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Abstract

The goal of this paper is to show that valuation theory and Hopf theory are compatible
on the class of generalized permutahedra. We prove that the Hopf structure GP+ on these
polyhedra descends, modulo the inclusion-exclusion relations, to an indicator Hopf monoid
I(GP+) of generalized permutahedra that is isomorphic to the Hopf monoid of weighted or-
dered set partitions. This quotient Hopf monoid I(GP+) is cofree. It is the terminal object in
the category of Hopf monoids with polynomial characters; this partially explains the ubiquity
of generalized permutahedra in the theory of Hopf monoids.

This Hopf theoretic framework offers a simple, unified explanation for many new and old
valuations on generalized permutahedra and their subfamilies. Examples include, for matroids:
the Chern-Schwartz-MacPherson cycles, Eur’s volume polynomial, the Kazhdan-Lusztig poly-
nomial, the motivic zeta function, and the Derksen-Fink invariant; for posets: the order poly-
nomial, Poincaré polynomial, and poset Tutte polynomial; for generalized permutahedra: the
universal Tutte character and the corresponding class in the Chow ring of the permutahedral
variety. We obtain several algebraic and combinatorial corollaries; for example: the existence
of the valuative character group of GP+, and the indecomposability of a nestohedron into
smaller nestohedra.
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1 Introduction

1.1 Algebraic and polyhedral structures in combinatorics

Joni and Rota [40], Schmitt [50], and others showed that many families of combinatorial ob-
jects have natural operations of “merging” and “breaking” that give the family a Hopf algebraic
structure. Edmonds [25], Lovász [45], Postnikov [48], Stanley [56], and others showed that many
families of combinatorial objects can be modeled geometrically as polyhedra – often part of the
family of generalized permutahedra. These algebraic and geometric structures reflect and shed
light on the underlying combinatorial structure of the families under study.

Aguiar and Ardila [2] unified these algebraic and polytopal points of view, showing that the
family of generalized permutahedra has the structure of a Hopf monoid – a refinement of Hopf
algebras that is more convenient for combinatorial settings. They also showed that this is the
largest family of polytopes that supports such a structure. This Hopf monoid GP+ (or certain
quotients of it) contains the Hopf monoids of graphs, (pre)posets, matroids, paths, hypergraphs,
simplicial complexes, and building sets, among others. This framework allowed them to unify and
prove numerous known and new results. The most relevant ones to this project are the following:

● By developing the character theory of Hopf monoids, Aguiar and Ardila showed that im-
portant polynomial and quasisymmetric invariants of combinatorial objects come from a simple
character of GP+. These include the chromatic polynomial of a graph, the order polynomial of
a poset, and the Billera-Jia-Reiner polynomial of a matroid. The celebrated reciprocity theorems
for these polynomials are instances of the same Hopf-theoretic reciprocity phenomenon for GP+.

● They gave the optimal formula for the antipode of the Hopf monoid GP+. This gave, for the
first time, cancellation-free formulas for the antipodes of graphs (also found by Humpert-Martin
[38]), matroids, and posets, among others.

This work raises the following question.

Question. Why are many important Hopf monoids related to generalized permutahedra?

This paper offers one possible answer to this question, in the Universality Theorem B.

1.2 Polyhedral valuations in combinatorics and geometry

Valuations are ways of measuring polytopes that behave well under subdivision. More concretely,
let P be a family of polytopes and A be an abelian group. A function f ∶ P → A is a weak
valuation if for any subdivision of a polytope P ∈ P into polyhedra P1, . . . , Pk ∈ P (where for any
a and b, Pa ∩ Pb is either empty or one of the Pcs), we have the inclusion-exclusion relation

f(P ) =
k

∑
i=1

(−1)dimP−dimPif(Pi). (1.1)

It is a strong valuation if there exists a linear function f̂ such that f(P ) = f̂(1P ), where 1P

is the indicator function of P , given by 1P (x) = 1 for x ∈ P and 1P (x) = 0 for x ∉ P . Any
strong valuation is also a weak valuation. The converse is also true for the class P of generalized
permutahedra, but not necessarily for its subclasses; see Section 4.1.

The volume, the number of lattice points, and the Ehrhart polynomial (given by EhrP (t) =
∣tP ∩ Zd∣ for t ∈ N) are natural ways of measuring a polytope, and they are strong valuations.
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However, certain families P of polyhedra can also be measured using intriguing combinatorial
and algebro-geometric valuations that, unexpectedly, also satisfy (1.1). These valuations include:

● the Tutte polynomial of a matroid [54],
● the Chern-Schwartz-MacPherson cycles of a matroid [19],
● the Kazhdan-Lusztig polynomial of a matroid [26],
● the motivic zeta function of a matroid [39],
● the Derksen-Fink invariant of a matroid [20],
● the order polynomial of a poset [56],
● the Poincaré polynomial of a poset cone [22],

For other examples, see Table 1. For concrete examples for matroids and posets, see Examples
8.10 and 9.16, respectively. This raises the following question.

Question. Why are many important invariants of matroids and posets also polyhedral valuations?

This paper offers one possible answer to this question within the framework of Hopf monoids in
Theorems A and C.

Valuations of matroids are especially important because they offer ways of analyzing matroid
subdivisions: these are the subdivisions of a matroid polytope into smaller matroid polytopes.
Such subdivisions arise naturally in various algebro-geometric contexts, such as the compact-
ification of the moduli space of hyperplane arrangements of Hacking, Keel, and Tevelev [37]
and Kapranov [41], the compactification of fine Schubert cells in the Grassmannian of Lafforgue
[44, 43], the K-theory of the Grassmannian [55], the stratification of the tropical Grassmannian
[53] and other tropical homogeneous spaces [49], and the study of tropical linear spaces by Ardila
and Klivans [9] and Speyer [54].

A foundational result by Derksen and Fink [20] gave the universal valuation for matroids and
for generalized permutahedra. Their result was extended by Eur, Sanchez, and Supina [28] who
gave the universal valuation for Coxeter matroids and for Coxeter generalized permutahedra.

1.3 Hopf algebraic structures on generalized permutahedra and valuations

The goal of this paper is to explain the intimate relationship between the Hopf algebraic structures
of Section 1.1 and the valuations of Section 1.2. Let F be a field of characteristic 0 and let GP+

be the (F-linear) Hopf monoid of extended generalized permutahedra, whose components are the
vector spaces

GP+[I] = span{P ∣P is an extended generalized permutahedron in RI}

for all finite sets I. Consider the subdivisions of polyhedra in this family into polyhedra in this
family; they give the inclusion-exclusion subspecies ie ⊂ GP+ consisting of the vector spaces

ie[I] ∶= span{P −∑
i

(−1)dimP−dimPiPi ∣ {Pi} is a polyhedral subdivision of P} ⊂ GP+[I].

Consider the indicator vector spaces of generalized permutahedra:

I(GP+)[I] ∶= span{1P ∣P is an extended generalized permutahedron in RI}
≅ GP+[I]/ie[I],
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where 1P ∶ RI → F is the indicator function of P , which equals 1 in P and 0 outside of P .
The following are our main results.

The indicator Hopf monoid. The Hopf monoid GP+ descends to the quotient I(GP+):

Theorem A. Let GP+ be the Hopf monoid of extended generalized permutahedra.

1. The inclusion-exclusion species ie is a Hopf ideal of GP+.

2. The quotient I(GP+) = GP+/ie is a Hopf monoid.

3. The resulting indicator Hopf monoid of extended generalized permutahedra is
isomorphic to the Hopf monoid of weighted ordered set partitions:

I(GP+) ≅ wΣ∗.

4. For any Hopf submonoid H ⊆ GP+, the subspecies I(H) ⊆ I(GP+) is a Hopf quotient of H;
namely, I(H) ≅ H/(ie ∩H).

It is also interesting to quotient I(GP+) further by identifying P with its translates P + v, as is
done in the McMullen polytope algebra. We define the extended McMullen subspecies1

Mc+[I] ∶= ie[I] + span{P − (P + v) ∣P ∈ GP +[I], v ∈ RI} ⊂ GP+[I].

We prove that Mc+ is also a Hopf ideal of GP+, and the resulting quotient is isomorphic to the
indicator Hopf monoid of preposet cones, the indicator Hopf monoid of poset cones,
and the Hopf monoid of ordered set partitions; see Theorems 4.14 and Proposition 9.1:

GP+/Mc+ ≅ I(P) ≅ I(PP) ≅ Σ∗.

Building on Aguiar and Ardila’s formula for the antipode of GP+, Theorem A gives the
following elegant formula for the antipode of I(GP+).

Corollary 1.1. The antipode of the indicator Hopf monoid of generalized permutahedra I(GP+)
is given by

sI(P ) = (−1)∣I ∣−dimPP ○ for P ∈ GP+[I],

where P ○ is the relative interior of P .

Cofreeness and universality. A priori, it seems very surprising that so many Hopf monoids of
interest are closely related to the Hopf monoid of generalized permutahedra GP+, as shown in [2].
We give a possible explanation of this phenomenon, by showing that the indicator Hopf monoid of
generalized permutahedra I(GP+) = GP+/ie and the further quotient by the extended McMullen
subspecies GP+/Mc+ satisfy very natural universality properties among all Hopf monoids.

