follows that if 0 ∈ P , then

(P4)4 = P.

Faces. For each vector a ∈ Rd, let

Pa = {x ∈ P : a · x ≥ a · y for all y ∈ P}

be the subset of P where the linear function a · x is maximized. Such a set is called a face of P .
It is customary to allow the empty set to be a face of P as well. If dim(P ) = d, then the faces
of dimension 1, 2, d− 2, d− 1 are called vertices, edges, ridges, and facets, respectively. We let
V (P ) be the set of vertices of P . Faces other than P are called proper faces. We collect a few
basic facts about faces:

• A polytope is the convex hull of its vertices: P = conv(V (P )).
• A polytope is the intersection of the halfspaces determined by its facets.
• The vertices of a face F of P are the vertices of P contained in F : V (F ) = V (P ) ∩ F .
• A face F of P equals the intersection of the facets of P containing F .
• If F is a face of P , then any face of F is a face of P .
• The intersection of two faces of P is a face of P .
• A polytope is the disjoint union of the relative interiors of its faces: P =

⋃
F face

relint(F ).

The face lattice. The face lattice L(P ) is the poset of faces of P , ordered by containment. It is
indeed a lattice with F∧G = F∩G and F∨G = aff(F∪G)∩P . It is graded with rk(F ) = dimF+1.
We say that polytopes P and Q are combinatorially isomorphic if L(P ) ∼= L(Q). We collect
some basic properties of face lattices:

• For each face F of P , the interval [0̂, F ] of L(P ) is isomorphic to the face lattice of F .
• For each face F of P , the interval [F, 1̂] of L(P ) is isomorphic to the face lattice of a polytope,

called the face figure P/F of F .

9We can apply an affine transformation to any full-dimensional polytope to make its interior contain the origin.
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• Every interval [F,G] of L(P ) is isomorphic to the face lattice of some polytope.
• The face lattice L(P4) of the polar polytope P4 is isomorphic to the opposite poset L(P )op,

obtained by reversing the order relations of L(P ).

There are different constructions of the face figure P/F , giving rise to combinatorially isomor-
phic polytopes. We discuss one such construction. Let F♦ be the face of P4 corresponding to the
face F of P under the isomorphism L(P4) ∼= L(P )op. Then we can define the face figure to be
the polar polytope of F♦; that is, P/F = (F♦)4. When F = v is a vertex, there is a more direct
construction: let P/v = P ∩H, where H is a hyperplane separating v from all other vertices of P .

We say a d-polytope P is simplicial if every face is a simplex. We say P is simple if every vertex
is on exactly d facets (or, equivalently, on d edges). Note that the convex hull of generically chosen
points is a simplicial polytope. Similarly, a bounded intersection of generically chosen half-spaces
is a simple polytope. Also note that P is simplicial if and only if its polar P♦ is simple.

Triangulations and subdivisions. In many contexts, it is useful to subdivide a polytope into simpler
polytopes (most often simplices). It is most convenient to do it in such a way that the pieces of
the subdivision meet face to face:

A subdivision of a polytope P is a finite collection T of polytopes such that
• P is the union of the polytopes in T ,
• if P ∈ T then every face of P is in T , and
• if P,Q ∈ T then P ∩Q ∈ T .

The elements of T are called the faces of T ; the full-dimensional ones are called facets. If all the
faces are simplices, then T is called a triangulation of P .

In some situations, it is useful to assume that a subdivision does not introduce new vertices;
that is, that the only points in T are the vertices of P . We will assume that throughout the rest
of this chapter.

Theorem 5.1.3. Every convex polytope has a triangulation.

Sketch of Proof. Let V be the set of vertices of our polytope P ∈ Rd. For each height function
h : V → R consider the set of lifted points P h = {(v, h(v)), v ∈ V } in Rd+1. Let Q be the convex
hull of P h, and consider the set F of “lower facets” of Q that are visible from below, that is, the
facets maximizing some linear function a · x with ad+1 = −1. For each such facet F , let π(F )
be its projection back down to Rd. One may check that {π(F ) : F is a lower facet of Q} is a
subdivision of P . If the height function is chosen generically, then this subdivision is actually a
triangulation.

The subdivisions that may be obtained from the lifting construction above are called regular
or coherent. In general, not every subdivision is regular, and the question of distinguishing regular
and non-regular triangulations is subtle. In the simplest case, when P is a convex polygon, every
subdivision is regular, and the number of subdivisions is a Catalan number, as we saw in Example
14b. of Section 2.2.2. Few other exact enumerative results of this sort are known.

In any case, regular subdivisions are of great importance for several reasons. One reason is
that they are easy to define and construct; for example, choosing the heights h(v) = v2

1 + · · · v2
d

leads to the Delaunay triangulation, which is very easy to compute and has several desirable
properties. Secondly, they have a very elegant structure. Every polytope P gives rise to a sec-
ondary polytope, whose faces are in bijection with the regular subdivisions of P ; and faces F
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Figure 5.2: A regular subdivision of a hexagon.

and G satisfy that F ⊂ G if and only if the subdivision of F refines the subdivision of G. Thirdly,
they are widely applicable, in particular, because they play a key role in the theory of Gröbner
bases in commutative algebra. For our enumerative purposes the regularity question will not be
too important. For readers interested in this and other aspects of triangulations, we recommend
[DLRS10, GKZ08, Stu96].

5.2 Examples

The following polytopes have particularly nice enumerative properties. We give references to some
revelant results at the end of Section 5.4.

1. (Product of two simplices) ∆c−1 ×∆d−1 = conv{(ei, fj) : 1 ≤ i ≤ c, 1 ≤ j ≤ d} in Rc × Rd
where {e1, . . . , ec} and {f1, . . . , fd} are the standard bases for Rc and Rd, respectively.

2. (Hypersimplex) ∆(r, d) = conv{ei1 + · · ·+ eir : 1 ≤ i1 < · · · < ir ≤ d} in Rd.

3. (Permutahedron) Πd−1 = conv{(a1, . . . , ad) : {a1, . . . , ad} is a permutation of [d]}.

4. (Zonotopes) The zonotope of a vector configuration A = {a1, . . . ,ak} ⊂ Rd is the Minkowski
sum Z(A) = [0,a1] + · · · + [0,ak] := {λ1a1 + · · · + λkak : 0 ≤ λ1, . . . , λk ≤ 1}. The
permutahedron Πd−1 is the zonotope of the root system {ei − ej : 1 ≤ i < j ≤ d}.

5. (Cyclic polytope) Cd(m) = conv{(1, ti, t2i , . . . , t
d−1
i ) | 1 ≤ i ≤ m} for t1 < · · · < tm.

6. (Order polytope of a poset P ) O(P ) = {x ∈ RP : xi ≥ 0 for all i and xi ≤ xj if i < j in P}.

7. (Chain polytope of a poset P ) C(P ) = {x ∈ RP : xi ≥ 0 for all i and xi1 + · · ·+ xik ≤ 1
for each chain i1 < · · · < ik in P}.

8. (Type A root polytope) Ad−1 = conv{ei − ej : 1 ≤ i 6= j ≤ d} in Rd.

9. (Type A positive root polytope) A+
d−1 = conv{ei − ej : 1 ≤ i < j ≤ d} in Rd.

10. (Flow polytope) Given a directed graph G = (V,E) and a vector b ∈ RV , the flow polytope
is FG(b) = {f ∈ RE : fe ≥ 0 for all e ∈ E and

∑
vw∈E fvw −

∑
uv∈E fuv = bv for all v ∈ V }.

We think of fe as a flow on edge e, so that the excess flow or leak at each vertex v equals bv.
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11. (CRY polytope) CRYn = FKn+1(1, 0, . . . , 0,−1) where Kn+1 is the complete graph on [n+ 1]
with edges directed i→ j for i < j.

12. (Associahedron) Assocd−1 is a polytope whose faces are in bijection with the ways of subdi-
viding a convex (d+ 3)-gon into polygons without introducing new vertices. Faces F and G
satisfy that F ⊂ G if and only if the subdivision of F refines the subdivision of G. There are
several different polytopal realizations of Assocd−1; see [CSZ11] for a survey.

13. (Matroid polytope) If M = {v1, . . . , vd} is a set of vectors spanning a vector space kr, the
matroid (basis) polytope is PM = conv{ei1 + · · ·+ eir : {vi1 , . . . , vir} is a basis of kr} in Rd.
When M is generic we get PM = ∆(r, d). This construction is better understood in the
context of matroids; see Section 7.

14. (Generalized permutahedra / polymatroids) Many interesting polytopes are deformations of
the permutahedron, obtained by moving the vertices of Πd−1 while respecting all the edge
directions. Examples include the polytopes ∆d−1,∆e−1×∆d−e−1,∆(r, d), Ad−1, PM ,Assocd−1

above. Such polytopes are called polymatroid base polytopes or generalized permutahedra; see
[Fuj05, Pos09].

Many of these polytopes are related to the permutation group Sd and the corresponding type
A root system conv{ei − ej : 1 ≤ i 6= j ≤ d}. Many have generalizations to the wider context of
finite Coxeter groups and root systems; see for example [ABH+11, BGW03, FR07, FH91, MM12]
and the references therein.

The faces of most of these polytopes can be described combinatorially. This should help us
appreciate these polytopes, because there are not many interesting families of polytopes for which
we can do this. We describe the most interesting ones.

3. (Permutahedron) The H-description of Πd−1 is

x1 + · · ·+ xd = d(d+ 1)/2, xi1 + · · ·+ xik ≥ k(k + 1)/2 for ∅ ( {i1, . . . , ik} ( [d]

There is a bijection S ↔ FS between the ordered set partitions of [d] and the faces of the
permutahedron Πd−1.

4. (Zonotope) The face enumeration of Z(A) is the subject of the upcoming Theorem 6.5.2.

5. (Cyclic polytope) Let ti = (1, ti, . . . , t
d−1
i ). The facets of the cyclic polytope Cd(m) are the

simplices conv{ts : s ∈ S} for the d-subsets S ⊆ [m] satisfying Gale’s evenness condition:
between any i < j not in S there is an even number of elements of S. There is a similar
description for all faces of the cyclic polytope. In particular, the combinatorics of Cd(m) is
independent of t1, . . . , tm. Two other remarkable facts are the following.

• Every subset of at most d/2 vertices forms a face of Cd(m).

• (McMullen’s Upper Bound Theorem [MS71]) Among all d-polytopes with m vertices, Cd(m)
maximizes the number of faces of dimension k for all 2 ≤ k ≤ d− 1.

The rich theory of positroids can be seen as a generalization of the study of cyclic polytopes;
see Section 7 and [ARW13a, Pos06] for this connection.
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6. (Order polytope) The vertices of O(P ) are
∑

i/∈I ei for the order ideals I ⊆ P .

7. (Chain polytope) The vertices of C(P ) are
∑

i∈A ei for the antichains A ⊆ P .

13. (Matroid polytope) The matroid polytope is cut out (non-minimally) by the inequalities∑
e∈E

xe = r(E),
∑
e∈S

xe ≤ r(S) for E ⊂ S.

The facets are characterized in [FS05].

14. (Generalized permutahedra) There are several interesting result on various classes of gener-
alized permutahedra; see [PRW08].

5.3 Counting faces

The f-vector of a d-polytope P is

fP = (f0, f1, . . . , fd−1, fd)

where fi is the number of (i − 1)-dimensional faces of P for 0 ≤ i ≤ d.10 The problem of char-
acterizing the f -vectors of various kinds of polytopes (or more general polyhedral complexes) is
a central one in combinatorics. We offer a very brief discussion; for more detailed accounts, see
[BB97, MN13, Zie95]. A one sentence summary is this: we completely understand the f -vectors of
simplicial (or equivalently, of simple) polytopes, but we are far from understanding the f -vectors
of general polytopes. There are many interesting results and (mostly) open questions in between.

f-vectors. The most important result about f -vectors of arbitrary polytopes is the following.

Theorem 5.3.1. [MS71] (McMullen’s Upper Bound Theorem) For any polytope P of dimension d
with m vertices, we have

fi(P ) ≤ fi(Cd(m)) for i = 0, 1, . . . , d− 1,

where Cd(m) is the cyclic polytope.

h-vectors. If P is a simplicial d-polytope (or more generally, any simplicial complex of dimension
d− 1), we define the h-vector hP = (h0, h1, . . . , hd) by the equivalent equations:

h0x
d + h1x

d−1 + · · ·+ hdx
0 = f0(x− 1)d + f1(x− 1)d−1 + · · ·+ fd(x− 1)0, or

hi =

i∑
j=0

(−1)i−j
(
d− j
i− j

)
fj and fi =

i∑
j=0

(
d− j
i− j

)
hj for 0 ≤ i ≤ d.

The h-vector is a more economical way of storing the f -vector, due to the Dehn-Sommerville
relations: hi = hd−i for 0 ≤ i ≤ d.

In fact, the g-theorem characterizes completely the f -vectors of simplicial polytopes [BL81,
Sta80c]! This spectacular result (which McMullen conjectured, and described as “even more in-
triguing, if rather less plausible” [MS71]) is one of the most important achievements of algebraic
and geometric combinatorics to date. To state it, we need some definitions.

10Note that we include the empty face and omit the full-dimensional face P in this enumeration.
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We say a sequence of nonnegative integers (m0,m1, . . . ,md) is an M-sequence if there exists
a set S of monomials in x1, . . . , xn, containing exactly mi monomials of degree i for i = 0, 1, . . . , d,
such that m′ ∈ S and m|m′ implies m ∈ S. Stanley gave a numerical characterization, as follows.

For any positive integers a and i, there is a unique representation a =
(
ai
i

)
+
(ai−1
i−1

)
+ · · ·+

(aj
j

)
for some ai > ai−1 > · · · > aj ≥ j ≥ 1. We then define a〈i〉 =

(
ai
i+1

)
+
(ai−1

i

)
+ · · · +

( aj
j+1

)
. Then

(m0,m1, . . . ,md) is an M-sequence if and only if m0 = 1 and mi+1 ≤ m〈i〉i for i = 1, 2, . . . , d− 1.

Theorem 5.3.2. [BL81, Sta80c] (Billera-Lee-Stanley’s g-theorem) A sequence (h0, . . . , hd) of pos-
itive integers is the h-vector of a simplicial d-polytope if and only if

1. hi = hd−i for i = 0, 1, . . . , bd/2c (Dehn-Somerville equations), and

2. (g0, g1, . . . , gbd/2c) is an M -sequence, where g0 = h0 and gi = hi − hi−1 for 1 ≤ i ≤ bd/2c.

For general polytopes, the situation is much less clear, even in dimension 4, a case which has
been studied extensively. [Zie02] Stanley [Sta87] defined a more subtle toric h-vector. It coincides
with the h-vector when P is simplicial, and it also satisfies the Dehn-Sommerville equations. His
definition may be seen as a combinatorial formula for the dimensions of the intersection cohomology
groups of the corresponding projective toric variety (if P is a rational polytope). In a different
direction, for “cubical” polytopes P whose proper faces are all cubes, Adin [Adi96] defined the
cubical h-vector, which also satisfies the Dehn-Sommerville relations. Characterizing these toric
and cubical h-vectors is an important open problem.

Flag f-vectors and h-vectors. The flag f -vector (fD)D⊆[0,d−1] of a d-polytope enumerates the flags
F1 ⊂ · · · ⊂ Fk of given dimensions D = {d1 < · · · < dk} for all D ⊆ [0, d− 1]. As we described in
Section 4.8 (in the wider context of Eulerian posets), this information can be more economically
stored in the cd-index of P . This encoding incorporates all linear relations among the flag f -vector.

As we saw in Theorem 4.8.2, the cd-index of a polytope P is non-negative; this is not true for
general Eulerian posets. Another very interesting question, which is wide open, is to classify the
cd-indices of polytopes.

5.4 Counting lattice points: Ehrhart theory

In this section we are interested in “measuring” a polytope P by counting the lattice points in
its integer dilations P, 2P, 3P, . . .. We limit our attention to lattice polytopes, whose vertices
are lattice points, and to rational polytopes, whose vertices have rational coordinates; at the
moment there is no good theory for general polytopes.

Theorem 5.4.1. Let P ⊂ Rd be a lattice polytope. There are polynomials LP (x) and LP o(x) of
degree dimP , called the Ehrhart polynomial and interior Ehrhart polynomial of P , such that

1. the number of lattice points in the nth dilation of P and its interior P o are

LP (n) = |nP ∩ Zd| LP o(n) = |nP o ∩ Zd| for all n ∈ N.

2. the Ehrhart reciprocity law holds:

(−1)dimPLP (−x) = LP o(x).
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Note. If P is a rational polytope, then LP (n) is instead given by a quasipolynomial; that is,
there exist an integer m and polynomials L1(x), . . . , Lm(x) such that |nP ∩ Zd| = Lk(n) whenever
n ≡ k (mod m).