This is most elegantly stated for GP+
N, which consists of the extended generalized permutahe-

dra whose supporting hyperplanes have non-negative integral coefficients. Define a polynomial

1This behaves very differently from the McMullen subspecies Mc of the Hopf monoid of bounded generalized
permutahedra GP and the quotient GP/Mc; see Sections 1.4 and 4.4.
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character on a Hopf monoid H to be a multiplicative function from H to the polynomial ring
F[t]. Define the canonical character β ∶ I(GP+

N)→ F[t] by

β(1P ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−1)∣I ∣−dim Lin(P )tp if P is relatively bounded and lies on hyperplane ∑
i∈I

xi = p in RI ,

0 if P is relatively unbounded,

for the indicator function of a polyhedron P , where Lin(P ) is the lineality space of P and where
a face F of P is relatively bounded if it is non-empty and F /Lin(P ) is a bounded face of
P /Lin(P ) and relatively unbounded otherwise.

Theorem B. The terminal Hopf monoid with a polynomial character is (I(GP+
N), β).

Explicitly: For any connected Hopf monoid H and any polynomial character ζ, there exists a
unique Hopf morphism ζ̂ ∶ H→ I(GP+

N) such that β ○ ζ̂ = ζ.

It also follows from these general results that the indicator Hopf monoid is cofree. This is
shown in Theorem 5.2.

Similarly, the terminal Hopf monoid with a character is the quotient GP+/Mc+ with the
canonical character; see Theorem 5.4. Aguiar and Mahajan [4] had proved this property for Σ∗,
which we show is isomorphic to GP+/Mc+ in Theorem 4.14.

Hopf algebraic valuations on polytopes. Theorem A shows the compatibility between the Hopf
structure on generalized permutahedra and the valuative functions on these polytopes. Many
functions on generalized permutahedra can be seen as functions on the Hopf monoid GP+, which
descend to functions on the quotient Hopf monoid I(GP+). Those functions must then be valu-
ations. The same is true for submonoids of GP+. The following is one concrete manifestation of
this general principle:

Theorem C. Let H be a Hopf submonoid of GP+. Let S1 ⊔⋯ ⊔ Sk = I be a set decomposition
and consider functions fi ∶ H[Si] → R for 1 ≤ i ≤ k, where R is a ring with multiplication m.
Define the function f1 ⋆⋯ ⋆ fk ∶ H[I]→ R by f1 ⋆⋯ ⋆ fk ∶=m ○ f1 ⊗ f2 ⊗⋯⊗ fk ○∆S1,...,Sk .

If f1, . . . , fk are strong valuations, then f1 ⋆⋯ ⋆ fk is a strong valuation.

Many new and known valuations on subfamilies of generalized permutahedra arise from ap-
plying Theorem C to much simpler valuations fi. The earlier proofs of those results, often quite
subtle, are thus replaced by a uniform, straightforward computation. This applies to the following
valuations.
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Submonoid Valuations fi Valuation from Theorem B

Generalized permutahedra
(Section 7)

normalized volume Exponential of the class in the Chow
ring of the permutahedral variety [31]

universal norm Dupont, Fink, and Moci’s universal
Tutte character [23]

Matroid morphisms universal norm Las Vergnas’s Tutte polynomial [59]

Matroids (Section 8) beta invariant Chern-Schwartz-MacPherson cycles [19]

characteristic polynomial Eur’s volume polynomial [27]

characteristic polynomial Kazhdan–Lusztig polynomial [26]

characteristic polynomial motivic zeta function [39]

having a unique basis Billera, Jia, and Reiner’s quasisymmet-
ric function [12]

having only one element Derksen-Fink invariant [20]

universal norm Tutte and characteristic polynomial [58]

Posets (Section 9) being an antichain Stanley’s order polynomial [57]

being an antichain, 1 Gordon’s Tutte polynomial [33]

being an antichain Dorpalen-Barry, Kim, and Reiner’s
Poincaré polynomial [22]

Nestohedra (Section 10) constant function f -polynomial [5]

Table 1: Examples of valuations from Theorem C

The character theory of Hopf monoids provides an especially useful corollary to Theorem C.
It is explained in [2, 3] that a multiplicative function from a Hopf monoid H to a fixed field,
known as a character, gives rise to a family of polynomials fζ(h), quasisymmetric functions
Φζ(h) and linear combinations of ordered set partitions Oζ(h) associated to each object h of the
Hopf monoid H. Examples include the order polynomial of a poset, the chromatic polynomial of
a graph, and the Billera-Jia-Reiner quasisymmetric function of a matroid. When the character is
also a valuation, we can say more.

Corollary 1.2. Let H be a submonoid of GP. Let ζ be a character of H such that ζ[I] is a
strong valuation. Then the three maps

h↦ fζ(h)(t) h↦ Φζ(h) h↦ Oζ(h) for h ∈ H[I]

are all strong valuations.

The multiplicative functions from H to a fixed field, known as the characters of H, form a
group X(H) under convolution. The inverse of a valuative character is given by precomposing it
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with the antipode [2, 3]. The above results give an interesting structural consequence, shown in
Proposition 6.8: the characters of H that are valuative form a subgroup X(H)val ⊆ X(H) of the
character group.

1.4 Related work

A Hopf algebra analog of Part 2 of Theorem A was proved by Derksen and Fink [20]. By working
in the context of Hopf monoids and taking a more geometric approach, we are able to obtain
several new consequences, including numerous results in [2], the simple formula for the antipode
in Corollary 1.1, and many new examples of valuations.

Results analogous to Parts 1 and 2 of Theorem A and Corollary 1.1 were also obtained in-
dependently and simultaneously by Bastidas [10], for the quotient GP/Mc of the Hopf monoid
of bounded generalized permutahedra by its McMullen subspecies. The quotients GP/Mc and
GP+/Mc+ are very different from each other; in fact, all the bounded polytopes on a fixed ground
set are identified in the quotient GP+/Mc+; see Proposition 4.15. By including unbounded poly-
hedra, we obtain a structure that is more favorable for our purposes: the resulting indicator Hopf
monoid I(GP+) = GP+/ie is isomorphic to the Hopf monoid on weighted set partitions, is cofree,
and is the terminal object in the category of Hopf monoids with a(n extended) polynomial char-
acter. Its quotient GP+/Mc+ is isomorphic to the Hopf monoid on set partitions, is cofree, and
is the terminal object in the category of Hopf monoids with a character.

1.5 Outline

In Section 2, we introduce the relevant background for generalized permutahedra and Hopf
monoids. We give many examples of Hopf monoids and of combinatorial objects that can be
associated to generalized permutahedra. In Section 3, we construct the Brianchon-Gram Hopf
morphism for polytopes and the aligning morphism for posets, which play an important role in
our work. One is related to the Brianchon-Gram formula and the other describes cones in terms
of ordered set partitions. In Section 4, we prove Theorem A on the existence of the indicator
Hopf monoid I(GP+) and its quotient GP+/Mc+. In Section 5 we prove that these Hopf monoids
are cofree and they are the terminal Hopf monoids with a (generalized polynomial) character,
Theorem B. In Section 6, we prove Theorem C and we use it to show that various Hopf monoidal
constructions give rise to valuations on polytopes.

The remaining sections focus on some known and many new examples, as summarized in
Table 1. Sections 7, 8, 9, 10 focus on valuations on generalized permutahedra, matroids, posets,
and building sets, respectively. In Section 10, we use this to show that there are no nestohedral
subdivisions. We close with Appendix 12 where we summarize the main facts we need about Hopf
monoids and prove the First Isomorphism Theorem for them.

2 Background

2.1 Generalized permutahedra

For a set I of size n, the standard permutahedron πI is the convex hull of the n! bijective
functions π ∶ I → [n]. We are interested in the deformations of the permutahedron, which are
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defined as follows. A generalized permutahedron is a polytope in RI that satisfies the following
equivalent conditions:

● Its edges are parallel to vectors in the root system AI = {ei − ej ∣ i, j ∈ I}, where {ei ∶ i ∈ I}
are the standard basis vectors.

● Its normal fan is a coarsening of the braid arrangement ΣI which is the hyperplane
arrangement in RI given by the hyperplanes Hi,j = {x ∈ RI ∣ xi = xj} for i, j ∈ I.

● It is obtained from the standard permutahedron πI by moving the facets while preserving
their directions, without letting a facet cross a vertex.

● It is given by the inequality description

P = {x ∈ RI ∣∑
i∈I

xi = z(I) and ∑
i∈A

xi ≤ z(A) for all A ⊆ I}

for a function z ∶ 2I → R that is submodular; that is, it satisfies z(A)+z(B) ≥ z(A∪B)+z(A∩B)
for all A,B ⊆ I.

Figure 1: The standard 3-permutahedron and four other extended generalized permutahedra.

More generally, an extended generalized permutahedron is a possibly unbounded poly-
hedron in RI that satisfies the following equivalent conditions:

● Its faces lie on translates of subspaces spanned by roots in AI .
● Its normal fan is a coarsening of a subfan of the braid fan.
● It is obtained from the permutahedron by moving the facets while preserving their directions,

without letting a facet cross a vertex, possibly sending some facets to infinity.
● It is given by the inequality description

P = {x ∈ RI ∣∑
i∈I

xi = z(I) and ∑
i∈A

xi ≤ z(A) for all A ⊆ I}

for a function z ∶ 2I → R ∪ {∞} that is submodular; that is, it satisfies z(A) + z(B) ≥ z(A ∪B) +
z(A ∩B) for all A,B ⊆ I such that z(A) and z(B) are finite.

This ubiquitous family of polytopes was first studied in optimization under the name of poly-
matroids [25, 29]. Its combinatorial structure was studied in [48] and its algebraic structure was
studied in [2]. Generalized permutahedra arise naturally in optimization (where they parameter-
ize problems where the greedy algorithm successfully finds a solution [52]), in algebraic geometry
(where they are in correspondence with the numerically effective divisors of the permutahedral
toric variety XΣI [16]), and in algebra (where they describe the irreducible representations of the
Lie algebra sln [30], and they are the largest family of polytopes that carries the structure of a
Hopf monoid [2].)
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Generalized permutahedra are also of great importance in combinatorics, because they provide
geometric models of many important combinatorial families: graphs, matroids, posets, preposets,
ordered set partitions, hypergraphs, simplicial complexes, and building sets, among others. Fur-
thermore, Aguiar and Ardila showed that the well-studied Hopf structures on these and other
combinatorial families can all be unified within the framework of the Hopf monoid GP+.

Matroids. A matroid M on ground set I is a nonempty collection B(M) of subsets of I called
bases that satisfy the basis exchange axiom: if A and B are bases and a ∈ A − B, there exists
b ∈ B −A such that (A − {a}) ∪ {b} is a basis.

An independent set is a subset of a basis. The rank function of a matroid M is the
function r ∶ 2I → N given by

r(J) = max
B∈B(M)

∣J ∩B∣ for ∅ ⊆ J ⊆ I.

This is the size of any maximal subset of J that is independent.
The matroid polytope P (M) of a matroid M on I is given by

P (M) = conv{eb1 +⋯ + ebr ∣ {b1, . . . , br} is a basis of M} ⊆ RI .

It is a generalized permutahedron [7] whose vertices correspond to the bases and whose edges
correspond to the elementary basis exchanges between them.

Posets and preposets. A poset or partially ordered set p on a finite set I is a relation p ⊆ I×I,
denoted ≤ or (I,≤), which is reflexive (x ≤ x for all x ∈ I), antisymmetric (x ≤ y and y ≤ x imply
x = y for all x, y ∈ I), and transitive (x ≤ y and y ≤ z imply x ≤ z for all x, y, z ∈ I).

More generally, a preposet on a finite set I is a relation q ⊆ I × I, denoted ≤ or (I,≤), that is
reflexive and transitive, but not necessarily antisymmetric. We write x < y if x ≤ y and x ≱ y.

A preposet q gives rise to an equivalence relation given by x ∼ y if x ≤ y and y ≤ x, and to a
poset p = q/ ∼ on the equivalence classes of ∼ where [x] ≤p [y] if and only if x ≤q y. Since we can
recover the preposet q from the poset p, we will identify the preposet q = (I,≤q) with the poset
p = (I/ ∼,≤p). The size of q is the number of equivalence classes, ∣q∣ ∶= ∣I/ ∼ ∣.

A weighted preposet (w, q) consists of a preposet q and a function w ∶ q/ ∼→ R; that is, a
choice of a real weight w(qa) for each equivalence class qa of the preposet q.

The (pre)poset cone of a (pre)poset q is

cone(q) = cone{ei − ej ∶ i ≥ j in q}.

This is an extended generalized permutahedron, and its lineality space is (∣I ∣ − k)-dimensional
where q/ ∼ = {q1, . . . , qk}; it is cut out by the k independent equations ∑i∈qa xi = 0 for 1 ≤ a ≤ k,
one for each equivalence class of q. 2

The translated (pre)poset cone of a weighted (pre)poset (w, q) is

cone(w, q) = wq + cone(q) (2.1)

2These cones are related to the preposet-cone dictionary given by [5]. For any (pre)poset p on I, let σp denote
the cone σp = {x ∈ RI ∣ xi ≥ xj for all i ≥p j}. Then, the poset cone cone(p) is the dual cone to the cone σp.
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where wq is a vector in RI such that ∑i∈qa xi = w(qa) for each equivalence class qa of q. Any such
vector wq will produce the same cone cone(w, q) thanks to the description of the lineality space
of cone(q) given above.

Translated preposet cones are precisely the cones that are extended generalized permutahedra
[2, Theorem 3.4.9].

Weighted ordered set partitions and plates. Ordered set partitions are of fundamental impor-
tance in the theory of Hopf monoids, and weighted ordered set partitions will play a central role
in this project.

Definition 2.1. An ordered set partition (or set composition) of a finite set I is an ordered
sequence ` = `1∣⋯∣`k of nonempty, pairwise disjoint sets such that `1 ⊔⋯ ⊔ `k = I.

A set decomposition of I is an ordered sequence S1∣S2∣⋯∣Sk of possibly empty, pairwise
disjoint sets such that S1 ⊔⋯ ⊔ Sk = I.

The ordered set partitions of I are in bijection with the faces of the braid arrangement in RI .
They are also in bijection with the totally ordered preposets, where every pair of elements
is comparable: the ordered set partition ` = `1∣⋯∣`k corresponds to the preposet q` where i ≤ j
for i ∈ `a, j ∈ `b with a ≤ b. This preposet is equivalent to the linear poset `1 < ⋯ < `k on its
equivalence classes.

A (pre)linear extension ` of a (pre)poset q is a totally ordered (pre)poset ` such that x < y
in q implies x < y in ` and x ≤ y in q implies x ≤ y in `3 We also think of ` as the associated
ordered set partition `.

Definition 2.2. A weighted ordered set partition of I is a pair (w, `) consisting of an ordered
set partition ` = `1∣⋯∣`k of I and an assignment w ∶ {`1, . . . , `k} → R of a real weight w(`a) for
each part `a of `. We also write w = (w1, . . . ,wk).

The following cones are in bijection with weighted ordered set partitions.

Definition 2.3. A plate is a cone of the form

cone(w, `) = {x ∈ RI ∶ x`1 ≥ w1, . . . , x`1⊔⋯⊔`k−1
≥ w1 +⋯ +wk−1, x`1⊔⋯⊔`k = w1 +⋯ +wk}

= w` + cone{ei − ej ∶ i ∈ `a, j ∈ `b, a ≥ b}

for some weighted ordered set partition (w, `), where x` ∶= ∑l∈` xl, and w` is any vector in RI such
that ∑i∈`a(w`)i = w(`a) for 1 ≤ a ≤ k. If w = 0 then the plate is called centered.

These cones arise in numerous contexts. In this terminology, plates (also called permutahe-
dral plates or tectonic plates) were introduced by Ocneanu [47] and studied by Early [24]. If
we regard the (weighted) ordered set partition ` as a (weighted) preposet q`, then the (weighted)
plate of ` coincides with the (weighted) preposet cone of q`.

3This second condition ensures that an equivalence class in q cannot be split into smaller equivalence classes in
a linear extension of q.
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2.2 Hopf monoids

Hopf monoids are counterparts of Hopf algebras that are especially well-suited for combinatorial
analysis. There are four natural functors from Hopf monoids to Hopf algebras, so everything that
we do in this paper can also be done at the level of Hopf algebras.

Although the formal definition of a Hopf monoid is technical, the intuition is simple. We begin
by giving an informal description of a Hopf monoid. For a precise definition, see the Appendix
in Section 12. For a combinatorial discussion and “user’s manual”, see [2]. For a thorough
algebraic treatment, see the original monograph [4] by Aguiar and Mahajan where these objects
are introduced. We will give many examples in Section 2.3.

A Hopf monoid H consists of the following data, subject to some suitable axioms:

1. A vector space H[I] for each finite set I and an isomorphism from H[I] to H[J] for each
bijection from I to J .

(In many examples, a basis for H[I] is given by the different “H-structures” that can be
put on the “ground set” I, and the isomorphisms are given by the natural maps obtained
from relabeling the ground set.)

2. Compatible operations:

• An associative product mS,T ∶ H[S]⊗H[T ]→H[I] for each decomposition I = S ⊔T .

(In many examples, this is given by a combinatorial rule to merge two H-structures on
S and T into one H-structure on I.)

• A coassociative coproduct ∆S,T ∶ H[I] → H[S] ⊗ H[T ] for each decomposition I =
S ⊔ T .

(In many examples, this is given by a combinatorial rule to break one H-structure on
I into two H-structures on S and T .)

• An antipode sI ∶ H[I]→H[I] for each finite set I.

(This is given by an alternating sum of combinatorial objects, with many cancellations
that are usually highly non-trivial and combinatorially interesting.)

A Hopf ideal g ⊂ H is a Hopf submonoid that satisfies:

mS,T (H[S]⊗ g[T ] + g[S]⊗H[T ]) ⊂ g[I],
∆S,T (g[I]) ⊂ H[S]⊗ g[T ] + g[S]⊗H[T ].