Sketch of Proof of Theorem 5.4.1. By working in one dimension higher, we can consider the various
dilations of P all at once. We embed Rd into Rd+1 by mapping v to (v, 1), and consider the cone

cone(P ) = {λ1(v1, 1) + · · ·+ λn(vn, 1) : λ1, . . . , λn ≥ 0}

Figure 5.3: The cone of a polytope and its slices at height 0, 1, 2, 3.

Then for each n ∈ N, the slice xd+1 = n of cone(P ) is a copy of the dilation nP , as shown in Figure
5.3. Two key ingredients of the proof will be the lattice point enumerator of cone(P ) and the
Ehrhart series of P :

σcone(P )(z) =
∑

p∈cone(P )

zp, EhrP (z) =
∑
n≥0

LP (n)zn = σcone(P )(1, . . . , 1, z), (24)

where zp = zp11 · · · z
pd+1

d+1 .
We first prove the theorem for simplices, and then use triangulations to prove the general case.

Step 1. (Simplices) First we prove the result when P is a simplex, which we may assume is full-
dimensional. In this case cone(P ) is an orthant generated by d + 1 linearly independent vectors
w1, . . . ,wd+1, where wi = (vi, 1).

1. Define the lower and upper fundamental (half-open) parallelepipeds

Π = {λ1w1 + · · ·+ λd+1wd+1 : 0 ≤ λ1, . . . , λd+1 < 1}
Π+ = {λ1w1 + · · ·+ λd+1wd+1 : 0 < λ1, . . . , λd+1 ≤ 1}.

Then cone(P ) is tiled by the various non-negative w-integer translates of Π, namely, the par-
allelepipeds Π + k1w1 + · · · + kd+1wd+1 for k = (k1, . . . , kd+1) ∈ Nd+1. Similarly, the interior
int(cone(P )) is tiled by the various non-negative w-integer translates of Π+. Therefore

σcone(P )(z) = σΠ(z)

(
1

1− zw1

)
· · ·
(

1

1− zwd+1

)
σint(cone(P ))(z) = σΠ+(z)

(
1

1− zw1

)
· · ·
(

1

1− zwd+1

)
.
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Using (24) we get

EhrP (z) =
σΠ(1, . . . , 1, z)

(1− z)d+1
, EhrP o(z) =

σΠ+(1, . . . , 1, z)

(1− z)d+1
,

which are rational functions. Then, by Theorem 2.4.2, LP (n) and LP o(n) are polynomial functions
of n of degree d, as desired.

2. Now observe that σΠ+(z) = zw1+···+wd+1σΠ(1/z1, . . . , 1/zd+1), because Π+ is the translation
of −Π by the vector w1 + · · ·+ wd+1. This gives

EhrP o(z) + (−1)dEhrP (1/z) = 0.

It remains to invoke the fact that if f is a polynomial, then F+(z) =
∑

n≥0 f(n)zn (which is a
rational function of z) and F−(z) =

∑
n<0 f(n)zn (which is a rational function of 1/z, and hence of

z) satisfy F+(z) + F−(z) = 0 as rational functions. This implies that (−1)dimPLP (−n) = LP o(n)
for every positive integer n, and hence these two polynomials are equal.

Step 2. (The general case) Now let P be a general lattice polytope, and let T be a triangulation
of P . Recall that T o is the set of non-boundary faces of T .

1. We have
LP (n) =

∑
F∈T

LF o(n), LP o(n) =
∑
F∈T o

LF o(n)

which implies that LP and LP o are polynomials of degree dimP , by Step 1.

2. Let T̂ be the face poset of T , with an additional maximum element 1̂. We have the Möbius
dual relations

LF =
∑
G≤F

LGo , LF o =
∑
G≤F

µ(G,F )LG for all F ∈ T

omitting the arguments of the polynomials in question. This gives us

LP =
∑
F∈T

LF o =
∑
F∈T

∑
G≤F

µ(G,F )LG =
∑
G∈T
−µ(G, 1̂)LG =

∑
G∈T o

(−1)dimP−dimGLG.

where in the last step we are invoking Theorem 4.5.1.11. Now, using that the simplices G ∈ T o
satisfy Ehrhart reciprocity: we obtain

LP (−n) =
∑
G∈T o

(−1)dimP−dimGLG(−n) = (−1)dimP
∑
G∈T o

LGo(n) = (−1)dimPLP o(n),

as desired.

Next we observe that the volume of a lattice polytope can be recovered from its Ehrhart poly-
nomial. If dimP < d, there is a small subtlety: Let V be the affine span of P , and Λ = V ∪ Zd.
Then we need to normalize the volumes along V , so that any “unit” cube, generated by a Z-basis
of Λ, has normalized volume 1. We let vol(P ) denote the normalized volume or lattice volume
of P . When P is full-dimensional, this is the usual volume.

For example, the segment from (1, 1) to (4, 7) has normalized volume (lattice length) 3, because
in this case the lattice Λ is generated by the primitive vector (1, 2), and (4, 7)− (1, 1) = 3(1, 2).
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Proposition 5.4.2. If LP (t) = cdt
d + · · ·+ c1t+ c0 is the Ehrhart polynomial of a lattice polytope

P , then cd = vol(P ) and c0 = 1.

Sketch of Proof. We obtain better and better approximations of the volume of P by choosing finer
and finer grids ( 1

nZ)d, and placing a cube of volume 1
nd

centered at each lattice point in P ∩ ( 1
nZ)d.

Therefore

vol(P ) = lim
n→∞

1

nd

∣∣∣∣∣P ∩
(

1

n
Z
)d∣∣∣∣∣ = lim

n→∞

1

nd

∣∣∣nP ∩ Zd∣∣∣ = lim
n→∞

LP (n)

nd
= cd

Since the only lattice point in 0P is the origin, c0 = LP (0) = 1.

A lattice simplex S in Rd with vertices v1, . . . ,vk is unimodular if the vectors v2−v1, . . . ,vd−
v1 are a lattice basis for the lattice aff S ∩ Zd. A triangulation is unimodular if all its simplices
are unimodular. The following result shows that unimodular triangulations are particularly useful
for enumerative purposes.

Proposition 5.4.3. 1. For every lattice polytope P ⊂ Rd the Ehrhart h∗-polynomial h∗P (x) =
h∗0 + h∗1x+ · · ·+ h∗dx

d, which is defined by

EhrP (z) =
h∗P (z)

(1− z)d+1

has nonnegative coefficients: h∗k ≥ 0 for all k.
2. If P has a unimodular triangulation T , then

h∗P (z) = hT (z),

where the h-polynomial is the generating function hT (z) = h0 + h1z + · · ·+ hdz
d for the h-vector

(h0, . . . , hd) of T , as defined in Section 5.3.

Proof. 1. is due to Stanley [Sta80b]; for a short proof see [BR07, Theorem 3.12]. For 2., we have

EhrP (z) =
∑
F∈T

EhrF o(z) =
∑
F∈T

σΠ+
F (1,...,1,z)

(1− z)dimF+1

where Π+(F ) is the upper fundamental parallelepiped of F . Since F is unimodular, the only lattice
point in Π+

F is the sum of its generators, which is at height dimF + 1, so

EhrP (z) =
∑
F∈T

(
z

1− z

)dimF+1

=

d+1∑
k=0

fk

(
z

1− z

)k
=

∑d+1
k=0 hkz

k

(1− z)d+1

as desired.

Examples. The following polytopes have particularly nice Ehrhart polynomials and Ehrhart series.

1. (Polygon) P a lattice polygon in R2:

LP (n) =

(
I +

B

2
− 1

)
n2 +

B

2
n+ 1, EhrP (z) =

Iz2 + (I +B − 3)z + 1

(1− z)3
,

where P contains I lattice points in its interior and B lattice points on its boundary. This is
equivalent to Pick’s formula for the area of a lattice polygon.
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2. (Simplex) ∆d−1:

L∆d−1
(n) =

(
n+ d− 1

d− 1

)
, Ehr∆d−1

(z) =
1

(1− z)d
.

3. (Cube) �d:

L�d(n) = (n+ 1)d, Ehr�d(z) =

∑d
k=0A(d, k)zk

(1− z)d+1
,

where the Eulerian number A(d, k) is the number of permutations π of [d] with k − 1
descents; that is, positions i with π(i) > π(i+ 1).

4. (Crosspolytope) ♦d:

L♦d(n) =
d∑

k=0

2k
(
d

k

)(
n

k

)
, Ehr♦d(z) =

(1 + z)d

(1− z)d+1
.

5. (Product of two simplices) P = ∆c−1 ×∆d−1:

LP (n) =

(
n+ c− 1

c− 1

)(
n+ d− 1

d− 1

)
, EhrP (z) =

∑min(c−1,d−1)
k=0

(
c−1
k

)(
d−1
k

)
zk

(1− z)c+d−1
.

Every triangulation of ∆c−1 × ∆d−1 is unimodular, with h-vector given by the h∗-vector
above. These triangulations are very interesting combinatorially, and play an important role
in tropical geometry and other contexts; see [AB07, AD09, DS04, San05] and the references
therein.

6. (Hypersimplex) ∆(r, d):

L∆(r,d)(n) = [zrn]

(
1− zn+1

1− z

)d
, vol(∆r,d) =

A(d− 1, r)

(d− 1)!

where, again, A(d − 1, r) denotes the Eulerian numbers. No simple formula is known for
the Ehrhart series of ∆(r, d). There is a nice formula for the “half-open hypersimplex”; see
[HLO13]. An elegant triangulation of ∆(r, d) was given (using four different descriptions) by
Lam-Postnikov, Stanley, Sturmfels, and Ziegler; see [LP07].

7. (Permutahedron) P = Πd−1:

LΠd−1
(n) =

d−1∑
i=0

fin
i, vol(Πd−1) = dd−2

where fi is the number of forests on [d] with i vertices. [Sta91]

8. (Zonotope) P = Z(A):

LZ(A)(n) = nrM

(
1 +

1

n
, 1

)
where r is the rank of A and M(x, y) is the arithmetic Tutte polynomial of Section 7.9. [Sta91]
This polynomial is difficult to compute in general; when A is a root system, explicit formulas
are given in [ACH14].
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9. (Cyclic polytope) P = Cd(t1, . . . , tm):

LP (n) =
d∑

k=0

volCk(t1, . . . , tm)nk.

See [Liu05]. The triangulations of the cyclic polytope are unusually well behaved; see
[DLRS10, Ram97] and the references therein. In particular, when m = d + 4, this is one
of the few polytopes whose triangulations have been enumerated exactly (and non-trivially)
[AS02].

10. (Order polytope and chain polytope): O(P ), C(P ):

LO(P ) = LC(P ) = ΩP (n+ 1), vol(O(P )) = vol(C(P )) = e(P )/|P |!,

where ΩP is the order polynomial of P and e(P ) is the number of linear extensions, as dis-
cussed in Section 4.3. [Sta86] Remarkably, O(P ) and C(P ) have the same Ehrhart polynomial,
even though they are not metrically equivalent in general. There is a nice characterization of
the posets P such that O(P ) and C(P ) may be obtained from one another by a unimodular
change of basis [HL12].

11. (Root polytope): Ad−1:

EhrAd(z) =

∑d
k=0

(
d
k

)2
zk

(1− x)d
, vol(Ad) =

(
2d
d

)
d!

.

There are similar formulas for the other classical root polytopes Bd, Cd, Dd, as well as for the
positive root polytopes. For example, vol(A+

d ) = Cd/d! where Cd is the dth Catalan number.
Explicit unimodular triangulations were constructed in [ABH+11].

12. (CRY polytope / Flow polytope) CRYn = FKn+1(1, 0, . . . , 0,−1):

vol(CRYn) = C0C1C2 · · ·Cn−2,

a product of Catalan numbers. [Zei99]. No combinatorial proof of this fact is known. Flow
polytopes are of great importance due to their close connection with the Kostant partition
function, which Gelfand described as “the transcendental element which accounts for many
of the subtleties of the Cartan-Weyl theory” of representations of semisimple Lie algebras.
[Ret13]. There are many other interesting combinatorial results; see for example [BV08,
MM12]

13. (Matroid polytopes) A combinatorial formula for the volume of a matroid polytope is given
in [ABD10].

14. (Generalized permutahedra / polymatroids) There are many interesting results about the
volumes and lattice points of various families of generalized permutahedra; see [Pos09].

15. (Cayley polytope) Cn = {x ∈ Rn : 1 ≤ x1 ≤ 2 and 1 ≤ xi ≤ 2xi−1 for 2 ≤ i ≤ n}:

vol(Cn) =
cn+1

n!

where cn is the number of connected graphs on [n]. The related Tutte polytope has volume
given by an evaluation of the Tutte polynomial (see Section 7.6) of the complete graph. [KP13]
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6 Hyperplane arrangements

We now discuss arrangements of hyperplanes in a vector space. The questions that we ask depend
on whether the underlying field is R,C, or a finite field Fq; but in every case, the underlying
combinatorics plays an important role. The presentation of this section is heavily influenced by
[Sta07]. See [OT92] for a great introduction to more algebraic and topological aspects of the theory
of hyperplane arrangements.

After developing the basics in Section 6.1, in Section 6.2 we introduce the characteristic poly-
nomial, which plays a crucial role in this theory. In Section 6.3 we discuss some of its important
properties, and in Section 6.4 we develop several techniques for computing it. We illustrate these
techniques by computing the characteristic polynomials of many arrangements of interest. Finally,
in Section 6.5, we give a remarkable formula for the cd-index of an arrangement, which enumerates
the flags of faces of given dimensions.

6.1 Basic definitions

Let k be a field and V = k
d. A hyperplane arrangement A = {H1, . . . ,Hn} is a collection of

affine hyperplanes in V , say,
Hi = {x ∈ V : vi · x = bi}

for nonzero normal vectors v1, . . . , vn ∈ V and constants b1, . . . , bn ∈ k. We say A is central if all
hyperplanes have a common point – in the most natural examples, the origin is a common point.
Figure 6.1 shows a central arrangement of 4 hyperplanes in R3.
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Figure 6.1: An arrangement.

In some ways, central arrangements are slightly better behaved than affine arrangements. We
can centralize an affine arrangement A in kn to obtain the cone of A, an arrangement cA in kn+1,
by turning the hyperplane a1x1+· · ·+anxn = a in kn into the hyperplane a1x1+· · ·+anxn = axn+1

in k
n+1, and adding the hyperplane xn+1 = 0
Sometimes arrangements are “too central”, in the sense that their intersection is a subspace

L of positive dimension. In that case, there is little harm in intersecting our arrangement with
the orthogonal complement L⊥. We define the essentialization of A to be the arrangement
ess(A) = {H∩L⊥ : H ∈ A} in L⊥. The result is an essential arrangement, where the intersection
of the hyperplanes is the origin. In most problems of interest, there is no important difference
between A and ess(A).

93



A key object is the complement

V (A) = V \

( ⋃
H∈A

H

)
.

and we now introduce a polynomial which is a fundamental tool in the study of V (A).

6.2 The characteristic polynomial.

There is a combinatorial polynomial which knows a tremendous amount about the complement
V (A) of an arrangement A. The kinds of questions that we ask about V (A) depend on the
underlying field.

• If k = R then every hyperplane vi ·x = bi divides V into two half-spaces, where vi ·x < bi and
vi · x > bi, respectively. Therefore an arrangement A divides Rd into a(A) regions, which are the
connected components of the complement Rd\A. Let b(A) be the number of those regions which
are bounded.11 A central question about real hyperplane arrangements is to compute the numbers
a(A) and b(A) of regions and bounded regions.
• If k = C, then it is possible to walk around a hyperplane without crossing it; this produces a

loop in the complement V (A). Therefore V (A) has nontrivial topology, and it is natural to ask for
its Betti numbers.
• If k = Fq is a finite field, where q is a prime power, then V (A) is a finite set, and the simplest

question we can ask is how many points it contains.
Amazingly, the characteristic polynomial χA(q) can answer these questions immediately.

Let us define it.

Define a flat of A to be an affine subspace obtained as an intersection of hyperplanes in A. The
intersection poset LA is the set of flats partially ordered by reverse inclusion. If A is central,
then LA is a geometric lattice, as discussed in Section 4.2. If A is not central, then LA is only a
geometric meet semilattice [WW86]. The rank r = r(A) of A is the height of LA.

The characteristic polynomial of A is

χA(q) =
∑
F∈LA

µ(0̂, F )qdimF .

Figure 6.2 shows the intersection poset of the arrangement A in Figure 6.1; its characteristic
polynomial χA(q) = q3 − 4q2 + 5q − 2 is easily computed by adding the Möbius numbers on each
level of LA.

The reader may wish to compute some examples, such as the characteristic polynomial of an
arrangement of lines in R2, or the arrangement of n coordinate hyperplanes in k

n. We will see
some general techniques to compute characteristic polynomials in Section 6.4.

Theorem 6.2.1. The characteristic polynomial χA(x) contains the following information about
the complement V (A) of a hyperplane arrangement A.