If g is a Hopf ideal, then one can define a quotient Hopf monoid in the natural way.
There is a natural notion of morphisms of Hopf monoids. It satisfies Noether’s First Isomor-

phism Theorem in the following formulation.

Theorem 2.4. Let H1 and H2 be two Hopf monoids and α ∶ H1 → H2 be a Hopf morphism.
Then, the image of α is a Hopf submonoid of H2, the kernel of α is a Hopf ideal of H1 and we
have the isomorphism of Hopf monoids

H1/Ker(α) ≅ Im(α).

Proof. See the Appendix.
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2.3 Examples of Hopf monoids

Although it is not clear a priori from the definitions, most of the Hopf monoids that will appear
in this paper are closely related to the following Hopf monoid of generalized permutahedra.

Generalized permutahedra. Let P be a(n extended) generalized permutahedron in RI and let
I = S ⊔ T be a decomposition. Let eS,T denote the linear functional eS,T (x) = ∑i∈S xi. Let PS,T
denote the face of P maximized by the linear functional eS,T . If this face is nonempty, then there
exist two (extended) generalized permutahedra P ∣S ⊂ RS and P /S ⊂ RT such that PS,T = P ∣S×P /S .

If P ⊂ RS and Q ⊂ RT are (extended) generalized permutahedra, then P ×Q is a(n extended)
generalized permutahedron in RI .

Now let GP+ be the species given by

GP+[I] = F{extended generalized permutahedra in RI}.

A bijection from I to J induces a vector space isomorphism from RI to RJ , which induces an
isomorphism from GP+[I] to GP+[J]; so this is indeed a species. To simplify (and slightly
abuse) notation, we will write P ∈ GP+[I] whenever P is an extended generalized permutahedron
in RI .

Definition 2.5. [2] The Hopf monoid of (extended) generalized permutahedra GP+ is
the species GP+[I] = F{extended generalized permutahedra in RI} with product

mS,T (P,Q) = P ×Q for P ∈ GP+[S],Q ∈ GP+[T ]

and coproduct

∆S,T (P ) =
⎧⎪⎪⎨⎪⎪⎩

P ∣S ⊗ P /S if P is bounded in direction eS,T , or

0 otherwise,
for P ∈ GP+[I].

The Hopf monoid GP+, its Hopf submonoids, and quotient Hopf monoids are our main al-
gebraic objects of study. The following submonoids of GP+ will play a role in what follows; see
Theorem 2.8:
● the Hopf monoid GP+ of extended generalized permutahedra,
● the Hopf monoid GP of bounded generalized permutahedra,
● the Hopf monoid CGP+ of conical generalized permutahedra,
● the Hopf monoid PCGP+ of conical generalized permutahedra that are pointed,
● the Hopf monoid CGP+

0 of conical generalized permutahedra where the origin is in the apex,
● the Hopf monoid PCGP+

0 of conical generalized permutahedra that are pointed at the origin.
Here the apex of a cone is its lineality space.

Matroids. Consider a matroid M on I and a decomposition I = S ⊔ T . The restriction of M to
S is the matroid M ∣S on ground set S with

B(M ∣S) = {maximal intersections of the form B ∩ S ∣B ∈ B(M)}.

The contraction of S from M is the matroid on ground set T defined as

B(M/S) = {BT ⊆ T ∣ for a basis BS of M ∣S we have BS ∪BT ∈ B(M)}.
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Let M1 and M2 be matroids on ground set S and T , respectively, and I = S ⊔ T . Their direct
sum is the matroid on ground set I defined as

M1 ⊕M2 = {B1 ∪B2 ⊆ I ∣ B1 ∈ B(M1),B2 ∈ B(M2)}.

The Hopf monoid of matroids M is given by M[I] = F{matroids on I} where
● The product of M1 ∈ M[S] and M2 ∈ M[T ] is their direct sum M1 ⊕M2.
● The coproduct of M ∈ M[I] is ∆S,T (M) =M ∣S ⊗M/S .

The map that sends a matroid M to its matroid polytope P (M) is an inclusion of Hopf
monoids:

Theorem 2.6. [2] The Hopf monoid of matroids M is a submonoid of the Hopf monoid GP.

We will often use the following iterated coproduct formula for matroids.

Lemma 2.7. [2] Let S1 ⊔ ⋯ ⊔ Sk = I be a set decomposition and let Fi = S1 ⊔ ⋯Si for 0 ≤ i ≤ k.
Then for any matroid M on I,

∆S1,...,Sk(M) =M[F0, F1]⊗M[F1, F2]⊗⋯⊗M[Fk−1, Fk],

where M[A,B] = (M ∣B)/A for ∅ ⊆ A ⊆ B ⊆ I.

(Weighted) posets and preposets. For posets p on S and q on T let p ⊔ q denote the disjoint
union of the posets on S ⊔ T . For a poset p on I and S ⊂ I, let p∣S be the poset restricted to the
set S. We say that S is a lower ideal of p if for any x ≤ y we have that y ∈ S implies that x ∈ S.
We make the same definitions for preposets as well.

The Hopf monoid of (pre)posets is the species (P)P with product and coproduct

mS,T (p, q) = p ⊔ q, ∆S,T (p) =
⎧⎪⎪⎨⎪⎪⎩

p∣S ⊗ p∣T if S is a lower ideal of p

0 otherwise.

Similarly, the Hopf monoid of weighted (pre)posets w(P)P has product and coproduct

mS,T ((u, p), (v, q)) = ((u, v), p⊔q), ∆S,T (w,p) =
⎧⎪⎪⎨⎪⎪⎩

(w,p)∣S ⊗ (w,p)∣T if S is a lower ideal of p

0 otherwise.

Theorem 2.8. [2] The maps

cone(p) = cone(ei − ej ∣ i ≥p j), cone(w,p) = wp + cone(p)

are isomorphisms of Hopf monoids

PP ≅ CGP+
0 , wPP→CGP+, P ≅ PCGP+

0 , wP ≅ PCGP+.

The first part of this statement is [2, Proposition 3.4.6] while the others are simple modifica-
tions of it. We will sometimes identify (weighted) (pre)posets and their cones, and identify the
Hopf monoids (w)(P)P and (P)CGP(0)

+, without saying so explicitly.
We have the following consequence.
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Corollary 2.9. The maps

CGP+[I] → CGP0
+[I]

cone(w,p) z→ cone(p)

that shift the apex of a conical generalized permutahedron to the origin give morphisms of Hopf
monoids CGP+ →CGP0

+ and PCGP+ → PCGP0
+.

Ordered set partitions. If ` = `1∣⋯∣`k is an ordered set partition of I and S is a subset of I, then
the restriction `∣S of ` to S is obtained from (`1 ∩ S)∣⋯∣(`k ∩ S) by removing all empty blocks.
For example,

(149∣278∣6∣35) ∣{1,2,3,4} = 14∣2∣3.
Say an ordered set partition n on I is a quasi-shuffle of ordered set partitions ` and m on S and
T , respectively, if ` = n∣S and m = n∣T . In particular, every part of n is either a block of `, or a
block of m, or a union of a block of ` and a block of m. For example,

149∣278∣6∣35 is a quasishuffle of 14∣2∣35 and 9∣78∣6.

The Hopf monoid of ordered set partitions Σ∗ is the species of ordered set partitions
with multiplication given by

` ⋅m = ∑
n quasishuffle

of ` and m

n

and comultiplication given by

∆S,T (`1∣⋯∣`k) =
⎧⎪⎪⎨⎪⎪⎩

(`1∣⋯∣`j)⊗ (`j+1∣⋯∣`k) if S = `1 ⊔⋯ ⊔ `j for 0 ≤ j ≤ k,

0 otherwise.

This Hopf monoid is introduced in [4, Proposition 12.20], after setting q = 1.

Weighted ordered set partitions. We close this section by introducing a Hopf monoid that
will play a central role in this project. Say a weighted ordered set partition (w,n) on I is a
quasi-shuffle of (u, `) and (v,m) on S and T , respectively, if n is a quasishuffle of ` and m, and

w(ni) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(`a) if ni = `a
v(mb) if ni =mb

u(`a) + v(mb) if ni = `a ⊔mb

for each block ni of n. For example,

((a + d, b + e, f, c),149∣278∣6∣35) is a quasishuffle of ((a, b, c),14∣2∣35) and ((d, e, f),9∣78∣6)

Definition 2.10. The Hopf monoid of weighted ordered set partitions wΣ∗ is the Hopf
monoid given by the species wΣ∗[I] = F{weighted ordered set partitions on I} with multiplica-
tion given by

(u, `) ⋅ (v,m) = ∑
(w,n) quasishuffle

of (u, `) and (v,m)

(w,n)
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and comultiplication given by

∆S,T ((w, `1∣⋯∣`k)) =
⎧⎪⎪⎨⎪⎪⎩

(w∣S , `1∣⋯∣`j)⊗ (w/S , `j+1∣⋯∣`k) if S = `1 ⊔⋯ ⊔ `j for 0 ≤ j ≤ k,

0 otherwise,

where w∣S and w/S are the restrictions of w to {`1, . . . , `j} and {`j+1, . . . , `k}, respectively.

One may verify directly that wΣ∗ satisfies the axioms of a Hopf monoid, but we will prove it
by interpreting this Hopf monoid geometrically in Theorem 4.8. Naturally, we have the following
projection map of Hopf monoids:

wΣ∗ → Σ∗

(w, `) z→ `.

3 The Brianchon-Gram, aligning, and Brion morphisms

In this section we introduce two Hopf morphisms: the Brianchon-Gram morphism on extended
generalized permutahedra and the aligning morphism on (weighted) preposets. They will play
a key role in our proof of Theorem 4.8 which states that the Hopf monoid structure on GP+

descends to the quotient I(GP+) = GP+/ie.

3.1 The Brianchon-Gram morphism

For a polyhedron P ⊆ RI and a linear functional w ∈ (RI)∗, we define Pw as the face of P
maximized by w, with the convention that Pw = ∅ if P is unbounded in direction w.

For a polyhedron P and a point f ∈ P , we define the tangent cone of P at f to be

conef(P ) = {f + x ∶ f + εx ∈ P for all small enough ε > 0}.

For any face F of P we define

coneF (P ) = conef(P ) for any f ∈ relintF ;

this does not depend on the choice of the point f in the relative interior of F . [11, Prop. 3.5.2].
Recall that a face F of P is relatively bounded if it is non-empty and F /L is a bounded face

of P /L where L is the lineality space of P . (For simplicity, we will sometimes call such faces
bounded.) When a polyhedron P has a lineality space L, we write

dimP ∶= (dimension of P ) − (dimension of L). (3.1)

Proposition 3.1. The Brianchon-Gram maps BG[I] ∶ GP+[I]→CGP+[I], defined by

BG(P ) = ∑
F≤P rel.
bounded

(−1)dimF coneF (P ) for P ∈ GP+[I],

where we sum over the relatively bounded faces F of P , give a morphism of Hopf monoids.

Before proving this theorem, we need two technical lemmas about tangent cones.
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Lemma 3.2. If F is a face of a polyhedron P and G is a face of polyhedron Q then F ×G is a
face of polyhedron P ×Q and

coneF×G(P ×Q) = coneF (P ) × coneG(Q).

Proof. If u and v are linear functionals such that F = Pu and G = Qv then the linear functional
(u, v) gives F ×G = (P ×Q)(u,v). Let us prove the claimed equality.

⊆: Consider an arbitrary point h + z ∈ coneF×G(P ×Q) where h ∈ F ×G and h + εz ∈ P ×Q for
small ε > 0. Write h = f + g and z = x + y for f, x ∈ RS and g, y ∈ RT . Since h ∈ F ×G, we have
f ∈ F and g ∈ G. Since h + εz ∈ P ×Q for small ε, we have f + εx ∈ P and g + εy ∈ Q. It follows
that f + x ∈ coneF (P ) and g + y ∈ coneG(Q).

⊇: Conversely, consider points f + x ∈ coneF (P ) and g + y ∈ coneG(Q). Since f ∈ F and g ∈ G
we have h ∶= f + g ∈ F ×G. Since f + εx ∈ P for small enough ε′ > 0 and g + ε′′y ∈ Q for small
enough ε′′ > 0, then z ∶= x + y satisfies that h + εz ∈ P ×Q for small enough ε > 0. We conclude
that h + z ∈ coneF×G(P ×Q).

Lemma 3.3. Let P ⊆ RI be a polyhedron, F a face of P , and w ∈ RI a linear functional. Then

(coneF (P ))w =
⎧⎪⎪⎨⎪⎪⎩

∅ if F ⊈ Pw
coneF (Pw) if F ⊆ Pw

Proof. 1. First consider the case F ⊈ Pw. Assume contrariwise that (coneF (P ))w ≠ ∅, and that
the maximum value m of the linear function w in coneF (P ) is attained at a point f + x where f
is in the face F and f + εx ∈ P for small ε > 0. For any r > 0 we also have f + rx ∈ coneF (P ) and
hence m = w(f + x) ≥ w(f + rx). This is only possible if w(x) = 0, so w(f) =m.

Since F ⊆ P ⊆ coneF (P ) and the w-maximum value of coneF (P ) is attained at f ∈ F , this
must also be the w-maximum value of P . Therefore f is in the w maximal face Pw of P .

Finally, for any other f ′ ∈ F we have that f ′ + r(f − f ′) ∈ coneF (P ) for all r > 0, so we must
have m ≥ w(f ′ + r(f − f ′)); this is only possible if w(f − f ′) ≤ 0, which implies w(f ′) =m; that is,
f ′ ∈ Pw as well. We conclude that F ⊆ Pw, a contradiction. This proves the first case.

2. Assume F ⊆ Pw and let m = w(f) for f ∈ F ; this is the maximum value that w takes in P .

⊆: Let f + x ∈ (coneF (P ))w where f ∈ F and f + εx ∈ P for small ε > 0. As we saw above, this
implies w(x) = 0, so w(f + εx) = m, and f + εx ∈ Pw as well. This implies f + x ∈ coneF (Pw) as
desired.

⊇: Let f + x ∈ coneF (Pw) where f ∈ F and f + εx ∈ Pw for small ε > 0. Since f and f + εx are
in Pw, we have w(f) =m and w(x) = 0.

Now, f + εx ∈ P implies f + x ∈ coneF (P ). To show that f + x is in the w-maximal face
of this cone, consider any other point f ′ + x′ ∈ coneF (P ) where f ′ ∈ F and f ′ + εx′ ∈ P . Then
w(f ′ + εx′) ≤m = w(f ′), so w(x′) ≤ 0 and thus w(f ′ + x′) ≤m = w(f + x), as desired.

With those lemmas at hand, we are now ready to prove that the Brianchon-Gram maps give
a morphism of Hopf monoids.
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Proof of Theorem 3.1. For any P ∈ GP+[S] and Q ∈ GP+[T ] we have

BG(P ) ⋅BG(Q) = (∑
F≤P

(−1)dimF coneF (P ))
⎛
⎝∑G≤Q

(−1)dimG coneG(Q)
⎞
⎠

= ∑
F×G≤P×Q

(−1)dimF×G coneF×G(P ×Q)

= BG(P ×Q),

summing over bounded faces. Here we are using the fact that the bounded faces of P ×Q are the
products of a bounded face of P and a bounded face of Q, combined with Lemma 3.2. Thus the
Brianchon-Gram maps preserve the monoid structure.

For the coproduct we have, for any P ∈ GP+[I],

∆S,T (BG(P )) = ∆S,T (∑
F≤P

(−1)dimF coneF (P ))

= ∑
F≤PS,T

(−1)dimF∆S,T (coneF (P ))

where each sum is over bounded faces, using the first part of Lemma 3.3. Every bounded face F
of PS,T = P ∣S × P /S factors as F = F ∣S × F /S for a bounded face F ∣S of P ∣S and a bounded face
F /S of P /S , and every such pair of faces arises from a bounded face of PS,T . We have

(coneF (P ))S,T = coneF (PS,T ) = coneF ∣S×F /S
(P ∣S × P /S) = coneF ∣S

(P ∣S) × coneF /S
(P /S)

combining Lemma 3.3 and the second part of Lemma 3.2. Thus we may rewrite the equation
above as

∆S,T (BG(P )) = ∑
F ∣S≤P ∣S
F /S≤P /S

(−1)dimF ∣S coneF ∣S
(P ∣S)⊗ (−1)dimF /S coneF /S

(P /S)

= BG(P ∣S)⊗BG(P /S)

as desired.

Lemma 3.4. The Brianchon-Gram morphism BG

1. restricts to the identity on Im(BG) = CGP+[I] ⊂ GP+[I], and

2. is idempotent: BG ○BG = BG.

Proof. The first statement holds since the only relatively bounded face of a cone is its relative
apex. The second follows readily.

For an extended generalized permutahedron P and a bounded face F , let us write preposetF (P )
for the preposet p such that coneF (P ) is a translate of the cone of preposetF (P ). Recall (3.1).
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Corollary 3.5. The combinatorial Brianchon-Gram maps, defined by

cBG(P ) = ∑
F≤P

(−1)dimF preposetF (P ) for P ∈ GP+[I],

where we sum over the relatively bounded faces F of the polyhedron P , give a morphism of Hopf
monoids cBG ∶ GP+ → PP.

Proof. This is the result of composing the Brianchon-Gram morphism with the projection map
cone(w,p)↦ cone(p) of Corollary 2.9.

3.2 The aligning morphism

Proposition 3.6. The aligning maps A ∶ (w)PP[I]→ (w)Σ∗[I] given by

A(p) = ∑
` prelin.
ext. of p

` for a preposet p on I,

A(w,p) = ∑
(v,`) prelin.
ext. of (w,p)

(v, `) for a weighted preposet (w,p) on I

give morphisms of Hopf monoids PP→Σ∗ and wPP→wΣ∗

Proof. For any preposets p on S and q on T we have

A(p ⊔ q) = ∑
` prelin. ext. of p⊔q

`

= ∑
`p prelin. ext. of p
`q prelin. ext. of q

∑
` quasishuffle of `p and `q

`

= ∑
`p prelin. ext. of p
`q prelin. ext. of q

`p ⋅ `q

= A(p) ⋅A(q),

so A preserves the product.