11If A is not essential, we let b(A) be the number of relatively bounded regions. These are the regions which
become bounded in the essentialization ess(A).
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Figure 6.2: The intersection poset of A.

1. (k = R) [Zas75] Let A(A) be a real hyperplane arrangement in Rn. The number of regions
and relatively bounded regions of the complement V (A) are

a(A) = (−1)nχA(−1), b(A) = (−1)r(A)χA(1).

2. (k = C) [GM88, OS80] Let A(A) be a complex hyperplane arrangement in Cn. The comple-
ment V (A) has Poincaré polynomial∑

k≥0

rankHk(V (A),Z)qk = (−q)nχA
(
−1

q

)
.

3. (k = Fq) [Ath96, CR70] Let A(A) be a hyperplane arrangement in Fnq where Fq is the finite
field of q elements for a prime power q. The complement V (A) has size

|V (A)| = χA(q).

Proof. 3. This is a typical enumerative problem where our set of objects (the points of Fnq ) are
partially ordered, according to how special their position is with respect to A. This is a natural
setting to apply Möbius inversion.

For each flat F , let f=(F ) be the number of points of Fnq which are on F , and on no smaller

flat. Since there are f≥(F ) = qdimF points on F , we have

qdimF =
∑
G≥F

f=(G)

which inverts to
f=(F ) =

∑
G≥F

µ(F,G)qdimG.

Setting F = 0̂ gives the desired result.
1. For each flat F let A/F be the arrangement inside F obtained by intersecting the hyperplanes

A − F with F . The arrangement subdivides each flat F into (relatively) open faces, namely, the
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regions of A/G for the flats G ≥ F . Since the Euler characteristic of F ∼= RdimF is (−1)dimF , we
get

(−1)dimF =
∑
G≥F

(−1)dimGa(A/G),

which inverts to
(−1)dimFa(A/F ) =

∑
G≥F

µ(F,G)(−1)dimG.

Setting F = 0̂ gives the desired result. The same strategy works for b(A), using the result that
the union of the bounded faces of A is contractible, and hence has Euler characteristic equal to 1.
[BLVS+99, Theorem 4.5.7(b)]

2. is beyond the scope of this writeup; see [GM88, OT92].

6.3 Properties of the characteristic polynomial.

Whitney’s formula and the Tutte polynomial. Since the intersection poset A is constructed from
its atoms (the hyperplanes of A), it is natural to invoke the Crosscut Theorem 4.7.3 and obtain
the following result.

Theorem 6.3.1. (Whitney’s Theorem) The characteristic polynomial of an arrangement A is given
by

χA(q) =
∑
B⊆A

B central

(−1)|B| qn−r(B)

where r(B) = n− dim∩H∈BH.

The Tutte polynomial is another important polynomial associated to an arrangement:

TA(x, y) =
∑
B⊆A

B central

(x− 1)r−r(B) (y − 1)|B|−r(B).

Whitney’s Theorem can then be rephrased as:

χA(q) = (−1)rqn−rTA(1− q, 0).

6.3.1 Deletion and contraction.

A common technique for inductive arguments in hyperplane arrangement A is to choose a hyper-
plane H and study how A behaves without H (in the deletion A\H) and how H interacts with the
rest of A (in the contraction A/H).

For a hyperplane H of an arrangement A in V , the deletion

A\H = {A ∈ A : A 6= H}

is the arrangement in V consisting of the hyperplanes other than H, and the contraction

A/H = {A ∩H : A ∈ A, A 6= H}

is the arrangement in H consisting of the intersections of the other hyperplanes with H. Figure
6.3 shows a hyperplane arrangement A in R3 and the deletion A\4 and contraction A/4.
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Figure 6.3: An arrangement and its deletion and contraction.

Proposition 6.3.2. (Deletion-Contraction) If A is an arrangement and H is a hyperplane in A
then

χA(q) = χA\H(q)− χA/H(q)

Proof. Whitney’s formula gives

χA(q) =
∑

H/∈B⊆A
B central

(−1)|B| qn−r(B) +
∑

H∈B⊆A
B central

(−1)|B| qn−r(B) = χA\H(q)− χA/H(q),

where we use the fact that if H ∈ B then r(B) = rA/H(B\H) + 1.

Unfortunately hyperplane arrangements are not closed under contraction; in the example of
Figure 6.3, the image of 3 in (A/1)/2 is not a hyperplane. In particular, we only apply the
deletion-contraction formula when there is only one copy of H in A.

These small but annoying difficulties are elegantly solved by working in the wider class of
“matroids” (for central arrangements) or semimatroids (for affine arrangements).

We leave it to the reader to check that the characteristic polynomial of the cone cA can be
expressed as follows.

Proposition 6.3.3. If cA is the cone of arrangement A then

χcA(q) = (q − 1)χA(q).

6.3.2 Sign alternation and unimodality.

More can be said about the individual coefficients of the characteristic polynomial.
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Theorem 6.3.4. The characteristic polynomial of an arrangement

χA(q) = qn − an−1q
n−1 + an−2q

n−2 − · · ·+ (−1)nanq
0

has coefficients alternating signs, so ai ≥ 0. Furthermore, the coefficients are unimodal and even
log-concave, that is,

a1 ≤ a2 ≤ · · · ≤ ai−1 ≤ ai ≥ ai+1 ≥ · · · ≥ an for some i, and

aj−1aj+1 ≤ a2
j for all j.

Proof. The sign alternation is easily proved by induction using deletion-contraction. The second
result is much deeper. It was conjectured by Rota in 1970 [Rot71], and recently proved by Huh
[Huh12] for fields of characteristic 0 and by Huh and Katz [HK12] for arbitrary fields, drawing from
toric geometry, tropical geometry, and matroid theory. This result is conjectured to be true for any
geometric lattice; this is still open.

6.3.3 Graphs and proper colorings.

There is a special case of interest, corresponding to arrangements coming from graphs. To each
graph G on vertex set [n] we associate the graphical arrangement in k

n, consisting of the
hyperplanes xi = xj for all edges ij of G.

Given q colors, a proper q-coloring of G assigns a color to each vertex of G so that two vertices
i and j which share an edge ij in G must have different colors. The number of proper q-colorings
of G is given by the chromatic polynomial χG(q).

Say an orientation of the edges of G is acyclic if it creates no directed cycles.

Theorem 6.3.5. The chromatic polynomial of a graph G equals the characteristic polynomial of
its graphical arrangement AG

χAG(q) = χG(q).

and the number of acyclic orientations of G equals the number of regions of AG in Rn.

Proof. A proper q-coloring of G is equivalent to a point a ∈ Fnq which is on none of the hyperplanes
xi = xj for ij ∈ G. Also, the arrangement AG in k

n has the same intersection lattice for any field
k. (This is not true for every arrangement.) The first equality then follows from Theorem 6.2.1.3.

Given a region R of AG we give each edge ij the orientation i→ j if xi > xj in R, and i← j if
xi < xj in R. This is a bijection between the regions of AG and the acyclic orientations of G.

In particular, this theorem proves that χG(q) is indeed given by a polynomial in q when q
is a positive integer. It also gives us a reciprocity theorem, telling us what happens when we
irresponsibly substitute the negative integer q = −1 into this polynomial:

Corollary 6.3.6. The graph G has |χG(−1)| acyclic orientations of G.
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6.3.4 Free arrangements.

Far more often than we might expect, characteristic polynomials of hyperplane arrangements factor
as products of linear forms. [Sag99] Such factorizations are often a manifestation of the underly-
ing algebraic structure. The theory of free arrangements gives one possible explanation for this
phenomenon.

Let A be a real central arrangement and let R = R[x1, . . . , xn] be the polynomial ring in n
variables, graded by total degree. A derivation is a linear map D satisfying Leibniz’s law

D(fg) = f(Dg) + (Df)g for all f, g ∈ R

The set Der of derivations is an R-module; that is, if p ∈ R and D ∈ Der then pD ∈ Der. It
is a graded module, where D is homogeneous of degree d if it takes polynomials of degree k to
polynomials of degree k + d. It is a free module with basis ∂

∂x1
, . . . ∂

∂xn
; that is,

Der =

{
p1

∂

∂x1
+ · · ·+ pn

∂

∂xn
: pi ∈ R

}
Indeed, if D is a derivation with Dxi = pi ∈ R for 1 ≤ i ≤ n, then D = p1

∂
∂x1

+ · · · + pn
∂
∂xn

by
linearity.

Now consider the submodule of A-derivations:

Der(A) = {D ∈ Der : αH |D(αH) for all H ∈ A}

where αH is a linear form defining hyperplaneH, soH = {v ∈ kn : αH(v) = 0}. LetQ =
∏
H∈A αH

be the defining polynomial of A.
For example, if H is the arrangement of coordinate hyperplanes with defining polynomial QH =

x1 · · ·xn, then Ei = xi
∂
∂xi

is an H-derivation for 1 ≤ i ≤ n since Ei(xi) = xi and Ei(xj) = 0 for
j 6= i.

We say the arrangement A is free if Der(A) is a free R-module. This notion is not well
understood at the moment; it is not even known if it is a combinatorial condition. For example,
Ziegler gave an example of a free arrangement over F2 and a non-free arrangement over F3 with
isomorphic intersection posets.

Conjecture 6.3.1. [Ter80] If two real arrangements A1 and A2 have isomorphic intersection
posets and A1 is free, then A2 is free.

Mysterious as it is, freeness is a very useful property.

Theorem 6.3.7. (Terao’s Factorization Theorem) [Ter80] If A is free then D(A) has a homo-
geneous basis D1, . . . , Dn whose degrees d1, . . . , dn only depend on A. Furthermore, the Poincaré
polynomial of V (A) is qnχA(−1/q) where

χA(q) = (q − d1 − 1) · · · (q − dn − 1).

Freeness is made more tractable thanks to the following two useful criteria.

Theorem 6.3.8. (Saito Criterion) [Sai80] Let D1, . . . , Dn be A-derivations and let Q(A) be the
defining form of A. Then Der(A) is free with basis D1, . . . , Dn if and only if

det(Di(xj))1≤i,j≤n = c ·QA

for some constant c.
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Theorem 6.3.9. [Ter80] Let A be an arrangement and H be a hyperplane of A. Any two of the
following statements imply the third:
• A/H is free with exponents b1, . . . , bn−1.
• A\H is free with exponents b1, . . . , bn−1, bn − 1.
• A is free with exponents b1, . . . , bn−1, bn

Theorem 6.3.8 can be very easy to use if we have the right candidate for a basis. For example,
we saw that Ei = xi

∂
∂xi

is an Hn-derivation for 1 ≤ i ≤ n. The matrix Ei(xj) is diagonal with
determinant x1 · · ·xn, so this must in fact be a basis for Der(H) with exponents 0, . . . , 0, and

χHn(q) = (q − 1)n.

To use Theorem 6.3.9 to prove that an arrangement A is free, we need A to belong to a larger
family of free arrangements with predictable exponents, which behaves well under deletion and
contraction. For example, to prove inductively that Hn is free, we need the stronger statement that
an arrangement of k coordinate hyperplanes in k

n (where k ≤ n) has exponents 0 (k times) and
−1 (n− k times). A more interesting example is given in Section 6.4.

6.3.5 Supersolvability.

There is a combinatorial counterpart to the notion of freeness that produces similar results. Recall
that a lattice L is supersolvable if it has an M-chain C such that the sublattice generated by C
and any other chain is distributive.

In this section we are interested in arrangements whose intersection poset is supersolvable. Since
this poset is a geometric lattice, it is semimodular, so the following theorem applies.

Theorem 6.3.10. [Sta72] Let L be a finite supersolvable semimodular lattice, and suppose that
0̂ = t0 < t1 < · · · < tn = 1̂ is an M-chain. Let ai be the number of atoms s such that s ≤ ti but
s � ti−1. Then

χL(q) = (q − a1) · · · (q − an).

Graphical arrangements are an interesting special case. Say a graph G is chordal if there exists
an ordering of the vertices v1, . . . , vn such that for each i, the vertices among {v1, . . . , vi−1} which
are connected to vi form a complete subgraph. An equivalent characterization is that G has no
induced cycles of length greater than 3.

It is very easy to compute the chromatic polynomial of a chordal graph. Suppose we wish
to assign colors from [q] to v1, . . . , vn in order, to get a proper q-coloring. If vi is connected to
ai vertices among {v1, . . . , vi−1}, since these are all connected pairwise, they must have different
colors, so there are exactly q−ai colors available for bi. It follows that χG(q) = (q−a1) · · · (q−an).
The similarity in these formulas is not a coincidence.

Theorem 6.3.11. [Sta72] The intersection lattice of the graphical arrangement AG is supersolvable
if and only if the graph G is chordal.

6.4 Computing the characteristic polynomial.

The results of the previous section, and Theorem 6.2.1 in particular, show the importance of com-
puting χA(q) for arrangements of interest. In this section we discuss the most common techniques
for doing this.
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Computing the Möbius function directly. In Section 4.7 we saw many techniques for computing
Möbius functions, and we can use them to compute χA(x).

1. (Generic arrangement) An,r: n generic hyperplanes in k
r.

Consider a generic arrangement of n hyperplanes in k
r, where any k ≤ r hyperplanes have

an intersection of codimension k. There are
(
n
m

)
flats of rank m, and for each flat F we have

[0̂, F ] ∼= 2[m], so µ(0̂, F ) = (−1)m. Therefore the characteristic polynomial is

χAn,r(x) =
r∑

m=0

(−1)m
(
n

m

)
xm

and the number of regions and bounded regions are

a(An,r) =

(
n

r

)
+

(
n

r − 1

)
+ · · ·+

(
n

0

)
,

b(An,r) =

(
n

r

)
−
(

n

r − 1

)
+ · · · ±

(
n

0

)
=

(
n− 1

r

)
.

This method works in some examples, but when there is a nice formula for the characteristic
polynomial, this is usually not the most efficient technique.

The finite field method. Theorem 6.2.1.3 is about arrangements over finite fields, but it may also
be used as a powerful technique for computing χA(x) for real or complex arrangements. The idea
is simple: most arrangements A we encounter “in nature” (that is, in mathematics) are given by
equations with integer coefficients.

We can use the equations of A to determine an arrangement Aq over a prime q. For large
enough q, the arrangements A and Aq will have the same intersection poset, so

χA(q) = |Fnq \
⋃

H∈Aq

H|.

We have thus reduced the computation of χA to an enumerative problem in a finite field. By now
we are pretty good at counting, and we can solve these problems for many arrangements of interest.

2. (Coordinate arrangement) Hn : xi = 0 (1 ≤ i ≤ n)

Here χHn(q) is the number of n-tuples (a1, . . . , an) ∈ Fnq with ai 6= 0 for all i, so

χHn(q) = (q − 1)n, a(Hn) = 2n

There is an easy bijective proof for the number of regions: each region R of Hn is determined
by whether xi < 0 or xi > 0 in R.

3. (Braid arrangement) An−1 : xi = xj (1 ≤ i < j ≤ n).

Here χAn−1(q) is the number of n-tuples (a1, . . . , an) ∈ Fnq such that ai 6= aj for i 6= j.
Selecting them in order, ai can be any element of Fq other than a1, . . . , ai−1, so

χAn−1(q) = q(q − 1)(q − 2) · · · (q − n+ 1), a(An−1) = n!

A region is determined by whether xi > xj or xi < xj for all i 6= j; that is, by the relative
linear order of x1, . . . , xn.
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4. (Threshold arrangement) Tn : xi + xj = 0, (1 ≤ i < j ≤ n).

Let q be an odd prime. We need to count the points a ∈ Fnq on none of the hyperplanes, that
is, those satisfying ai+aj 6= 0 for all i 6= j. To specify one such point, we may first choose the
partition [n] = S0tS1t · · ·tS(q−1)/2 where Si is the set of positions j such that aj ∈ {i,−i}.
Note that S0 can have at most one element. Then, for each non-empty block Si with i > 0
we need to decide whether aj = i or aj = −i for all j ∈ Si. The techniques of Section 2.3
then give ∑

n≥0

χTn(x)
zn

n!
= (1 + z)(2ez − 1)(x−1)/2.

The regions of Tn are in bijection with the threshold graphs on [n]. These are the graphs
for which there exist vertex weights w(i) for 1 ≤ i ≤ n and a “threshold” w such that edge ij
is present in the graph if and only if w(i)+w(j) > w. Threshold graphs have many interesting
properties and applications; see [MP95].

There are many interesting deformations of the braid arrangement, obtained by considering
hyperplanes of the form xi− xj = a for various constants a. The left panel of Figure 6.4 shows the
braid arrangement A2. This is really an arrangement in R3, but since all hyperplanes contain the
line x = y = z, we draw its essentialization by intersecting it with the plane x+y+z = 0. Similarly,
the other panels show the Catalan, Shi, Ish, and Linial arrangements, which we now discuss.