To verify that A also preserves the coproduct, recall that the coproduct for (pre)posets is

∆S,T (q) =
⎧⎪⎪⎨⎪⎪⎩

q∣S ⊗ q∣T if S is a lower ideal of q,

0 otherwise.

for a preposet q on I. If S is not a lower ideal of q then S is not a lower ideal of any prelinear
extension ` of q either, so

AS ⊗AT (∆S,T (q)) = 0 and ∆S,T (AI(q)) = ∑
` prelin.
ext. of q

∆S,T (`) = 0

If S is a lower ideal of q, then there are two possibilities for a prelinear extension ` of q. If S is
not a lower ideal of ` then ∆S,T (`) = 0. If S is a lower ideal of `, then ` is the ordinal sum of `∣S
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and `∣T , and every combination of prelinear extensions `∣S and `∣T of q∣S and q∣T arises from such
an `. Thus

∆S,T (A(q)) = ∑
` prelin. ext. of q

∆S,T (`)

= ∑
`∣S prelin. ext. of q∣S
`∣T prelin. ext. of q∣T

`∣S ⊗ `∣T

= A(q∣S)⊗A(q∣T ).

The result follows. The weighted version of the statement holds by an analogous argument.

We record two observations that are readily verified.

Lemma 3.7. The sign map sgn(p) = (−1)∣p∣p is an automorphism of the Hopf monoid PP of
preposets.

Lemma 3.8. The aligning map A

1. restricts to the identity on Im(A) = (w)Σ∗ ⊂ (w)PP, and

2. is idempotent: A ○A = A.

Proof. The first statement holds since the only prelinear extension of a totally ordered preposet
is that preposet itself. The second follows readily.

It is worth remarking that the inclusion in Lemma 3.8.1 above is an inclusion of comonoids
that is incompatible with the monoid structures. Therefore the map A ○A of Lemma 3.8.2 is
well-defined, but it is not a Hopf morphism.

3.3 The Brion morphism

We conclude this section with the definition of a morphism with nice combinatorial properties
that will be analyzed in a future project. For an extended generalized permutahedron P and a
vertex v, let us write posetv(P ) for the poset p that is a translate of conev(P ).

Proposition 3.9. The Brion maps B[I] ∶ GP+[I]→ P[I], defined by

B(P ) = ∑
v vertex of P

posetv(P ) for P ∈ GP+[I]

give a morphism of Hopf monoids from GP+ to P.

Proof. On preposets, consider the maps (w)PP[I]→ (w)P[I] that is the identity map on posets
and the zero map on all other preposets. One readily verifies that these are morphisms, and the
combinatorial Brion morphism is obtained by composing the combinatorial Brianchon morphism
with them.

The Brion morphism has several interesting combinatorial and algebraic properties that will
be the subject of an upcoming paper. Naturally, there is also a geometric Brion map from GP+[I]
to PCGP+[I].
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4 The indicator Hopf monoid of generalized permutahedra

4.1 Valuations

Valuations are combinatorial abstractions of measures and have played an important role in
various aspects of convex geometry and polyhedral geometry. One might wish to require that
a measure of a polytope should behave well with respect to subdivisions and with respect to
indicator functions, in the following sense.

A polyhedral subdivision of P in P is a collection of polyhedra {Pi} in P such that ⋃Pi = P ,
any two polytopes Pi and Pj intersect in a common face Pi ∩Pj = Pk that is in the collection, and
every non-maximal Pi is the intersection of maximal Pjs in the collection.

Let P be a set of polyhedra in Rn and F be a field of characteristic 0. For any polyhedron
P ∈ P, its indicator function 1P ∶ Rn → F is the function defined by

1P (x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ∈ P
0 otherwise.

Let I(P) denote the vector space over F spanned by the indicator functions 1P for P ∈ P.

Definition 4.1. Let A be an abelian group. A function f ∶ P → A is

1. a weak valuation if for any polytopal subdivision {Pi} of P we have

f(P ) =∑
i

(−1)dimP−dimPif(Pi).

2. a strong valuation if it factors through the map P ↦ 1P , that is, there exists a (necessarily
unique) linear function f̂ ∶ I(P)→ A such that for all P ∈ P we have

f(P ) = f̂(1P ).

These notions are illustrated in Examples 8.10 and 9.16, which show some of the relations
satisfied by two weakly valuative functions: the Kazhdan-Lusztig polynomial of a matroid and
the Poincaré polynomial of a poset, respectively.

A strong valuation is always a weak valuation, but the converse is not true in general. Derksen
and Fink proved that when P is the set of generalized permutahedra, the situation is better.

Theorem 4.2. [20] Let P be the family of extended generalized permutahedra, the family of
generalized permutahedra, the family of matroid polytopes, or any family of polyhedra closed under
intersections. Then for any function f on P,

f is a strong valuation ⇐⇒ f is a weak valuation.

An important example of a strong valuation is the constant function.

Proposition 4.3. [20] The function f ∶ GP[I] → A which equals 1 on all generalized permuta-
hedra P is a strong valuation. In particular, for any subdivision P of P we have

∑
Pi∈P

(−1)dimP−dimPi = 1.
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4.2 The inclusion-exclusion subspace of generalized permutahedra

For each finite set I let 1[I] ∶ GP+[I] → Hom(RI ,F) be the linear map that sends an extended
generalized permutahedron P in RI to its indicator function 1P which is equal to 1 in P and to
0 outside of P .

Definition 4.4. The inclusion-exclusion species consists of the vector subspaces

ie[I] = span
⎛
⎝
P − ∑

Pi∈P

(−1)dimP−dimPiPi ∶ P is an ext. gen. perm. subdivision of P
⎞
⎠
⊂ GP+[I]

= Ker(1[I])

for each finite set I and the natural maps between them.

The equivalence of these definitions is guaranteed by Theorem 4.2. To construct a convenient
generating set for the inclusion-exclusion subspace ie[I] of GP+[I], we recall the Brianchon-Gram
theorem and prove a lemma about preposet cones.

Theorem 4.5. (Brianchon-Gram Theorem)[14, 20, 34] Let P be a polyhedron. Then

1P = ∑
F≤P

(−1)dimF
1coneF (P )

summing over the relatively bounded faces F of P .

In the statement above it is important to recall (3.1); this minor but necessary adjustment is
missing from the original sources.

_+ _+ =

Lemma 4.6. For any preposet q we have

1cone(q) = ∑
` prelin. ext. of q

(−1)∣q∣−∣`∣1cone(`),

where ∣r∣ denotes the number of equivalence classes of elements of the preposet r.

Proof. Recall that the dual cone of a cone C in Rd is C∆ ∶= {d ∈ RI ∶ ⟨c, d⟩ ≥ 0 for all c ∈ C}, and
we have C∆∆ = C. The dual cone to cone(q) is the braid cone σq = cone(q)∆ consisting of the
points x ∈ RI whose coordinates satisfy the relations of q, that is, xa ≥ xb whenever a ≥ b in q.

The braid arrangement subdivides the braid cone cone(q)∆ into the braid cones cone(`)∆ for
the prelinear extensions ` of q: the relative interior of each subdividing braid cone consists of the
points in cone(q)∆ whose coordinates are in a fixed relative order. The dimension of cone(q)∆ is
∣q∣, so inclusion-exclusion gives the analogous relation for the braid cones

1cone(q)∆ = ∑
` prelin. ext. of q

(−1)∣q∣−∣`∣1cone(`)∆ . (4.1)
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Figure 2: A preposet cone equals the alternating sum of the cones of its prelinear extensions.
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Figure 3: A braid cone equals the alternating sum of the braid cones of its prelinear extensions.

This is illustrated in Figure 3, which is dual to Figure 2.
Now we show that the dual equation (4.1) implies the desired equation. For x ∈ RI we have

1C(x) = 1 ⇐⇒ x ∈ C ⇐⇒ ⟨d, x⟩ ≤ 0 for all d ∈ C∆ ⇐⇒ C∆ ∩Hx = ∅ ⇐⇒ jx(C∆) = 1,

where Hx = {d ∈ RI ∶ ⟨d, x⟩ > 0} is an open half-space and jx is the function on polyhedra given
by jx(D) = 1 if D ∩Hx = ∅ and jx(D) = 0 otherwise. The function jx is a weak valuation for
polyhedral subdivisions [8, Prop. 4.5]4, so for any x ∈ RI we have

⎛
⎜⎜⎜
⎝
1cone(q) − ∑

` prelin.
ext. of q

(−1)∣q∣−∣`∣1cone(`)

⎞
⎟⎟⎟
⎠
(x) = jx(cone(q)∆) − ∑

` prelin.
ext. of q

(−1)∣q∣−∣`∣jx(cone(`)∆) = 0.

This proves the desired result.

For each polyhedron P ∈ GP+[I], define the Brianchon-Gram generator of P to be

P −BG(P ) ∶= P − ∑
F≤P

(−1)dimF (coneF (P )) ∈ GP+[I]

where the sum is taken over the relatively bounded faces F of P . For each cone C ∈ GP+[I] there
is a preposet q on I and a translation vector v such that C = v+cone(q); define the corresponding
aligning generator of C to be

C −A−(C) ∶= (v + cone(q)) − ∑
` prelin. ext. of q

(−1)∣q∣−∣`∣(v + cone(`)).

Note that the summands on the right hand summation are plates.

4In [8] this statement is proved for functions on matroid polytopes, but the same proof applies to this setting.
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Lemma 4.7. The inclusion-exclusion subspace ie[I] is generated by the Brianchon-Gram gener-
ators of the polyhedra P ∈ GP+[I] and the aligning generators of the cones C ∈ CGP+[I].

Proof. Theorem 4.5 and Lemma 4.6 tell us that these these generators are in ie[I]. Now consider
any element a ∈ ie[I] of the inclusion-exclusion subspace. Using the Brianchon-Gram generator
for each polyhedron appearing in a, and then the aligning generator for each resulting cone, we
can write a = b+ c+ d where b is a linear combination of Brianchon-Gram generators, c is a linear
combination of aligning generators, and

d =
n

∑
i=1

λi(vi + cone(`i))

is a linear combination of plates. Since d = a − b − c ∈ ie[I], we have

n

∑
i=1

λi1vi+cone(`i) = 0.

Now, [28, Theorem 2.7] states that the indicator functions 1v+coneF (P ) of the translates of the
tangent cones coneF (P ) of a polytope are linearly independent. For the permutahedron, these
translates are precisely the permutahedral plates, so they are linearly independent. We conclude
that d = 0, and the desired result follows.

4.3 The indicator Hopf monoid of extended generalized permutahedra

Let the species I(GP+) of indicator functions on GP+ consist of the vector spaces

I(GP+)[I] ∶= span{1P ∣P is a generalized permutahedron in RI} ⊂ Hom(RI ,F)
≅ GP+[I]/ie[I].

for each finite set I and the natural maps between them. We say that a species morphism
f ∶ GP+ →A is a strong valuation if the map f[I] is a strong valuation for all I.

Similarly, for a subspecies H of GP+ define the species I(H) of indicator functions on H by

I(H)[I] ∶= span{1P ∣P ∈ H[I]}
≅ H[I]/(ie[I] ∩H[I]).

Every strong or weak valuation of GP+ restricts to a strong or weak valuation of H, respectively,
since I(H) is a subspecies of I(GP+). However, the classes of strong and weak valuations may
no longer agree in H. Thus ie[I] ∩ H[I] may not be generated by elements of the form P −
∑Pi∈P(−1)dimP−dimPiPi for subdivisions {Pi} of P with Pi, P ∈ H[I].

In this section we prove our main structural Hopf theoretic result (Theorem A), that the Hopf
monoid structure on GP+ descends to the quotient I(GP+).

Theorem 4.8. Let GP+ be the Hopf monoid of extended generalized permutahedra.

1. The inclusion-exclusion species ie is a Hopf ideal of GP+.

2. The quotient I(GP+) ≅ GP+/ie is a Hopf monoid.
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3. The resulting indicator Hopf monoid of extended generalized permutahedra is iso-
morphic to the Hopf monoid of weighted ordered set partitions:

I(GP+) ≅ wΣ∗.

4. For any Hopf submonoid H ⊆ GP+, the subspecies I(H) ⊆ I(GP+) is a Hopf quotient of H,
namely, I(H) ≅ H/(ie ∩H).

Proof. Consider the composition ϕ of the Brianchon-Gram morphism (Proposition 3.1), the iso-
morphism between conical generalized permutahedra and weighted preposets (Theorem 2.8), the
sign automorphism of weighted preposets (Lemma 3.7), and the aligning morphism (Proposition
3.6) as follows:

ϕ ∶ GP+ BGÐÐ→CGP+ cone−1

ÐÐÐ→
≅

wPP
sgnÐÐ→wPP

AÐ→wΣ∗

P z→ (−1)∣I ∣−dim Lin(P ) ∑
F≤P

coneF (P )=cone(w,q)

∑
(v,`) prelin. ext.

of (w,q)

(v, `),

for a generalized permutahedron P ∈ GP+[I] with lineality space Lin(P ). To verify the correctness
of the sign, notice that the sign on a summand (v, `) in ϕ(P ) is (−1)dimF (−1)∣q∣, recall (3.1),
observe that Lin(P ) = Lin(F ), and notice that the dimension of F equals the dimension of the
lineality space of coneF (P ) = cone(w, q), which is ∣I ∣ − ∣q∣.

Recall that plates are in bijection with weighted ordered set partitions, and notice that each
plate d = cone(v, `) satisfies ϕ(d) = (−1)∣l∣(v, `), so ϕ is surjective. We claim that the kernel of ϕ
is the inclusion-exclusion species:

Kerϕ = ie

⊇: Since BG ○BG = BG by Lemma 3.4, we have

ϕ(P −BG(P )) = 0

for all polyhedra P , so all Brianchon-Gram generators are in the kernel of ϕ. Also notice that for
any cone C = cone(q) (assuming the apex of C contains 0, without loss of generality), we have

C −A−(C) BGÐÐ→ C −A−(C) cone−1

ÐÐÐ→
≅

q − ∑
` prelin.
ext. of q

(−1)∣q∣−∣`∣` sgnÐÐ→ (−1)∣q∣(q −A(q)) AÐ→ 0

since A is idempotent, so
ϕ(C −A−(C)) = 0

as well. Therefore, in light of Lemma 4.7, the inclusion-exclusion species is in the kernel of ϕ.

⊆: Consider any element a ∈ Kerϕ. We can use the Brianchon-Gram generators to rewrite each
summand of a in terms of its affine tangent cones, and then the aligning relations to write each
of those cones in terms of plates. Therefore we have

a = b + c + p
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where b is a linear combination of Brianchon-Gram generators, c is a linear combination of aligning
generators, and p is a linear combination of plates. Since a, b, c ∈ Kerϕ we have p ∈ Kerϕ so
ϕ(p) = 0. But each plate d = cone(v, `) satisfies ϕ(d) = (−1)∣l∣(v, `) and there are no linear
relations among weighted ordered set partitions in wΣ∗, so in fact we must have p = 0 and
a = b + c ∈ ie, as desired.

Claims 1–3 then follow from the First Isomorphism Theorem of Hopf moniods, which we prove
in Theorem 12.1. Furthermore, Claim 2 implies that the projection map 1(−) ∶ GP+[I]→ I(GP+)
which sends a polytope to its indicator function is a Hopf monoid morphism. The restriction
1(−)∣H of this morphism to the submonoid H has image I(H) and kernel (ie ∩ H), so Claim 4
follows by applying the First Isomorphism Theorem to this morphism.

Corollary 4.9. The antipode of the indicator Hopf monoid of generalized permutahedra I(GP+)
is given by

sI(1P ) = (−1)∣I ∣−dimP
1P ○ for P ∈ GP+[I],

where P ○ is the relative interior of P .

Proof. Aguiar and Ardila [2] showed that the antipode in GP+ is given by

sI(P ) = (−1)∣I ∣ ∑
Q≤P

(−1)dimQQ

summing over the faces of P . Using the inclusion-exclusion relations that hold in the quotient
I(GP+), this simplifies to the desired result.

For an extended generalized permutahedron P in RI and an ordered set partition ` of I, let
the `-maximal face P` of P be the f -maximal face Pf for any vector f whose entries are in the
same relative order as `, that is, fi < fj for i ∈ `a, j ∈ `b, a < b and fi = fj for i, j ∈ `a.

Proposition 4.10. The isomorphism of Theorem 4.8.3 is realized by the map

ϕ ∶ I(GP+) ≅Ð→ wΣ∗

1P z→ (−1)∣I ∣−dim Lin(P ) ∑
` ∶P` is

rel. bounded

(vP,`, `).

for an extended generalized permutahedron P ∈ GP+[I], where the `-maximal face P` of P lies
on the subspace given by equations ∑l∈`i xl = vP,`(`i) for each block `i of `. In particular, for the
plate P = cone(w, `) of a weighted ordered set partition (w, `), we have

1cone(w,l) z→ (−1)∣I ∣−`(w, `).

Proof. Consider a relatively bounded face F of P and let coneF (P ) = cone(w, q) = wq + cone(q).
Each prelinear extension ` of q corresponds to an open face σo` of the braid fan contained in
the open dual preposet cone σoq , that is, an ordered set partition ` such that P` = F . The
corresponding prelinear extension (v, `) of (w, q) is obtained by grouping the weights w of q among
the parts of `; since coneF (P ) = cone(w, q) these are the weights described in the statement of
the proposition.
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Remark 4.11. Eur, Sanchez, and Supina [28] constructed the universal valuation F for extended
generalized Φ-permutahedra for any finite reflection group. When Φ is the symmetric group Sn,
their map F , once interpreted combinatorially, is identical to the map ϕ of Proposition 4.10.
Their work thus explains why our map ϕ is a valuation; this is equivalent to the inclusion ⊇ in
the proof of Theorem 4.8, which we reprove for completeness. Our work reveals that their map
F is not just a linear map, but also a Hopf morphism.