Figure 6.4: The arrangements A2,Cat2, Shi2, and Ish2.

6. (Catalan arrangement) Catn−1 : xi − xj = −1, 0, 1 (1 ≤ i < j ≤ n).

To compute χCatn−1(q), we need to count the n-tuples a = (a1, . . . , an) ∈ Fnq where ai and aj
are never equal or adjacent modulo q. There are q choices for a1, and once we have chosen
a1 we can “unwrap” Fq − {a1} into a linear sequence of q− 1 dots. The set A = {a2, . . . , an}
consists of n − 1 non-adjacent dots, and choosing them is equivalent to choosing a partition
of q − n into n parts, corresponding to the gaps between the dots; there are

(
q−n−1
n−1

)
choices.

Finally there are (n− 1)! ways to place A in a linear order in a. Therefore

χCatn−1(q) = q(q − n− 1)(q − n− 2) · · · (q − 2n+ 1)

a(Catn−1) = n!Cn, b(Catn−1) = n!Cn−1,

where Cn is the nth Catalan number. It is not too difficult to show bijectively that each
region of the braid arrangement An−1 contains Cn regions of the Catalan arrangement, Cn−1

of which are bounded. [Sta07, Section 5.4]
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7. (Shi arrangement) Shin−1 : xi − xj = 0, 1 (1 ≤ i < j ≤ n).

Consider a point a = (a1, . . . , an) ∈ Fnq not on any of the Shi hyperplanes. Consider dots
0, 1, . . . , q − 1 around a circle, and mark dot ai with the number i for 1 ≤ i ≤ n. Mark
the remaining dots •. Now let w be the word of length q obtained by reading the labels
clockwise, starting at the label 1. Note that each block of consecutive numbers must be listed
in increasing order. By recording the sets between adjacent •s, and dropping the initial 1, we
obtained an ordered partition Π of {2, 3, . . . , n} into q − n parts. There are (q − n)n−1 such
partitions. Figure 6.5 shows an example of this construction.
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136    25    4(2,7,3,0,8,4)

(136,Ø,25,Ø,4)

Figure 6.5: a = (2, 7, 3, 0, 8, 4) ∈ F6
11, w = 136 • • 25 • • 4 •, Π = ({3, 6}, ∅, {2, 5}, ∅, {4}).

To recover a from this partition, we only need to know where to put marking 1 on the circle;
that is, we need to know a1. It follows that

χShin−1(q) = q(q − n)n−1

a(Shin−1) = (n+ 1)n−1, b(Shin−1) = (n− 1)n−1

8. (Ish arrangement) Ishn−1 : xi = xj , x1 − xj = i (1 ≤ i < j ≤ n).

To choose a point a in the complement of the Ish arrangement over Fq, choose a1 ∈ Fq, and
then choose an, an−1, . . . , a2 subsequently. At each step we need to choose ai /∈ {a1, a1 −
1, . . . , a1 − i+ 1, an, an−1, . . . , ai+1}. These n forbidden values are distinct, so

χIshn−1(q) = q(q − n)n−1,

a(Ishn−1) = (n+ 1)n−1, b(Ishn−1) = (n− 1)n−1.

The Shi and Ish arrangements share several features, which are generally easier to verify for
the Ish arrangement. Together, they give a nice description of the “q, t-Catalan numbers”.
[Arm13]

9. (Linial arrangement) Ln−1 : xi − xj = 1, (1 ≤ i < j ≤ n).

The Linial arrangement has characteristic polynomial

χLn−1(q) =
q

2n

n∑
k=0

(
n

k

)
(q − k)n−1
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The number of regions of Ln−1 equals the number of alternating trees with vertex set
[n + 1], where each vertex is either smaller than all its neighbors or greater than all its
neighbors. There are two different proofs, using Whitney’s Theorem [PS00] and the finite
field method [Ath99] respectively. Both are somewhat indirect, combining combinatorial
tricks and algebraic manipulations. To date, there is no known bijection between the regions
of the Linial arrangement and alternating trees.

Here are a few other nice examples.

10. (Coxeter arrangement) BCn : xi ± xj = 0, xi = 0 (1 ≤ i < j ≤ n).

We need to count the n-tuples (a1, . . . , an) ∈ Fnq with ai 6= aj for all i 6= j. If we choose
a1, . . . , an successively, we find there are q − 2i+ 1 choices for ai, namely, any number other
than 0,±a1, . . . ,±ai−1 (which are all distinct). Therefore

χBCn(q) = (q − 1)(q − 3) · · · (q − 2n+ 3)(q − 2n+ 1), r(BCn) = 2n · n!.

11. (Coxeter arrangement) Dn : xi ± xj = 0 (1 ≤ i < j ≤ n).

Here there are (q − 1)(q − 3)(q − 5) · · · (1− 2n+ 3)(q − 2n+ 1) n-tuples with no ai equal to
0, and n(q − 1)(q − 3) · · · (q − 2n+ 3)) n-tuples with one ai equal to 0. Therefore

χDn(q) = (q − 1)(q − 3) · · · (q − 2n+ 3)(q − n+ 1), r(Dn) = 2n−1 · n!

12. (Finite projective space) A(p, n): all linear hyperplanes in Fnp
The equations

∑
i cixi = 0 (where ci ∈ Fp) define an arrangement over Fq where q = pk,

which has the same intersection poset. Recall that Fq is a k-dimensional vector space over Fp.
Now let us count the points (a1, . . . , an) in Fq which are not on any hyperplane.We choose
a1, . . . , an subsequently and at each step we need ai /∈ spanFp(a1, . . . , an−1). Therefore

χA(p,n)(q) = (q − 1)(q − p)(q − p2) · · · (q − pn−1).

See [BR, Mph00].

13. (All-subset arrangement) Alln :
∑

i∈A xi = 0 (A ⊆ [n], A 6= ∅, [n]).

This arrangement appears naturally in combinatorics, representation theory, algebraic geom-
etry, and physics, among many other contexts. [BMM+12] To date, we do not know a simple
formula for the characteristic polynomial, though we do have a nice bound. [BMM+12].

The reduction of Alln modulo 2 is the arrangement A(2, n) in Fn2 considered above. The
map from Alln to A(2, n) changes the combinatorics; for example, the subset of hyperplanes
x1 + x2 = 0, x2 + x3 = 0, x3 + x1 = 0 decreases from rank 3 to rank 2. However, this map is
a rank-preserving weak map, in the sense that the rank of a subset never increases, and the
total rank stays the same. This implies [KN86, Cor. 9.3.7] that the coefficients of χAlln(q)
are greater than the respective coefficients of χA(2,n)(q) in absolute value, so

r(Alln) = |χAlln(−1)| > |χA(2,n)(−1)| =
n−2∏
i=0

(2i + 1) > 2(n−1
2 )

It is also known that r(Alln) < 2(n−1)2 ; see [BMM+12].
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Whitney’s formula. We can sometimes identify combinatorially the terms in Whitney’s Theorem
6.3.1 to obtain a useful formula for the characteristic polynomial.

14. (Coordinate arrangement) Hn : xi = 0 (1 ≤ i ≤ n)

Whitney’s formula gives

χHn(q) =
∑
A⊆[n]

(−1)|A|qn−|A| = (q − 1)n.

15. (Generic deformation of An) Gn : xi − xj = aij (1 ≤ i < j ≤ n, aij generic )

Let Hij represent the hyperplane xi−xj = aij . By the genericity of the aijs, a subarrangement
Hi1j1 , . . . ,Hikjk is central if and only if the graph with edges i1j1, . . . , injn has no cycles; that
is, it is a forest. Therefore

χGn(q) =
∑

F forest on [n]

(−1)|F |qn−|F |, r(Gn) = forests(n)

where forests(n) is the number of forests on vertex set [n]. There is no simple formula for
this number, though we can use the techniques of Section 2.3 to compute the exponential
generating function for χGn(q).

16. (Other deformations of An) The same approach can work for any arrangement consisting of
hyperplanes of the form xi − xj = aij , which correspond to edges marked aij . If we have
enough control over the aijs to describe combinatorially which subarrangements are central,
we will obtain a combinatorial formula for the characteristic polynomial.

For simple arrangements like the Shi and Catalan arrangement, the finite field method gives
slicker proofs than Whitney’s formula. However, this unified approach is also very powerful;
for many interesting examples, see [PS00].

Freeness. Terao’s Factorization Theorem 6.3.7 is a powerful algebraic technique for computing
characteristic polynomials which factor completely into linear factors.

17. (Braid arrangement, revisited) It is not difficult to describe the An−1-derivations for the
braid arrangement An−1. Note that Fd = xd1

∂
∂x1

+ · · ·+ xdn
∂
∂xn

is an An−1-derivation because

Fd(xi − xj) = xdi − xdj . By Saito’s criterion, since

det(Fi(xj))0≤i,j≤n−1 = det(xij)1≤i,j≤n =
∏

1≤i<j≤n
(xi − xj) = QA,

Der(A) is free with basis F0, . . . , Fn−1 of degrees −1, 0, . . . , n− 2. Therefore

χAn(q) = q(q − 1) · · · (q − n+ 1).

18. (Coxeter arrangements BCn and Dn, revisited) Now Fd(xi + xj) = xdi + xdj , so Fd is a Dn-
derivation only for n odd. Fortunately,

det(F2i−1(xj))1≤i,j,≤n =
∏

1≤i<j≤n
(xi − xj)(xi + xj),
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as can be seen by identifying linear factors as in Section 3.2. It follows that Der(Dn) is free
with basis F1, F3, F5, . . . , F2n−1 and degrees 0, 2, 4, . . . , 2n− 2.

For BCn we need the additional derivation F = x1 · · ·xn
∑

i
1
xi

∂
∂xi

. This is indeed a BCn-
derivation because F (xi ± xj) = (xj ± xi)x1 · · ·xn/xixj . Once again it is easy to check
Saito’s criterion to see that Der(BCn) is free with basis F1, F3, . . . , F2n−3, F and degrees
0, 2, 4, · · · , 2n− 4, n− 2.

19. (Coxeter arrangements, in general) A finite reflection group is a finite group generated by
reflections through a family of hyperplanes. For example the reflections across the hyperplanes
xi = xj of the braid arrangement An−1 correspond to the transpositions (ij), and generate
the symmetric group Sn. Every finite reflection group is a direct product of irreducible ones.
Here we focus on the crystallographic ones, which can be written with integer coordinates.
The irreducible groups Φ come in three infinite families An, BCn, Dn and five exceptional
groups G2, F4, E6, E7, E8. The corresponding hyperplane arrangements AΦ are the following.

Φ k
n equations

An−1 k
n xi = xj

BCn k
n xi = ±xj , xi = 0

Dn k
n xi = ±xj

G2 k
3 xi = ±xj , 2xi = xj + xk

F4 k
4 xi = ±xj , xi = 0, ±x1 ± x2 ± x3 ± x4 = 0.

E6 k
9 xi = xj ,

∑
i∈{a,b,c}

2xi =
∑

i/∈{a,b,c}

xi

(
1≤a≤3
4≤b≤6
7≤c≤9

)
.

E7 k
8 xi = xj ,

∑
i∈A

xi =
∑
i/∈A

xi (A⊆[8]
|A|=4)

E8 k
8 xi = ±xj ,

8∑
i=1

εixi = 0
(
εi=±1,
ε1···ε8=1

)
Note that arrangement Φr has rank r, but we have embedded some of them them in k

d for
higher d in order to obtain nicer equations. Here the indices range over the corresponding
k
n; for instance, G2 includes the hyperplanes 2x1 = x2 + x3, 2x2 = x1 + x3, 2x3 = x1 + x2.

We now list the characteristic polynomials and number of regions for these arrangements.

Φ characteristic polynomial regions

BCn (q − 1)(q − 3)(q − 5) · · · (q − 2n+ 3)(q − 2n+ 1) 2nn!
Dn (q − 1)(q − 3)(q − 5) · · · (q − 2n+ 3)(q − n+ 1) 2n−1n!
G2 (q − 1)(q − 5) 12
F4 (q − 1)(q − 5)(q − 7)(q − 11) 1, 152
E6 (q − 1)(q − 4)(q − 5)(q − 7)(q − 8)(q − 11) 51, 840
E7 (q − 1)(q − 5)(q − 7)(q − 9)(q − 11)(q − 13)(q − 17) 2, 903, 040
E8 (q − 1)(q − 7)(q − 11)(q − 13)(q − 17)(q − 19)(q − 23)(q − 29) 696, 729, 600

It follows from the theory of reflection groups that the number of regions equals the order of
the reflection group:

r(AΦ) = |Φ|.
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We already computed in two ways the characteristic polynomials of the classical Coxeter
groups An,BCn, and Dn. We first gave simple finite field proofs; it would be interesting to do
this for the other (“exceptional”) groups. We also computed explicit bases for the modules
of A-derivations; doing this for the other Coxeter groups is not straightforward, but it can be
done. [OT92, Appendix B]

However, these beautiful formulas clearly illustrate that there are deeper things at play, and
they make it very desirable to have a unified explanation. Indeed, invariant theory produces an
elegant case-free proof that all Coxeter arrangement are free; for details, see [OT92, Theorem
6.60].

20. (Shi arrangement) Given its characteristic polynomial, it is natural to guess that the Shi
arrangement Sn−1 is free. Since we only defined freeness for central arrangements, we consider
the cone cSn−1 instead. Following [Ath98], we may prove that this is a free arrangement
inductively using Theorem 6.3.9. The strategy is to remove the hyperplanes of Sn−1 one
at a time, by finding in each step a hyperplane H such that A\H and A/H are free with
predictable exponents. This leads us to consider a more general family of arrangements.

We claim that for any m ≥ 0 and 2 ≤ k ≤ n+ 1, the arrangement Sm,kn−1

xi − xj = 0, 1 for 2 ≤ i < j ≤ n
x1 − xj = 0, 1, . . . ,m for 2 ≤ j < k

x1 − xj = 0, 1, . . . ,m,m+ 1 for k ≤ j ≤ n

is free with exponents n+m− 1, . . . , n+m− 1 (n− k + 1 times) , n+m− 2, . . . , n+m− 2
(k − 2 times), and −1.

Obviously it takes some care to assemble this family of free arrangements and their exponents.
However, once we have done this, it is straightforward to prove this more general statement
by induction using Theorem 6.3.9, by removing one hyperplane at a time while staying within
the family of arrangements Sm,kn−1. Setting k = 2 and m = 0 we get that the Shi arrangement
is free.

Incidentally, Athanasiadis also characterized all the arrangements A with An−1 ⊆ A ⊆ Sn−1

such that cA is free [Ath98]. These arrangements have Ish counterparts which have the same
characteristic polynomial, although their cones are not free. [AR12, Corollary 3.3]

6.5 The cd-index of an arrangement.

We now discuss a vast strengthening of Zaslavsky’s Theorem due to Billera, Ehrenborg, and Readdy.
[BER97] They showed that the enumeration of chains of faces of a real hyperplane arrangement
A (or, equivalently, of a zonotope) depends only on the intersection poset of LA. The equivalence
with zonotopes is explained by the following result.

Proposition 6.5.1. Let A be an arrangement of non-zero real vectors, and let A be the arrangement
of hyperplanes perpendicular to the vectors of A. Then there is an order-reversing bijection between
the faces of the zonotope Z(A) and the faces of the real arrangement A.

From this result, it follows easily that the cd-indices of Z(A) and F (A) are reverses of each
other; that is, they are related by the linear map ∗ : Z〈c,d〉 → Z〈c,d〉 that reverses any word in
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Figure 6.6: A vector arrangement, the normal hyperplane arrangement, and its dual zonotope.

c and d, so that (v1 . . . vk)
∗ = vk . . . v1. To describe these cd-indices, we introduce the linear map

ω : Z〈a,b〉 → Z〈c,d〉 obtained by first replacing each occurrence of ab with 2d, and then replacing
every remaining letter with a c.

Theorem 6.5.2. [BER97] The flag f -vector of a real hyperplane arrangement (or equivalently, of
the dual zonotope) depends only on its intersection poset.

More explicitly, let A be a real hyperplane arrangement. Let F (A) be its face poset and LA be
its intersection poset. The cd-indices of the face poset F (A) and the dual zonotope Z(A) are:

ΨF (A)(c,d) = [ω(a ΦLA(a,b))]∗ , ΨZ(A)(c,d) = ω(a ΦLA(a,b)),

Billera, Ehrenborg, and Readdy [BER97] extended this result to orientable matroids, and asked
for an interesting interpretation of ω(a ΦL(a,b)) for an arbitrary geometric lattice L.

To illustrate this result we revisit Example 4.8.1, where we computed the cd-index of a hexag-
onal prism. This is the dual zonotope to the arrangement of Figure 6.6, whose intersection poset
LA is Figure 6.2. The flag f and h-vectors of LA are (f∅, f{1}, f{2}, f{1,2}) = (1, 4, 4, 9) and
(h∅, h{1}, h{2}, h{1,2}) = (1, 3, 3, 2), so its ab-index is ΦLA(a,b)) = aa+3ab+3ba+2bb. Therefore

ΨZ(A)(c,d) = ω(aaa + 3aab + 3aba + 2abb) = ccc + 3c(2d) + 3(2d)c+ 2(2d)c = c3 + 6cd + 10dc

and
ΨF (A)(c,d) = c3 + 6dc + 10cd.

in agreement with the computation in Section 4.8.
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7 Matroids

Matroid theory is a combinatorial theory of independence which has its roots in linear algebra
and graph theory, but which turns out to have deep connections with many fields, and numerous
applications in pure and applied mathematics. Rota was a particularly enthusiastic ambassador:

“It is as if one were to condense all trends of present day mathematics onto a single
finite structure, a feat that anyone would a priori deem impossible, were it not for the
fact that matroids do exist.” [Rot97]

There are natural notions of independence in linear algebra, graph theory, matching theory,
the theory of fields, and the theory of routings, among others. Matroids capture the combinatorial
essence that those notions share.

In this section we will mostly focus on enumerative aspects of matroid theory. For a more
complete introduction, see [Oxl11, Wel76] and the three volume series [Whi86, Whi87, Whi92].

In Section 7.1 we discuss some combinatorial aspects of vector configurations and linear in-
dependence, and introduce some terminology. This example and terminology strongly motivates
the definition(s) of a matroid, which we give in Section 7.2. Section 7.3 discusses many important
families of matroids arising in algebra, combinatorics, and geometry. Section 7.4 introduces some
basic constructions, and Section 7.5 gives a very brief overview of structural matroid theory. The
Tutte polynomial is our main enumerative tool; it is introduced in Section 7.6. In Section 7.7 we
answer many enumeration problems in terms of Tutte polynomials, and in Section 7.8 we see how
we can actually compute the polynomial in some examples of interest. Section 7.9 is devoted to
two generalizations: the multivariate and the arithmetic Tutte polynomials. Finally, we give a brief
overview of matroid subdivisions in Section 7.10, including a discussion on matroid valuations and
the Derksen–Fink invariant.

7.1 The main motivating example: Vector configurations and linear matroids.

Let E ⊂ k
d be a finite set of vectors. For simplicity, we assume that E does not contain 0, does

not contain repeated vectors, and spans kd. The matroid of E is given by any of the following
definitions:

• The independent sets of E are the subsets of E which are linearly independent over k.
• The bases of E are the subsets of E which are bases of kd.
• The circuits of E are the minimal linearly dependent subsets of E.
• The rank function r : 2E → N is r(A) = dim(spanA) for A ⊆ E.
• The flats F of E are the subspaces of kd spanned by a subset of E. We identify a flat with

the set of vectors of E that it contains.
• The lattice of flats LM is the poset of flats ordered by containment.
• The matroid (basis) polytope is PM = conv{eb1 + · · ·+ebr : {b1, . . . , br} is a basis} ⊂ RE .

More concretely, if we know one of the following objects, we can determine them all: the list I
of independent sets, the list B of bases, the list C of circuits, the rank function r, the list F of flats,
the lattice LM of flats, or the matroid polytope PM . For this reason, we define the matroid of E
to be any one (and all) of these objects. A matroid that arises in this way from a set of vectors in
a vector space (over k) is called a linear or representable matroid (over k).
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Example 7.1.1. Let t = (1,−1, 0),u = (0, 1,−1),v = (−1, 0, 1),w,= (1, 1, 1) be the vector config-
uration shown in the left panel of Figure 6.6. Then12

I = {∅, t,u,v,w, tu, tv, tw,uv,uw,vw, tuw, tvw,uvw},
B = {tuw, tvw,uvw},
C = {tuv}
F = {∅, t,u,v,w, tuv, tw,uw,vw, tuvw}

The rank function is r(tuvw) = 3, r(tuv) = 2, and r(A) = |A| for all other sets A. The matroid
polytope is the equilateral triangle with vertices (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1) in R4.

A vector arrangement E ⊂ k
d determines a hyperplane arrangement A in k

d consisting of the
normal hyperplanes {x ∈ kd : a · x = 0} for a ∈ E. The rank function and lattice of flats of E are
the same as the rank function and intersection poset of A, as defined in Section 6.2. For instance,
the lattice of flats of the example above is the same as the intersection poset of the corresponding
arrangement, which is illustrated in Figure 6.2.

7.2 Basic definitions.

A simple but important insight of matroid theory is that many of the properties of linear inde-
pendence (and many other notions of independence in mathematics) are inherently combinatorial.
That combinatorial structure is unexpectedly rich, and matroids provide a general combinatorial
framework that is ideally suited for exploring it.

A matroid M = (E, I) consists of a finite set E and a collection I of subsets of E such that
(I1) ∅ ∈ I
(I2) If J ∈ I and I ⊆ J then I ∈ I.
(I3) If I, J ∈ I and |I| < |J | then there exists j ∈ J − I such that I ∪ j ∈ I.

The sets in I are called independent.

The following result, which is an immediate consequence of (I3), shows that this simple definition
already captures the notion of dimension:

Proposition 7.2.1. In a matroid M = (E, I), all the bases (the maximal elements of I) have the
same size, called the rank of the matroid.

Now we develop the combinatorial versions of the definitions of the previous section. Let
M = (E, I) be a matroid.
• An independent set is a set in I.
• A basis is a maximal independent set.
• The rank function r : 2E → N is r(A) =(size of the largest independent subset of A).
• A circuit is a minimal dependent set; i.e., a minimal set not in I.
• A flat is a set F such that r(F ∪ e) > r(F ) for all e /∈ F .
• The lattice of flats LM is the poset of flats ordered by containment.
• The matroid (basis) polytope PM = conv{eb1 + · · ·+ ebr : {b1, . . . , br} is a basis}.
Again, we let B, r, C and F denote the set of bases, the rank function, the set of circuits, and

the set of flats of M . If we know the ground set E and any one of B, r, C, F , LM , or PM
13, we

12We are omitting brackets for clarity, so for example we write tuv for {t,v,v, }.
13assuming that we know the labels of the elements of LM and the embedding of the polytope PM in RE .
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know them all. For that reason, we call any one (and all) of (E, I), (E,B), (E, r), (E, C) and (E,F)
“the matroid M”. Each one of these points of view has its own axiomatization:

Proposition 7.2.2. We have the following characterizations of the possible bases B, rank function
r, circuits C, flats F , and matroid polytopes PM of a matroid.

1. The collection B ⊆ 2E is the set of bases of a matroid if and only if

(B1) B is nonempty.

(B2) If B1, B2 ∈ B and b1 ∈ B1 −B2, there exists b2 ∈ B2 −B1 such that (B1 − b1)∪ b2 ∈ B.

2. The function r : 2E → N is the rank function of a matroid if and only if:

(R1) 0 ≤ r(A) ≤ |A| for all A ⊆ E.

(R2) If A ⊆ B ⊆ E then r(A) ≤ r(B).

(R3) r(A) + r(B) ≥ r(A ∪B) + r(A ∩B) for all A,B ⊆ E.

3. The collection C ⊆ 2E is the set of circuits of a matroid if and only if

(C1) ∅ /∈ C.

(C2) If C ∈ C and C ( D then D /∈ C.

(C3) If C1, C2 ∈ C and e ∈ C1 ∩ C2 then there exists C ∈ C with C ⊆ C1 ∩ C2 − e.

4. The poset L is the lattice of flats of a matroid if and only if it is a geometric lattice.

5. The collection I ⊆ 2E is the set of independent sets of a matroid if and only if

(I1) ∅ ∈ I.

(I2) If J ∈ I and I ⊆ J then I ∈ I.

(I3’) For every weight function w : E → R, the following greedy algorithm:

Start with B = ∅. Then, at each step, add to B an element e /∈ B of minimum
weight w(e) such that B ∪ e ∈ I. Stop when B is maximal in I.

produces a maximal element B of I of maximum weight w(B) =
∑

b∈B w(b).

6. [GGMS87] The collection B ⊆ 2E is the set of bases of a matroid if and only if every edge of
the polytope conv{eb1 + · · ·+ ebr : {b1, . . . , br} ∈ B} in RE is a translate of ei − ej for some
i, j ∈ E.

This proposition allows us to give six other definitions of matroids in terms of bases, ranks,
circuits, flats, independent sets, and polytopes. The first three axiom systems are “not too far”
from each other, but it is useful to have them all. For instance, to prove that linear matroids are
indeed matroids, it is much easier to check the circuit axioms (C1)-(C3) than the independence
axioms (I1)-(I3). The last three axiom systems suggest deeper, fruitful connections to posets,
optimization, and polytopes.

In fact, there are several other equivalent (and useful) definitions of matroids. It is no coin-
cidence that matroid theory gave birth to the notion of a cryptomorphism, which refers to the
equivalence of different axiomatizations of the same object. This feature of matroid theory can be
frustrating at first; but as one goes deeper, it becomes indispensable and extremely powerful. A
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very valuable resource is [Bry86], a multilingual cryptomorphism dictionary that translates between
these different points of view.

We say (E,B) and (E′,B′) are isomorphic if there is a bijection between E and E′ that induces
a bijection between B and B′. A loop of M is an element e ∈ E of rank 0, so {e} is dependent.
A coloop is an element e which is independent of E − e, so r(E − e) = r − 1. Non-loops e and f
are parallel if r(ef) = 1; they are indistinguishable inside the matroid. A matroid is simple if it
contains no loops or parallel elements. The map M 7→ LM is a bijection between simple matroids
and geometric lattices.

7.3 Examples.

We now describe a few contexts where matroids arise naturally. These statements are nice (and
not always trivial) exercises in their respective fields. Most proofs may be found, for example, in
[Oxl11]. We give references for the rest.

0. (Uniform matroids) For n ≥ k ≥ 1, the uniform matroid Uk,n is the matroid on [n] where
every k-subset is a basis. It is the linear matroid of n generic vectors in a k-dimensional space.

1a. (Vector configurations) Let E be a set of vectors in k
d and let I be the set of linearly

independent subsets of E. Then (E, I) is a matroid. Such a matroid is called linear or
representable (over k). [Mac36, Whi35] There are at least three other ways of describing
the same family of matroids, listed in 1b, 1c, and 1d below.

1b. (Point configurations) Let E be a set of points in kd and let I be the set of affinely independent
subsets of E; that is, the subsets {a1, . . . ,ak} whose affine span is k-dimensional. Then (E, I)
is a matroid.

1c. (Hyperplane arrangements) Let E be a hyperplane arrangement in kd and let r({H1, . . . ,Hk}) =
d− dim(H1 ∩ · · · ∩Hk). Then (E, r) is a matroid.

1d. (Subspaces) Let U ⊆ V be a subspace of a vector space V ∼= k
d with a chosen basis. Consider

the coordinate subspaces VS = {v ∈ V : vs = 0 for s ∈ S}. Say B ⊆ [d] is a basis if
U ∩ VB = {0}. Then (E,B) is a matroid.

Given a matrix over k, the matroid on the columns of A (in the sense of 1a) is the same as
the matroid of the rowspace of A (in the sense of 1d).

2. (Graphs) Let E be the set of edges of a connected graph G and let C be the set of cycles of
G (where each cycle is regarded as the list of its edges). Then (E, C) is a matroid. Such a
matroid is called graphical. The bases are the spanning trees of G.

3. (Field extensions) Let F ⊆ K be two fields, and let E be a finite set of elements in the extension
field K. Say I = {i1, . . . , ik} ⊆ E is independent if it is algebraically independent over F;
that is, if there does not exist a non-trivial polynomial P (x1, . . . , xk) with coefficients in F
such that P (i1, . . . , ik) = 0. Then (E, I) is a matroid. Such a matroid is called algebraic.
[vdW37]

4. (Matchings) Let G = (S ∪ T,E) be a bipartite graph, so every edge in E joins a vertex of S
and a vertex of T . Recall that a partial matching of G is a set of edges, no two of which
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have a common vertex. Let I be the collection of subsets I ⊆ T which can be matched to S;
that is, those for which there exists a partial matching whose edges contain the vertices in I.
Then (T, I) is a matroid. Such a matroid is called transversal. [EF65]

5. (Routings) Let G = (V,E) be a directed graph and B0 be an r-subset of the vertices. Let B
be the collection of r-subsets of V for which there exists a routing (a collection of r vertex-
disjoint paths) starting at B and ending at B0. Then (V,B) is a matroid. Such a matroid is
called cotransversal. [Mas72]

6. (Dyck paths) For each Dyck path P of length n, let B ⊆ [2n] be the upstep set of P ; that
is, the set of integers i for which the ith step of P is an upstep. Let B be the collection of
upstep sets of Dyck paths of length n. Then ([2n],B) is the set of basis of a matroid. This
matroid is called a Catalan matroid Cn. More generally, we may consider the lattice paths
of 2n steps (1, 1) and (1,−1) which stay between an upper and a lower border; their upstep
sets form the bases of a lattice path matroid. [Ard03, BdMN03]

7. (Schubert matroids) Given n ∈ N and a set of positive integers I = {i1 < · · · < ik}, the
sets {j1 < · · · < jk} ⊆ [n] such that j1 ≥ i1, . . . , jk ≥ ik are the bases of a matroid. These
matroids are called Schubert matroids due to their connection to the Schubert cells in the
Grassmannian Gr(k, n). This simple but important family of matroids has been rediscovered
many times under names such as freedom matroids [CS05] and shifted matroids [Ard03, Kli07].

8. (Positroids) A positroid is a matroid on [n] which can be represented by the columns of a full
rank d× n matrix such that all its maximal minors are nonnegative. [Pos06] These matroids
arise in the study of the totally nonnegative part of the Grassmannian, and have recently
found applications in the physics of scattering amplitudes. Remarkably, these matroids can
be described combinatorially, and they are in bijection with several interesting classes of
objects with elegant enumerative properties. [ARW13b, Oh09, Pos06, Wil05]
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Figure 7.1: Many manifestations of the same matroid.

Example 7.3.1. The list above gives eight different manifestations of the matroid on {a, b, c, d, e, f}
with bases B = {abc, abd, abe, acd, ace}. Figure 7.1 shows a vector configuration in R3 (with f = 0)
which realizes M as a linear matroid, a graph which realizes it as a graphical matroid, a bipartite
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graph which realizes it as a transversal matroid, the five Dyck paths of length 3 which show that
M is the Catalan matroid C3, and a directed graph with sinks B0 = {a, c, e} which realize M as a
cotransversal matroid. It can be realized as an algebraic matroid in the field extension R ⊂ R(x, y, z)
with a = z3, b = x + y, c = x − y, d = xy, e = x2y2, f = 1. It is also isomorphic to the Schubert
matroid on [6] for I = {2, 4, 6}. Finally, it is a positroid, since in the realization shown, all five
bases are positive: they all satisfy the “right-hand rule” for vectors in R3.

To give a small illustration of the power of matroids, let us revisit the almost trivial observation
that all bases of a matroid have the same size. This result has many interesting consequences:
• All bases of a vector space have the same size, called the “dimension” of V .
• All spanning trees of a connected graph have the same number (v − 1) of edges.
• All maximal partial matchings of a bipartite graph have the same size.
• All transcendence bases of a field extension have the same size, called the “transcendence

degree” of the extension.
Naturally, once we work harder to obtain more interesting results about matroids, we will obtain
more impressive results in all of these different fields.

7.4 Basic constructions.

We now discuss the notions of duality, minors, direct sums, and connected components in matroids;
in Section 7.5 we explain how they generalize similar notions in linear algebra and graph theory.

Proposition/Definition 7.4.1. (Duality) Let M = (E,B) be a matroid, and let B∗ = {E − B :
B ∈ B}. Then M∗ = (E,B∗) is also a matroid, called the dual matroid of M .

Note that the loops of a matroid M are the coloops of M∗.

Proposition/Definition 7.4.2. (Deletion, contraction) Let M = (E, I) be a matroid and s ∈ E.
Let

I ′ = {I ∈ I : s /∈ I}, I ′′ =

{
{I ⊆ E − s : I ∪ s ∈ I}, if s is not a loop

I, if s is a loop

Then M\s = (E− s, I ′) and M/s = (E− s, I ′′) are also matroids. They are called the deletion of
s from M (or the restriction of M to E − s) and the contraction of s from M .

Proposition/Definition 7.4.3. (Minors) Let M be a matroid on E.

1. Deletion and contraction commute; that is, for all s 6= t in E,

(M\s)\t = (M\t)\s, (M/s)/t = (M/t)/s, (M/s)\t = (M\t)/s.

2. Let the deletion M\S (resp. contraction M/S) of a subset S ⊆ E from M be the successive
deletion (resp. contraction) of the individual elements of S. Their rank functions are

rM\S(A) = r(A), rM/S(A) = r(A ∪ S)− r(S) (A ⊆ E − S)

Let a minor of M be a matroid of the form M/S\T for disjoint S, T ⊆ E.
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3. Deletion and contraction are dual operations; that is, for all S ⊆ E,

(M\S)∗ = M∗/S

Proposition/Definition 7.4.4. (Direct sum, connected components)

1. If M = (E1, I1) and M2 = (E2, I2) are matroids on disjoint ground sets, then I = {I1 ∪ I2 :
I1 ∈ I1, I2 ∈ I2} is the collection of independent sets of a matroid M1 ⊕M2 = (E1 ∪ E2, I),
called the direct sum of M1 and M2.

2. Any matroid M decomposes uniquely as a direct sum M = M1 ⊕ · · · ⊕Mc. The ground sets
of M1, . . . ,Mc are called the connected components of M . If c = 1, M is connected.

The matroid polytope of M has dim(PM ) = n− c where n is the number of elements of M and
c is the number of connected components.

7.5 A few structural results.

Although they will not be strictly necessary in our discussion of enumerative aspects of matroids,
it is worthwhile to mention a few important structural results. In particular, in this section we
explain the meaning of duality and minors for various families of matroids.

Duality.
• The dual of a linear matroid is linear. When M is the matroid of a subspace V of a vector

space W , M∗ is the matroid of its orthogonal complement V ⊥. For that reason, M∗ is sometimes
called the orthogonal matroid of M .
• The dual of a graphical matroid is not necessarily graphical; however, matroid duality is a

generalization of graph duality. We say a graph G is planar if it can be drawn on the plane so that
its edges intersect only at the endpoints. Such a drawing is called a plane graph. The dual graph
G∗ is obtained by putting a vertex v∗ inside each region of G (including the “outside region”), and
joining v∗ and w∗ by an edge labelled e∗ if the corresponding regions of G are separated by an edge
e in G. This construction is exemplified in Figure 7.2. The graph G∗ depends on the drawing of
G, but its matroid does not: if G is planar, we have M(G∗) = M(G)∗.

Figure 7.2: A plane graph G and its dual G∗.

• Embarrassingly, no one knows whether the dual of an algebraic matroid is always algebraic.
This illustrates how poorly we currently understand this family of matroids.
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• The cotransversal matroids are precisely the duals of the transversal matroids.
• The Catalan matroid is self-dual. The dual of a lattice path matroid is a lattice path matroid.
• Linear programming duality can be framed and generalized in the context of oriented matroids;

see [BLVS+99] for details.

Corollary 7.5.1. If a connected planar graph has v vertices, e edges, and f faces, then v−e+f = 2.

Proof. A basis of our graph G has v−1 elements and a basis of its dual graph G∗ has f−1 elements;
so if M is the matroid of G, we have (v − 1) + (f − 1) = r(M) + r(M∗) = e.

Minors.
• The minors of a linear matroid are linear. If M is the matroid of a vector configuration E ⊂ V

and v ∈ E, then M\v is the matroid of E\v, and M/v is the matroid of E\v modulo v; that is,
the matroid of π(E\v), where π : V → V/(span v) is the canonical projection map.
• The minors of a graphical matroid are graphical. If M is the matroid of a graph G and e = uv

is an edge, then M\e is the matroid of the graph G\e obtained by removing the edge e, and M/e
is the matroid of the graph G/e obtained by removing the edge e and identifying vertices u and v.
• [Oxl11, Cor. 6.7.14] The minors of an algebraic matroid are algebraic.
• Transversal matroids are closed under contraction, but not deletion. Cotransversal matroids

are closed under deletion, but not contraction. A gammoid is a deletion of a transversal matroid
or, equivalently, a contraction of a cotransversal matroids. Gammoids are the smallest minor-closed
class of matroids containing transversal (or cotransversal) matroids.
• [BdMN03] Catalan matroids are not closed under deletion or contraction. Lattice path ma-

troids are closed under deletion and contraction.

Direct sums and connectivity.
• If M1 and M2 are the linear matroids of configurations E1 ⊂ V1 and E2 ⊂ V2 over the same

field k, then M1 ⊕M2 is the matroid of {(v1,0) : v1 ∈ E1} ∪ {(0,v2) : v2 ∈ E2} in V1 × V2.
• If M1 and M2 are the matroids of graphs G1 and G2, then M1 ⊕M2 is the matroid of the

disjoint union of G1 and G2. The matroid of a loopless graph G is connected if and only if G
is 2-connected; that is, G is connected, and there does not exist a vertex of G whose removal
disconnects it.

Non-representability. Although it is conjectured that almost all matroids are not linear and not
algebraic, it takes some effort to construct examples of non-linear and non-algebraic matroids. We
describe the simplest examples.
• The Fano matroid F7 is the linear matroid determined by the seven non-zero vectors in F3

2.
This matroid is illustrated in the left panel of Figure 7.3, where an element is denoted by a vertex,
and a circuit is denoted by a line or circle joining the points in question. The Fano matroid is
representable over k if and only if char(k) = 2.
• The non-Fano matroid F−7 is the linear matroid determined by the seven non-zero 0-1

vectors (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1) in R3. It is representable over k
if and only if char(k) 6= 2.
• The direct sum F7 ⊕ F−7 is not representable over any field.
• The Vámos matroid V8 is a matroid of rank 4 whose only non-trivial circuits are 1234, 1456,

1478, 2356, 2378, as illustrated in the right panel of Figure 7.3. This matroid is not representable
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Figure 7.3: The Fano matroid, the non-Fano matroid F−7 , and the Vamos matroid V8.

over any field, because in any affine configuration of points with these coplanarities, 5678 would
also be coplanar. The Vamos matroid is also not algebraic over any field.

Relating various classes. Most matroids that we encounter naturally in combinatorics are linear,
although this is usually not clear from their definition.
• All the examples of Section 7.3 are linear, with the possible exception of algebraic matroids.
• Graphical, transversal, cotransversal matroids, and positroids are linear.
• Linear matroids over k are algebraic over k.
• Algebraic matroids over k of characteristic 0 are linear over a field extension of k.
• Catalan matroids are Schubert matroids.
• Schubert matroids are lattice path matroids.
• Lattice path matroids are transversal.
• Positroids are gammoids.

Obstructions to representability. A general question in structural matroid theory is to try to
describe a family F of matroids by understanding the “obstructions” to belong to F . These results
are inspired by Kuratowski’s Theorem in graph theory, which asserts that a graph is planar if and
only if it does not contain the complete graph K5 or the complete bipartite graph K3,3 as a minor.
Similarly, one seeks a (hopefully finite) list of minors that a matroid must avoid to be in F .

The question that has received the most attention has been that of characterizing the matroids
that are representable over a particular field. Here are some results:
• M is representable over F2 if and only if it has no minor isomorphic to U2,4.
• M is representable over F3 if and only if it has no minor isomorphic to U2,5, U3,5, F7, or F ∗7 .
•M is representable over every field if and only if it has no minor isomorphic to U2,4, F7, or F ∗7 .
•M is graphical if and only if it has no minor isomorphic to U2,4, F7, F

∗
7 ,M(K5)∗, or M(K3,3)∗.

• For any field of characteristic zero, there are infinitely many minor-minimal matroids that are
not representable over F.
• (Rota’s Conjecture) For any finite field Fq, there is a finite set Sq of matroids such that M is

representable over Fq if and only if it contains no minor isomorphic to a matroid in Sq.
In 2013, Geelen, Gerards, and Whittle announced a proof of Rota’s conjecture. In [GGW14]

they write: “We are now immersed in the lengthy task of writing up our results. Since that process
will take a few years, we have written this article offering a high-level preview of the proof”.
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Asymptotic enumeration. The asymptotic growth of various classes of matroids is not well un-
derstood. Let P be a matroid property, and let p(n) be the number of matroids on [n] having
property P . Let l(n) be the number of matroids on [n]. The asymptotic proportion of matroids
having property P is limn→∞ p(n)/l(n), if it exists. We list some conjectures. [MNWW11]
• Asymptotically almost every matroid is connected.
• Asymptotically almost every matroid M is paving; that is, all its circuits have size r or r+1.
• Asymptotically every matroid is asymmetric, that is, it has no non-trivial automorphism.
• Asymptotically every matroid is not linear.
• Asymptotically almost every matroid of n elements on rank r satisfies (n−1)/2 ≤ r ≤ (n+1)/2.

We also list some results:
• [BPvdP12, Knu74] The number mn of matroids on [n] satisfies

n− 3

2
log n+

1

2
log

2

π
− o(1) ≤ log logmn ≤ n−

3

2
log n+

1

2
log

2

π
+ 1 + o(1)

• [MNWW11] Asymptotically almost every matroid is loopless and coloopless.
• [MNWW11] Asymptotically, the proportion of matroids that are connected is at least 1/2.

(It is conjectured to equal 1.)
• [ARW13b] Asymptotically, the proportion of positroids that are connected is 1/e2.

7.6 The Tutte polynomial

Throughout this section, let R be an arbitrary commutative ring. A function f : Matroids→ R is
a matroid invariant if f(M) = f(N) whenever M ∼= N . Let L and C be the matroids consisting
of a single loop and a single coloop, respectively.

7.6.1 Explicit definition.

The invariant that appears most often in enumerative questions is the Tutte polynomial

TM (x, y) =
∑
A⊆M

(x− 1)r−r(A) (y − 1)|A|−r(A). (25)

When we meet a new matroid invariant, the first question we usually ask is whether it is an
evaluation of T (x, y).

7.6.2 Recursive definition and universality property.

The ubiquity of the Tutte polynomial is not an accident: it is universal in a large, important
family of matroid invariants. Let us make this precise. Let R be a ring. Say f : Matroids→ R is a
generalized Tutte-Grothendieck invariant if for every matroid M and every element e ∈M ,

f(M) =


af(M\e) + bf(M/e) if e is neither a loop nor a coloop

f(M\e)f(L) if e is a loop

f(M/e)f(C) if e is a coloop

(26)

for some non-zero constants a, b ∈ R. It is a Tutte-Grothendieck invariant if a = b = 1.
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Theorem 7.6.1. The Tutte polynomial is a universal Tutte-Grothendieck invariant; namely:

1. For every matroid M and every element e ∈M

TM (x, y) =


TM\e(x, y) + TM/e(x, y) if e is neither a loop nor a coloop,

y TM\e(x, y) if e is a loop,

x TM/e(x, y) if e is a coloop.

2. Any generalized Tutte-Grothendieck invariant is a function of the Tutte polynomial. Explicitly,
if f satisfies (26), then

f(M) = an−r br TM

(
f(C)

b
,
f(L)

a

)
.

where n is the number of elements and r is the rank of M .14

Sketch of Proof. This is a very powerful result with a very simple proof. The first part is a straight-
forward computation from the definitions. The second statement then follows easily by induction
on the number of elements of M .

More generally, write T (x, y) =
∑

i,j tijx
iyj . If f satisfies f(M) = f(M\e) + f(M/e) when e is

neither a loop nor a coloop, then f(M) =
∑

i,j tijf(Ci ⊕ Lj), where Ci ⊕ Lj denotes the matroid
consisting of i coloops and j loops.

Proposition 7.6.2. The Tutte polynomial behaves well with respect to duality and direct sums:

1. For any matroid M , TM∗(x, y) = TM (y, x).

2. For any matroids M and N on disjoint ground sets, TM⊕N (x, y) = TM (x, y)TN (x, y).

7.6.3 Activity interpretation.

An unexpected consequence of Theorem 7.6.1 is that the Tutte polynomial has non-negative coeffi-
cients; this is not at all apparent from the explicit formula (25). As usual, the natural question for
a combinatorialist is: what do these coefficients count? The natural question for an algebraist is:
what vector spaces have these coefficients as their dimensions? At the moment, the first question
has a nice answer, while the second one does not.

Fix a linear order < on the elements of E. Say an element i ∈ B is internally active if there
is no basis B − i ∪ j with j < i. Say an element j /∈ B is externally active if there is no basis
B − i ∪ j with i < j. These are dual notions: i is internally active with respect to basis B in M if
and only if it is externally active with respect to basis E −B in M∗.

Theorem 7.6.3. [Cra69, Tut54] For any linear order < on the ground set of a matroid, let I(B)
and E(B) be, respectively, the set of internally active and externally active elements with respect
to B. Then

TM (x, y) =
∑

B basis

x|I(B)|y|E(B)|.

14We do not need to assume a and b are invertible; when we multiply by an−r br, we cancel all denominators.
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Sketch of Proof. It is possible to give a standard deletion-contraction proof, by showing that the
right hand side is a Tutte-Grothendieck invariant, and applying Theorem 7.6.1. However, there is a
much more enlightening explanation. One may prove [Cra69] that the intervals [B\I(B), B∪E(B)]
partition the Boolean lattice 2E . In other words, every subset of the ground set can be written
uniquely in the form (B\J)∪F where B is a basis, J ⊆ I(B), and F ⊆ E(B). Furthermore, under
these assumptions r((B\J) ∪ F ) = r − |J |. Therefore

TM (x, y) =
∑

B basis

∑
J⊆I(B)

∑
F⊆E(B)

(x− 1)|J |(y − 1)|F | =
∑

B basis

x|I(B)|y|E(B)|

as desired.

This combinatorial interpretation of the non-negative coefficients of the Tutte polynomial is
very interesting combinatorially, but it would be even nicer to find an interpretation that does not
depend on choosing a linear order on the ground set.

In a different direction, Procesi [DCP08a] asked the following question: Given a matroid M , is
there a natural bigraded algebra whose bigraded Hilbert polynomial is TM (x, y)? This question is
still open. It may be more tractable (and still very interesting) when M is representable; we will
see some approximations in Section 7.7.

7.6.4 Finite field interpretation.

The coboundary polynomial χM (X,Y ) is the following simple transformation of the Tutte
polynomial:

χM (X,Y ) = (Y − 1)rTM

(
X + Y − 1

Y − 1
, Y

)
.

It is clear how to recover T (x, y) from χ(X,Y ). We have the following interpretation of the cobound-
ary (and hence the Tutte) polynomial.

Theorem 7.6.4. (Finite Field Method) [Ard07, CR70, WW99] Let A be a hyperplane arrangement
of rank r in Fdq . For each point p ∈ Fdq let h(p) be the number of hyperplanes of A containing p.
Then ∑

p∈Fdq

th(p) = qn−rχ(q, t).

Proof. For each p ∈ Fnq , let H(p) be the set of hyperplanes of A that p lies on. Then

qn−r χA(q, t) =
∑
B⊆A

qn−r(B)(t− 1)|B| =
∑
B⊆A

qdim∩B(t− 1)|B| =
∑
B⊆A
| ∩ B | (t− 1)|B|

=
∑
B⊆A

∑
p∈∩B

(t− 1)|B| =
∑
p∈Fnq

∑
B⊆H(p)

(t− 1)|B| =
∑
p∈Fnq

(1 + (t− 1))h(p),

as desired.

Computing Tutte polynomials is extremely difficult (#P-complete [Wel93]) for general matroids,
but it is still possible in some cases of interest. Theorem 7.6.4 is one of the most effective methods
for computing Tutte polynomials of (a few) particular arrangements A in k

d, as follows.
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If the hyperplanes of A have integer coefficients (as most arrangements of interest do), we may
use the same equations to define an arrangement Aq over Fdq . If q is a power of a large enough
prime, then A and Aq have isomorphic matroids, and hence have the same Tutte polynomial. Then
Theorem 7.6.4 reduces the computation of TA(x, y) to an enumerative problem over Fdq , which can
sometimes be solved. [Ard07]

7.7 Tutte polynomial evaluations

Many important invariants of a matroid are generalized Tutte-Grothendieck invariants, and hence
are evaluations of the Tutte polynomial. In fact, many results outside of matroid theory fit naturally
into this framework. In this section we collect, without proofs, results of this sort in many different
areas of mathematics and applications.

One can probably prove every statement in this section by proving that the quantities in ques-
tion satisfy a deletion–contraction recursion; many of the results also have more interesting and
enlightening explanations. The wonderful surveys [BO92], [EMM11], and [Wel93] include most of
the results mentioned here; we provide references for the other ones.

General evaluations. Let M be any matroid of rank r.
• The number of independent sets is T (2, 1).
• The number of spanning sets is T (1, 2).
• The number of bases is T (1, 1).
• The number of elements of the ground set is log2 T (2, 2).
• The Möbius number is µ(M) = µLM (0̂, 1̂) = (−1)rT (1, 0).
• We have the formula χM (q) = (−1)r(M)T (1− q, 0) for the characteristic polynomial:15

χM (q) =
∑
F∈LM

µ(0̂, F )qr−r(F ).

• The beta invariant of M is defined to be β(M) = [x1y0]T (x, y) = [x0y1]T (x, y). It has some
useful properties. We always have β(M) ≥ 0. We have β(M) = 0 if and only if M is disconnected.
We have β(M) = 1 if and only if M is the graphical matroid of a series-parallel graph; that is,
a graph obtained from a single edge by repeatedly applying series extensions (convert an edge uv
into two edges uw and wv for a new vertex w) and parallel extensions (convert one edge uv into
two edges joining u and v). There are similar characterizations of the matroids with β(M) ≤ 4.

The independence complex of M is the simplicial complex consisting of the independent sets
of M . Recall that the f -vector (f0, . . . , fr) and h-vector (h0, . . . , hr) are defined so that fi is the
number of sets of size i and

∑
hix

r−i =
∑
fi(x− 1)r−i. Then:

• The reduced Euler characteristic of the independence complex is T (0, 1).
• The f -polynomial of the independence complex is

∑
i fix

i = xrT (1 + 1
x , 1).

• The h-polynomial of the independence complex is
∑

i hix
i = xrT ( 1

x , 1).
This h-polynomial is also known as the shelling polynomial of M .

There are (more than) two other interesting geometric/topological objects associated to a
matroid. Björner [Bjö82] described the order complex of the (proper part of the) lat-
tice of flats ∆(LM − {0̂, 1̂}), showing it is a wedge of T (1, 0) spheres. The Bergman fan

15Note that if A is a hyperplane arrangement of rank r in k
n and M is its matroid, then the characteristic

polynomials defined in Section 6.2 is given by χA(q) = qd−rχM (q).
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Trop(M) = {w ∈ RE : for every circuit C, maxc∈C wc is achieved at least twice} is the tropical
geometric analog of a linear space. The Bergman complex is its intersection with the unit
sphere. Ardila and Klivans showed B(M) and ∆(LM − {0̂, 1̂}) are homeomorphic. [AK06] Then:
• [Bjö82] The reduced Euler characteristic of the order complex ∆(LM − {0̂, 1̂}) is T (1, 0).
• [AK06] The reduced Euler characteristic of the Bergman complex B(M) is T (1, 0).
• [Zha13] The Poincaré polynomial of the tropical cohomology of Trop(M) is qrT (1 + 1/q, 0).

One of the most intriguing conjectures in matroid theory is Stanley’s h-vector conjecture
[Sta77] which states that for any matroid M , there exists a set X of monomials such that:

- if m and m′ are monomials such that m ∈ X and m′|m, then m′ ∈ X,
- all the maximal monomials in X have the same degree,
- there are exactly hi monomials of degree i in X.

This conjecture has been proved, using rather different methods, for several families: duals of
graphic matroids, [Mer01], lattice path matroids [Sch10] cotransversal matroids [Oh13], paving
matroids [MNRIVF12], and matroids up to rank 4 or corank 2 [DLKK12, KS14]. The general case
remains open.

Graphs. Let G = (V,E) be a graph with v vertices, e edges, and c connected components. Let
M(G) be the matroid of G and T (x, y) be its Tutte polynomial.

(Colorings.) Recall that the chromatic polynomial χG(q) of a graph, when evaluated at a positive
integer q, counts the proper colorings of G with q colors.
• We have

χG(q) = (−1)v−cqc T (1− q, 0).

• More generally, for every q-coloring χ of the vertices of G, let h(χ) be the number of edges
whose endpoints have the same color. Then∑

χ:V→[q]

th(χ) = (t− 1)v−cqc T

(
q + t− 1

t− 1
, t

)
(27)

(Flows.) Fix an orientation of the edges of G and a finite Abelian group H of t elements, such as
Z/tZ, for some t ∈ N. An H-flow is an assignment f : E → H of a “flow” (an element of H) to
each edge such that at every vertex, the total inflow equals the outflow as elements of H. We say
f is nowhere zero if f(e) 6= 0 for all edges e.
• The number of nowhere zero t-flows is given by the flow polynomial

χ∗G(t) = (−1)e−v+cT (0, 1− t).

In particular, this number is independent of the orientation of G. It also does not depend on the
particular group H, but only on its size.
• More generally, for every H-flow f on the edges of G, let h(v) be the number of edges having

flow equal to 0. Then ∑
f :E→H

th(f) = (t− 1)e−v+cT

(
t,
q + t− 1

t− 1

)
.
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(Acyclic orientations.) An acyclic orientation of G is an orientation of the edges that produces
no directed cycles.
• The number of acyclic orientations is T (2, 0).
• A source (resp. a sink) of an orientation is a vertex with no incoming (resp. outgoing)

edges. For any fixed vertex w, the number of acyclic orientations whose unique source is w is
(−1)v−cµ(M(G)) = T (1, 0). In particular, it does not depend on the choice of w.
• For any edge e = uv, the number of acyclic orientations whose unique source is u and whose

unique sink is v is the beta invariant β(M(G)). In particular, it is independent of the choice of e.

(Totally cyclic orientations.) A totally cyclic orientation of G is an orientation of the edges such
that every edge is contained in a cycle. If G is connected, this is the same as requiring that there
are directed paths in both directions between any two vertices.
• The number of totally cyclic orientations is T (0, 2).
• Given an orientation o of G, the outdegree of a vertex is the number of outgoing edges, and

the outdegree sequence of o is (outdeg(v) : v ∈ V ). The number of distinct outdegree sequences
among the orientations of G is T (2, 1)
• For any edge e, the number of totally cyclic orientations of G such that every directed cycle

contains e is equal to 2β(M(G)). In particular, it is independent of e.

(Eulerian orientations.) Recall that an orientation of G is Eulerian if each vertex has the same
number of incoming and outgoing edges. Say G is 4-regular if every vertex has degree 4.
• A 4-regular graph G has (−1)v+cTG(0,−2) Eulerian orientations or ice configurations .

(They are in easy bijection with the nowhere-zero Z3-flows.)

(Chip firing.) Let G = (V,E) be a graph and let q ∈ V be a vertex called the bank. A chip
configuration is a map θ : V → Z with θ(v) ≥ 0 for v 6= q and θ(q) = −

∑
v 6=q θ(v). We think of

vertex v as having θ(v) chips. We say v 6= q is ready if θ(v) ≥ deg(v), and q is ready if no other
vertex is ready. In each step of the chip firing game, a ready vertex v gives away deg(v) chips,
giving e chips to w if there are e edges connecting v and w.

We say a configuration θ is stable if the only vertex that is ready is q. We say θ is recurrent
if it is possible to fire a (non-empty) sequence of vertices subsequently, and return to θ. We say
θ is critical if it is stable and recurrent. One can check that for any starting chip configuration,
the chip firing game leads us to a unique critical configuration. The following result is the key to
Merino’s proof of Stanley’s h-vector conjecture in the special case of cographic matroids:
• [Mer01] The generating function for critical configurations is∑

θ critical

y−θ(q) = y|E|−deg(q)TG(1, y).

Chip-firing games have recently gained prominence as that they are intimately connected to the
study of divisors on tropical algebraic curves. [BN07, GK08]

(Plane graphs and Eulerian partitions.) Let G be a connected plane graph. The medial graph H
has a vertex on each edge of G, and two vertices of H are connected if the corresponding edges of
G are neighbors in some face of G. This construction is shown in Figure 7.4.

An Eulerian partition π of H is a partition of the edges into closed paths. A closed path
may revisit vertices, but it may not revisit edges; and different starting points and orientations are
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Figure 7.4: A connected graph G and its medial graph H in bold.

considered to be the same path. Let γ(π) be the number of paths in π. If the edges of a vertex v
of H are e1, e2, e3, e4 in clockwise order, say π has a crossing at v if one of its paths uses edges e1

and e3 consecutively.
• [LV88] We have TG(−1,−1) = (−1)e(−2)γ(πc)−1, where πc is the unique fully crossing

Eulerian partition of H with a crossing at every vertex.
• [LV88] If Πnc(H) is the set of Eulerian partitions of H with no crossings, then

TG(x, x) =
∑

P∈Πnc(H)

(x− 1)γ(P )−1.

In the example above, note that the fully crossing Eulerian partition ofG consists of one Eulerian
walk, in agreement with TG(−1,−1) = 1 = (−1)6(−2)1−1. We have TG(x, x) = 3x4 + 2x3.

Hyperplane arrangements. Let A be an arrangement of n hyperplanes in k
d of rank r. Let V (A)

be the complement of A in k
d. We restate some theorems from Section 6.2 and present new ones.

• If k = R, the number of regions of V (A) is T (2, 0).
• If k = C, the Poincaré polynomial of V (A) is qrT (1 + 1

q , 0).

• If k = Fq, the number of elements of V (A) is (−1)rqn−rT (1− q, 0)
• Suppose k = R, and consider an affine hyperplane H which is in general position with respect

to A. Then the number of regions of A which have a bounded (and non-empty) intersection with
H is (−1)r|µ(M)| = T (1, 0).
• Suppose k = R, and add to A an affine hyperplane H ′ which is a translation of H ∈ A. The

number of bounded regions of A ∪H ′ is β(M).

Algebras from vector and hyperplane arrangements. There are several natural algebraic spaces
related to the Tutte polynomial arising in commutative algebra, hyperplane arrangements, box
splines, and index theory; we discuss a few. For each hyperplane H in a hyperplane arrangement
A in k

d let lH be a linear function such that H is given by the equation lH(x) = 0.
• [Wag99] Let CA,0 = span{

∏
H∈B lH : B ⊆ A}. This is a subspace of a polynomial ring in d

variables, graded by degree. Its dimension is T (2, 1) and its Hilbert series is

Hilb(CA,0; q) =
∑
j≥0

dim(CA,0)j q
j = qn−rT

(
1 + q,

1

q

)
.

• [AP10, DM85, HR11, PS04, PSS99] More generally, let CA,k be the vector space of polynomial
functions such that the restriction of f to any line l has degree at most ρA(h) + k, where ρA(h) is
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the number of hyperplanes of A not containing h. It is not obvious, but true, that this definition
of CA,0 matches the one above. Then

Hilb(CA,−1; q) = qn−rT

(
1,

1

q

)
, Hilb(CA,−2; q) = qn−rT

(
0,

1

q

)
and similar formulas hold for any k ≥ −2.
• [BV99, PS06, Ter02] Let R(A) be the vector space of rational functions whose poles are in

A. It may be described as the k-algebra generated by the rational functions {1/lH : H ∈ A}; we
grade it so that deg(1/lH) = 1. Then

Hilb(R(A); q) =
qd

(1− q)d
T

(
1

q
, 0

)
.

Error-correcting codes. Suppose we wish to transmit a message over a noisy channel. We might
then encode our message in a redundant way, so that we can correct small errors introduced during
transmission. An error-correcting code is a set C ⊂ An of codewords of length n over an
alphabet A. The sender encodes each word into a redundant codeword, which they transmit. If
the channel is not too noisy and the codewords in C are sufficiently different from each other,
the recipient will succeed in recovering the original message. Of course it is useful to have many
codewords available under these constraints.

A common kind of error-correcting code is a linear code C, which is a k-subspace of a vector
space Fnq . The codewords have length n and alphabet Fq. The support of a word is the set of
non-zero entries. The distance d(u,v) between two words u and v is the number of coordinates
where u and v differ. Since u− v ∈ C, we have d(u,v) = |supp(u− v)|. The minimum distance
d in the code is d = minc∈C |supp(c)|. The code C is said to be of type [n, k, d].

• The weight enumerator of a linear code over Fq is WC(q, z) =
∑

c∈C z
|supp(c)|. Curtis Greene

[Gre76] discovered that it can be expressed in terms of the Tutte polynomial; in fact, Theorem 7.6.4
is equivalent to the equation

WC(q, z) = (1− z)kzn−k TC
(

1 + (q − 1)z

1− z
,

1

z

)
. (28)

The dual code of C is C⊥ = {x ∈ Fnq : (x, c) = 0 for all c ∈ C}. An important example is
the Hamming code H. Let A(2, n) be the rowspace of the n × (2n − 1) matrix whose columns
are all the nonzero vectors in Fn2 , and let H = A(2, n)⊥. This is a largest possible code (consisting
of 22n−n−1 words) of length 2n − 1 and distance 3.
• Florence MacWilliams [Mac63] gave the following remarkable identity relating the weight

enumerators of C and C⊥:

WC⊥(q, z) =
(1 + (q − 1)z)n

qk
WC

(
q,

1− z
1 + (q − 1)z

)
In light of (28), this is equivalent to Tutte polynomial duality: TC⊥(x, y) = TC(y, x). It is easy to
show that the weight enumerator of A(2, n) is 1+(qn−1)zq

n−1
. [Gre76, Example 3.4] MacWilliams’s

Identity then gives us the weight enumerator of the Hamming code.
• Another nice result [Jae89] is that if C is a linear code in Fn2 then TC(−1,−1) = (−1)n|C∩C⊥|.
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Probability and statistical mechanics. The Tutte polynomial arises in several standard processes
in probability and statistical physics. We consider three related models. [BO92, Sok05, Wel93]
• Suppose each edge of a connected graph G is white with probability p and black with proba-

bility 1− p (for fixed 0 ≤ p ≤ 1), independently of the other edges. The probability that the white
graph is connected is given by the reliability polynomial

RG(p) =
∑
A⊆E

A spanning

p|A|(1− p)|E−A| = (1− p)e−v+1pv−1 TG

(
1,

1

1− p

)
.

• The random cluster model depends on parameters 0 ≤ p ≤ 1 and q > 0. Now we choose
a white set of edges at random, and the probability of choosing A ⊂ E is p|A|(1− p)|E−A|qc(A)/Z,
where c(A) = |V | − r(A) is the number of components of A, and Z is a scaling constant. To know
the probability of a particular state, it is fundamental to know the scaling constant Z, which is the
partition function

Z(p, q) =
∑
A⊆E

p|A|(1− p)|E−A|qc(A) = pv−c(1− p)e−v+cqc TG

(
1 +

q(1− p)
p

,
1

1− p

)
.

• In the q-state Potts model, a graph G = (V,E) models a set V of “atoms” and a set E of
“bonds” between them. (When q = 2, this is the Ising model.) Each atom can exist in one of q
states or “spins”. Each edge e = uv has an associated interaction energy Je between u and v. The
energy (or Hamiltonian) H of a configuration is the sum of −Je over all edges e whose vertices have
the same spin.16 A configuration of energy H has Boltzmann weight e−βH where β = 1/kT > 0, T
is the temperature, and k is Boltzmann’s constant.

The partition function is the sum of the Boltzmann weights of all configurations:

ZG(q,w) =
∑

σ:V→[q]

∏
e=ij∈E
σ(i)=σ(j)

eβJe =
∑

σ:V→[q]

∏
e=ij∈E
σ(i)=σ(j)

(1 + we)

where we = eβJe − 1. If all Jes are equal to J and w = eβJ − 1, then (27) gives

ZG(q, w) = wv−cqc T
( q
w

+ 1, w + 1
)
.

For general Je, a simple computation shows that

q−vZG(q,w) =
∑
A⊆E

q−r(A)
∏
e∈A

we = Z̃G(q,w)

where Z̃G(q,w) is the multivariate Tutte polynomial of Section 7.9.

Other applications.
• A knot is an embedding of a circle in R3. It is a difficult, important question to determine

whether a knot can be deformed smoothly (without cutting or crossing segments) to obtain another

16The case Je ≥ 0 is called ferromagnetic, as it favors adjacent spins being equal. The case Je ≤ 0 is antiferromag-
netic. Here we are assuming that there is no external magnetic field. If there were such a field, it would contribute
an additional term to the Hamiltonian, and the direct connection with the Tutte polynomial is no longer valid.
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knot; or even to determine whether a given knot is actually knotted or not. Let O be the unknotted
circle in R3.

One common approach is to construct a function f(K) of a knot K which does not change
under smooth deformation. If f(K) 6= f(O), then K is actually knotted. One such function is the
Jones polynomial V (K).[Jon85] If K is an alternating knot, there is a graph G associated to
it such that the Jones polynomial of K is an evaluation of the Tutte polynomial of G. For details,
see [Wel93].
• [Rei99] There is a more symmetric finite field interpretation for the Tutte polynomial. Let M

be an integer matrix, and let p and q be prime powers such that the matroid of M does not change
when M is considered as a matrix over Fp or over Fq. Then

TM (1− p, 1− q) = (−1)r(M)
∑

x∈row(M),y∈ker(M)

supp(x)tsupp(y)=E

(−1)|supp(y)|,

where the rowspace row(M) is considered as a subspace of Fnp and the kernel ker(M) is considered
as a subspace of Fnq , and t denotes a disjoint union.
• [Ard03, BdMN03] The Tutte polynomial of the Catalan matroid is

TCn(x, y) =
∑

P Dyck

xa(P )yb(P ),

where a(P ) is the number of upsteps before the first downstep of P , and b(P ) is the number of
times that P returns to the x-axis. Since Cn is self-dual, this polynomial is symmetric in x and y.

In fact, the coefficient of xiyj in TCn(x, y) depends only on i+ j. It would be interesting to find
other families of matroids with this unusual property.
• [BdMN03] More generally, the Tutte polynomial of a lattice path matroid is the sum over

the bases P of xa(P )yb(P ), where a(P ) and b(P ) are the number of returns to the upper and lower
boundary paths, respectively.
• [KP04] A T-tetromino is a T-shape made of four unit squares. Figure 7.5 shows a T-tetromino

tiling of an 8 × 8 square. The number of T-tetromino tilings of a 4m × 4n rectangle equals
2TLm,n(3, 3), where Lm,n is the m × n grid graph. This result extends to T-tetromino tilings of
many other shapes and, more generally, to coverings of many graphs with copies of the “claw”
graph K1,3.

Figure 7.5: A tiling of an 8× 8 rectangle by T-tetrominoes.
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7.8 Computing the Tutte polynomial

As we already mentioned, computing the Tutte polynomial of an arbitrary graph or matroid is not
a tractable problem. In the language of complexity theory, this is a #P-complete problem. [Wel93]
However, the results of Section 7.6 allow us to compute the Tutte polynomial of some matroids of
interest. We now survey some of the most interesting examples; see [MRIS12] for others. Some of
these formulas are best expressed in terms of the coboundary polynomial

χA(X,Y ) = (y − 1)r(A)TA(x, y), where x =
X + Y − 1

Y − 1
, y = Y.

Almost all of them are most easily proved using the Finite Field Method (Theorem 7.6.4) or its
graph version (27).
• For the uniform matroid Uk,n we have TUk,n(x, y) =

∑r
i=1

(
n−i−1
n−r−1

)
xi +

∑n−r
j=1

(
n−j−1
r−1

)
yj .

• If M (k) is the matroid obtained from M by replacing each element by k copies of itself, then

TM(k)(x, y) = (yk−1 + yk−2 + · · ·+ y + 1)rTM

(
yk−1 + yk−2 + · · ·+ y + x

yk−1 + yk−2 + · · ·+ y + 1
, yk
)

This formula is straightforward in terms of coboundary polynomials: χM(k)(X,Y ) = χM (X,Y K).
For an extensive generalization, see Section 7.9.
• [Ard07, Mph00] Root systems are arguably the most important vector configurations; these

highly symmetric arrangements play a fundamental role in many branches of mathematics. For the
general definition and properties, see for example [Hum90]; we focus on the four infinite families of
classical root systems:

An−1 = {ei − ej , : 1 ≤ i < j ≤ n}
Bn = {ei − ej , ei + ej : 1 ≤ i < j ≤ n} ∪ {ei : 1 ≤ i ≤ n}
Cn = {ei − ej , ei + ej : 1 ≤ i < j ≤ n} ∪ {2ei : 1 ≤ i ≤ n}
Dn = {ei − ej , ei + ej : 1 ≤ i < j ≤ n}

and a small number of exceptional root systems. Figure 7.6.

Figure 7.6: The root systems A2, B2, C2, and D2, respectively.

Let the deformed exponential function be F (α, β) =
∑

n≥0
αn β(

n
2)

n! . Then the Tutte gen-
erating functions of the infinite families A and Φ = B,C,D:

TA(X,Y, Z) = 1 +X
∑
n≥1

χAn−1
(X,Y )

Zn

n!
, TΦ(X,Y, Z) =

∑
n≥0

χΦn(X,Y )
Zn

n!
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are given by:

TA = F (Z, Y )X ,

TB = F (2Z, Y )(X−1)/2F (Y Z, Y 2),

TC = F (2Z, Y )(X−1)/2F (Y Z, Y 2),

TD = F (2Z, Y )(X−1)/2F (Z, Y 2).

Aside from the four infinite families, there is a small number of exceptional root systems, which
are also very interesting objects. Their Tutte polynomials are computed in [DCP08b].
• Since the matroid of the complete graph Kn is isomorphic to the matroid of the vector

configuration An−1, the first formula above is a formula for the Tutte polynomials of the complete
graphs, proved originally by Tutte [Tut67].

Similarly, the coboundary polynomials of the complete graphs Km,n are given by

1 +X
∑
m,n≥0

(m,n)6=(0,0)

χKm,n(X,Y )
Zm1
m!

Zn2
n!

=

 ∑
m,n≥0

Y mnZ
m
1

m!

Zn2
n!

X

.

• [BR, Mph00]. The Tutte polynomial of the arrangement A(p, n) of all linear hyperplanes in
Fnp is best expressed in terms of a “p-exponential generating function”:

∑
n≥0

χA(p,n)(X,Y )
un

(p; p)n
=

(u; p)∞
(Xu; p)∞

∑
n≥0

Y 1+p+···+pn−1 un

(p; p)n

where (a; p)∞ = (1− a)(1− pa)(1− p2a) · · · and (a; p)n = (1− a)(1− pa) · · · (1− pn−1a).
• Equation (27) expresses the Tutte polynomial of a graph G as the number of q-colorings of

G, weighted by the number of improperly colored edges. When G has a path-like or cycle-like
structure, one may use the transfer-matrix method of Section 3.1.2 to carry out that enumeration.
This was done for the grid graphs Lm,n for small fixed m [CMNN03] and for the wheel graphs Wn

[CS01] shown in Figure 7.7. For example, the Tutte polynomial of the wheel graph is

TWn(x, y) =
1

2n

(
b+

√
b2 − 4a

)n
+

1

2n

(
b−

√
b2 − 4a

)n
+ xy − x− y − 1

where b = 1 + x+ y and a = xy.

Figure 7.7: The graphs L4,8 and W8.
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7.9 Generalizations of the Tutte polynomial

The multivariate Tutte polynomial. The multivariate Tutte polynomial of a matroid M is

Z̃M (q; w) =
∑
A⊆E

q−r(A)
∏
e∈A

we

where q and (we)e∈E are indeterminates. When all we = w, we get Z(q, w) = wv−cqcT ( qw +1, w+1).

Notice that Z̃M (q; w) determines E and r, and hence it determines M . Still, it is a useful
encoding of the matroid.
• We saw in Section 7.7 that for a graph G and a positive integer q, the multivariate Tutte

polynomial is equal to the partition function of the q-state Potts model on G.
• For a vector a ∈ Nn, let M(a) be the matroid M where each element e is replaced by ae copies

of e. It is natural to ask for the Tutte polynomials of the various matroids M(a). For each a,

TM(a)(x, y) = (x− 1)r(supp(a))Z̃M
(
(x− 1)(y − 1); ya1−1, . . . yan−1

)
.

The generating function for the Tutte polynomials of all the matroids M(a) turns out to be
equivalent to the multivariate Tutte polynomial, disguised under a change of variable:∑
ainNn

TM(a)(x, y)

(x− 1)r(supp(a))
wa11 · · ·w

an
n =

1∏n
i=1(1− wi)

Z̃M

(
(x− 1)(y − 1);

(y − 1)w1

1− yw1
, . . . ,

(y − 1)wn
1− ywn

)
• For an algebraic interpretation of the multivariate Tutte polynomial, see [AP10].

The arithmetic Tutte polynomial When we have a collection A ⊆ Zn of integer vectors, there is a
variant of the Tutte polynomial that is quite useful. The arithmetic Tutte polynomial is

MA(x, y) =
∑
B⊆A

m(B)(x− 1)r(A)−r(B)(y − 1)|B|−r(B)

where, for each B ⊆ A, the multiplicity m(B) is the index of ZB as a sublattice of (spanB) ∩ Zn.
Using the vectors in B as the columns of a matrix, m(B) is the greatest common divisor of the
minors of full rank. This polynomial is related to the zonotope of A [Sta91, DM12]:

• The volume of the zonotope Z(A) is MA(1, 1).
• The zonotope Z(A) contains MA(2, 1) lattice points, MA(0, 1) of which are in its interior.
• The Ehrhart polynomial of the zonotope Z(A) is qrM(1 + 1

q , 1).

Let T = Hom(Zn, G) be the group of homomorphisms from Zn to a multiplicative group G,
such as the unit circle S1 or F∗ = F\{0} for a field F. Each element a ∈ A determines a (hyper)torus
Ta = {t ∈ T : t(a) = 1} in T . For instance a = (2,−3, 5) gives the torus x2y−3z5 = 1. Let

T (A) = {Ta : a ∈ A}, R(A) = T \
⋃
a∈(A)

Ta

be the toric arrangement of A and its complement, respectively.
• [ERS09, Moc12] If G = S1, the number of regions of R(A) in the torus (S1)r is MA(1, 0).
• [DCP05, Moc12] If G = C∗, the Poincaré polynomial of R(A) is qrM(2 + 1

q , 0).
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• [BM12, ACH14] If G = F∗q , the number of elements of R(A) is (−1)rqn−rM(1 − q, 0). Fur-
thermore, ∑

p∈T
th(p) = (t− 1)rqn−rMA

(
q + t− 1

t− 1
, t

)
where h(p) is the number of tori of T (A) that p lies on.

As with ordinary Tutte polynomials, this last result may be used as a finite field method to
compute arithmetic Tutte polynomials for some vector configurations A. However, at the moment
there are very few results along these lines. One exception is the case of root systems; the study of
their geometric properties motivates much of the theory of arithmetic Tutte polynomials. Explicit
formulas for the arithmetic Tutte polynomials of the classical root systems An, Bn, Cn, and Dn are
given in [ACH14].

7.10 Matroid subdivisions, valuations, and the Derksen-Fink invariant.

A very interesting recent developments in matroid theory has been the study of matroid subdivisions
and valuative matroid invariants. We offer a brief account of some key results and some pointers
to the relevant bibliography.

A matroid subdivision is a polyhedral subdivision P of a matroid polytope PM where every
polytope P ∈ P is itself a matroid polytope. Equivalently, it is a subdivision of PM whose only
edges are the edges of PM . In the most important case, M is the uniform matroid Ud,n and PM is
the hypersimplex ∆(d, n).

Figure 7.8: A matroid subdivision of ∆(2, 4).

Matroid subdivisions arose in algebraic geometry [HKT06, Kap93, Laf03], in the theory of
valuated matroids [DW92, Mur96], and in tropical geometry [Spe08]. For instance, Lafforgue
showed that if a matroid polytope PM has no nontrivial matroid subdivisions, then the matroid M
has (up to trivial transformations) only finitely many realizations over a fixed field F. This is one
of very few results about realizability of matroids over arbitrary fields.

The connection with tropical geometry is a rich source of examples. Let K be the field of
Puiseux series a0x

m/N + a1x
(m+1)/N + · · · (where a0, a1, . . . ∈ C, m,N ∈ Z and N > 0). Roughly

speaking, every subspace L of Kn may be tropicalized, and there is a canonical way of decomposing
the resulting tropical linear space into Bergman fans of various matroids. These matroids give a
matroid subdivision of ∆(d, n). For some nice choices of L, the corresponding matroid subdivisions
can be described explicitly. For details, see for example [AK06, Rin13, Spe08].

There is also a useful connection with the subdivisions of the product of simplices ∆d−1×∆n−d−1,
which are much better understood, as we discussed in Section 5.4. Note that the vertex figure of
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any vertex of ∆(d, n) is ∆d−1 × ∆n−d−1. Every matroid subdivision of ∆(d, n) then induces a
“local” polyhedral subdivision of ∆d−1 × ∆n−d−1 at each one of its vertices. Conversely, we can
“cone” any subdivision S of ∆d−1 × ∆n−d−1 to get a matroid subdivision that looks like S at a
given vertex. [HJS11, Rin13]

Enumerative aspects of matroid subdivisions. Say a face P of a subdivision P of PM is internal
if it is not on the boundary of PM . Let P int be the set of internal faces of P. Currently, the most
interesting enumerative question on matroid subdivisions is the following.

Conjecture 7.10.1. (Speyer’s f -vector conjecture [Spe08]) A matroid subdivision of the hypersim-

plex ∆(d, n) has at most (n−c−1)!
(d−c)!(n−d−c)!(c−1)! interior faces of dimension n − c, with equality if and

only if all facets correspond to series-parallel matroids.

Speyer constructed a subdivision simultaneously achieving the conjectural maximum number of
interior faces for all c. In attempting to prove this conjecture, he pioneered the study of valuative
matroid invariants. We say that a matroid invariant f is valuative if for any matroid subdivision
P of any matroid polytope PM we have

f(M) =
∑

PMi∈P
int

(−1)dimPM−dimPMif(Mi).

There are obvious matroid valuations, such as the volume or (thanks to Ehrhart reciprocity)
the Ehrhart polynomial of PM . Much more remarkably, we have the following result.

Theorem 7.10.1. [Spe08] The Tutte polynomial TM (x, y) is a matroid valuation.

Corollary 7.10.2. The f -vector conjecture is true for c = 1.

Proof. By Theorem 7.10.1 the beta invariant β(M) = [x1y0]TM (x, y) is also a matroid valuation.
Recall that β(N) = 0 if and only if N is not connected (or, equivalently, if PN is not a facet of
P), β(N) = 1 if and only if N is series-parallel, and β(N) ≥ 2 otherwise. Also β(Ud,n) =

(
n−2
d−1

)
.

Therefore, in a matroid subdivision of ∆(d, n) we have(
n− 2

d− 1

)
= β(Ud,n) =

∑
PN∈P
P facet

β(N) ≥ (number of facets of P).

with equality if and only if every facet is a series-parallel matroid.

For matroids M realizable over some field of characteristic 0, Speyer [Spe09] used the K-theory
of the Grassmannian to construct another polynomial invariant gM (t), which he used to prove the
f-vector conjecture for matroid subdivisions whose matroids are realizable in characteristic 0.

Theorem 7.10.3. [Spe09] The f -vector conjecture is true for matroid subdivisions consisting of
matroids which are representable over a field of characteristic 0.

Speyer’s proof of this result relies on the nonnegativity of gM (t), which is proved geometrically
for matroids realizable in characteristic 0. The nonnegativity of gM (t) for all M , which would prove
Conjecture 7.10.1 in full generality, remains open.
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The Derksen-Fink invariant. Many other natural matroid functions were later discovered to be
valuative. [AFR10, BJR09, Der09]. An example of a very general valuation on matroid polytopes
from [AFR10] is the formal sum R(M) =

∑
A⊆E RA,r(A) of symbols of the form RS,k where S is a

subset of E and k is an integer. Many other nice valuations can be obtained from this one. In fact,
the matroid M can clearly be recovered from R(M).17

Eventually, Derksen [Der09] constructed a valuative matroid invariant, which he and Fink
proved to be universal. [DF10] We call it the Derksen–Fink invariant. They gave several versions;
we present one which is particularly simple to define.

Let Matroidsn,r be the set of matroids on [n] of rank r. Let Cn be the set of n! complete chains
S : ∅ = S0 ( S1 ( · · · ( Sn−1 ( Sn = [n]. For a complete chain S and a matroid M = ([n], r), let
r[Si−1, Si] = r(Si)− r(Si−1) for 1 ≤ i ≤ n; this is always 0 or 1. The Derksen–Fink invariant of
M is

G(M) =
∑
S∈Cn

U(r[S0,S1],r[S1,S2],...,r[Sn−1,Sn])

in the vector space U spanned by the
(
n
r

)
formal symbols Uw1···wn where w1, . . . , wn ∈ {0, 1} and

w1 + · · ·+ wn = r.

Theorem 7.10.4. [DF10] The Derksen–Fink invariant G : Matroidsn,r → U is a universal valua-
tive matroid invariant; that is, for any valuative matroid invariant f : Matroidsn,r → V there is a
linear map π : U→ V such that f = π ◦ G.
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(2000), no. 2, 123–127. MR 1820110 (2001m:01013)

[Kap93] M. M. Kapranov, Chow quotients of Grassmannians. I, I. M. Gel′fand Seminar, Adv. Soviet Math.,
vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29–110. MR 1237834 (95g:14053)

[Kas63] P. W. Kasteleyn, Dimer statistics and phase transitions, J. Mathematical Phys. 4 (1963), 287–293. MR
0153427 (27 #3394)

[KL79] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent.
Math. 53 (1979), no. 2, 165–184. MR 560412 (81j:20066)

[Kli07] Caroline J. Klivans, Threshold graphs, shifted complexes, and graphical complexes, Discrete Math. 307
(2007), no. 21, 2591–2597. MR 2359603 (2008j:05373)

[KM59] Samuel Karlin and James McGregor, Coincidence probabilities, Pacific J. Math. 9 (1959), 1141–1164.
MR 0114248 (22 #5072)

[KN86] Joseph P. S. Kung and Hien Q. Nguyen, Weak maps, Theory of matroids, Encyclopedia Math. Appl.,
vol. 26, Cambridge Univ. Press, Cambridge, 1986, pp. 254–271. MR 849398

[Knu74] Donald E. Knuth, The asymptotic number of geometries, J. Combinatorial Theory Ser. A 16 (1974),
398–400. MR 0335312 (49 #94)

138



[KP04] Michael Korn and Igor Pak, Tilings of rectangles with T-tetrominoes, Theoret. Comput. Sci. 319 (2004),
no. 1-3, 3–27. MR 2074945 (2005d:52041)
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