Remark 4.12. The isomorphism ϕ of Proposition 4.10 has an unexpected sign twist, which
we illustrate in the smallest interesting example. In Σ∗, the product of the trivial ordered set
partitions a ∈ wΣ∗[{a}] and b ∈ wΣ∗[{b}] is

a ⋅ b = a∣b + b∣a + ab ∈ wΣ∗[{a, b}],

whereas the corresponding plates, cone(a) = {0} ⊂ R{a} and cone(b) = {0} ⊂ R{b}, when considered
in I(GP+), satisfy

1cone(a) ⋅ 1cone(b) = 1(0,0) ⊂ R{a,b}

= 1R≥0(ea−eb) + 1R≤0(ea−eb) − 1R(ea−eb)

= 1cone(b∣a) + 1cone(a∣b) − 1cone(ab),

which matches the expression for a ⋅ b after a sign correction.

4.4 The extended McMullen species and the indicator Hopf monoid of posets

Although it is less relevant to our goal of studying valuations on generalized permutahedra, the
following version of Theorem 4.8 may be of independent interest. Consider the following extension
of the inclusion-exclusion species that also identifies a polyhedron P ⊆ RI with any translate v+P
of it, where v ∈ RI , as is done in the McMullen polytope algebra.

Definition 4.13. The extended McMullen species consists of the vector subspaces

Mc+[I] = ie[I] + span (P − (P + v) ∣P ∈ GP+[I], v ∈ RI) ⊂ GP+[I]

for each finite set I and the natural maps between them.

Let the indicator Hopf monoid of (pre)posets I((P)P) be the submonoid of I(GP+)
generated by (pre)poset cones.

Theorem 4.14. Let GP+ be the Hopf monoid of extended generalized permutahedra.

1. The extended McMullen species Mc+ is a Hopf ideal of GP+.

2. The quotient Hopf monoid is isomorphic to the Hopf monoid of ordered set partitions:

GP+/Mc+ ≅ Σ∗.

3. For any Hopf submonoid H ⊆ GP+ the subspecies of GP+/Mc+ generated by the images of
the indicator functions of polyhedra in H is a Hopf quotient of H, namely, H/(Mc+ ∩H).
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4. The quotient Hopf monoid GP+/Mc+ is isomorphic to the indicator Hopf monoid of preposet
cones and to the indicator Hopf monoid of poset cones:

GP+/Mc+ ≅ I(PP) ≅ I(P).

Proof. We can compose the morphisms ϕ ∶ GP+ → wΣ∗ with the projection wΣ∗ → Σ∗ that
drops the weights, or equivalently, translates the plates to the origin. The resulting morphism
ψ ∶ GP+ →Σ∗ is surjective, and we claim that Kerψ = Mc+[I], following Theorem 4.8.

⊇: We already saw that ie ⊆ Kerϕ ⊆ Kerψ, and ψ(P ) = ψ(v+P ) since P and v+P have the same
Brianchon-Gram decomposition up to translation.

⊆: Take a ∈ Kerψ. Analogously to Theorem 4.8, we can write a = b+ c+d+p where b, c, and d are
linear combinations of Brianchon-Gram generators, aligning generators, and translation generators
(P − (v + P )) of Mc+[I], respectively, and p is a linear combination of centered plates. Then
p = a− b− c− d ∈ Kerψ so ψ(p) = 0. But each centered plate cone(`) satisfies ψ(cone(`)) = (−1)∣`∣`
and there are no linear relations among ordered set partitions in Σ∗, so in fact we must have p = 0
and a = b + c + d ∈ Mc+[I] as desired.

Again, the first three claims follow by the first isomorphism theorem of Hopf monoids.
4. The Brianchon-Gram theorem guarantees that the quotient GP+/Mc+ is spanned by the

images of the preposet cones. Applying Theorem 4.14.3 to the Hopf submonoid PP ≅ CGP+
0 ⊂

GP+ of preposet cones, we get:

GP+/Mc+ ≅ PP/(Mc+ ∩PP).

But all preposet cones are centered at the origin, so Mc+ ∩PP = ie ∩PP, and thus

GP+/Mc+ ≅ PP/(ie ∩PP) = I(PP)

by Theorem 4.8.4, as desired. The isomorphism I(PP) ≅ I(P) is shown in Proposition 9.1.

With different goals in mind, Bastidas [10] proved a result analogous to part 1 of Theorem
4.14 for the quotient GP/Mc where only bounded polytopes are allowed. The difference between
these two quotients may seem small at first sight, but their behavior is very different. For instance,
every bounded generalized permutahedron P in RI maps to the same element of GP+/Mc+ ≅ Σ∗,
namely to (−1)∣I ∣∑`∈Σ∗[I] `, thanks to the following result.

Proposition 4.15. The image of an extended generalized permutahedron P ∈ GP+[I] in the
quotient GP+/Mc+ ≅ Σ∗ under the isomorphism of Theorem 4.14.4 is

GP+ ≅Ð→ GP+/Mc+ ≅ Σ∗

P z→ (−1)∣I ∣−dim Lin(P ) ∑
` ∶P` is

rel. bounded

`.

Proof. This follows readily from Proposition 4.10.
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5 Cofreeness and universality

Aguiar and Ardila showed that many Hopf monoids on combinatorial objects embed into the
Hopf monoid of extended generalized permutahedra [2]. These include Hopf monoids of matroids,
graphs, posets, multigraphs, simplicial complexes, and building sets, among others. Their work
suggests that generalized permutahedra may satisfy some universality property in the category
of Hopf monoids. We prove a concrete result in this direction by describing a universal property
that characterizes the quotients I(GP+) ≅ GP+/ie and GP+/Mc+.

This section assumes familiarity with the notion of cofree Hopf monoids as developed by Aguiar
and Mahajan [4]. We note that they proved the analogous result to Theorem 5.4 for Σ∗, which
is isomorphic to GP+/Mc+. In the Appendix, and Section 12.3 in particular, we summarize the
relevant definitions and constructions.

Let E+ and E+
F[t] be the species with vector spaces

E+[I] =
⎧⎪⎪⎨⎪⎪⎩

⟨0⟩ if I = ∅
F if I ≠ ∅,

E+
F[t][I] =

⎧⎪⎪⎨⎪⎪⎩

⟨0⟩ if I = ∅
F[t] if I ≠ ∅.

and the natural maps between them, where F[t] is the polynomial ring with coefficients in F.
Define E+

F{t} similarly, where F{t} is the ring of generalized polynomials ∑ni=1 ait
ri where

ai ∈ F and ri ∈ R. These species have the structure of positive monoids, with product given by the
multiplication in the field or (generalized) polynomial ring.

Theorem 5.1. The Hopf monoids Σ∗ and GP+/Mc+ are cofree. They are isomorphic to the
cofree Hopf monoid on E+.

Proof. The first two Hopf monoids are isomorphic by Theorem 4.14.3. The second isomorphism
was shown by Aguiar and Mahajan [4, Proposition 12.58] and it follows readily from the defini-
tions.

Theorem 5.2. The Hopf monoids wΣ∗ and I(GP+) ≅ GP+/ie are cofree. They are isomorphic
to the cofree Hopf monoid on E+

F{t}.

Proof. We use the construction of cofree Hopf monoids explained in the Appendix. Consider the
species morphism

wΣ∗ Ð→ T (E+
F{t})

((w1, . . . ,wk), `1∣⋯∣`k) z→ (`1∣⋯∣`k, tw1 ⊗⋯⊗ twk).

The pairs (`1∣⋯∣`k, tw(`1) ⊗ ⋯ ⊗ tw(`k)) form a basis for the cofree Hopf monoid T (E+
F{t}), so

this is a species isomorphism. Comparing the Hopf structures of wΣ∗ and T (E+
F{t}), described

in Definition 2.10 and Section 12.3, immediately reveals that this is actually a Hopf monoid
isomorphism.

Definition 5.3. A character ζ on a connected Hopf monoid H consists of maps ζI ∶ H[I] → F
that are natural, multiplicative, and unital in the sense of Definition 6.4. Similarly, a (gener-
alized) polynomial character on H consists of maps to the ring of (generalized) polynomials
with the same properties.
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We define the canonical character β on the Hopf monoid of ordered set partitions Σ∗ by

βI(`) =
⎧⎪⎪⎨⎪⎪⎩

1 if ` has length one,

0 otherwise.

Equivalently, we define the canonical character β on GP+/Mc+ by by

β([1P ]) =
⎧⎪⎪⎨⎪⎪⎩

(−1)∣I ∣−dim Lin(P ) if P is relatively bounded

0 if P is relatively unbounded.

for each extended generalized permutahedron P , where Lin(P ) is the lineality space of P . This
is well-defined and matches the canonical character of Σ∗ by Proposition 4.15.

Theorem 5.4. The terminal object in the category of Hopf monoids with characters is (GP+/Mc+, β).
Explicitly: For any connected Hopf monoid H and any character ζ on H, there exists a unique

Hopf morphism ζ̂ ∶ H→GP+/Mc+ such that β ○ ζ̂ = ζ.

Proof. A character is equivalent to a multiplicative map from H+ to E+. The result follows from
Theorem 12.2.

Similarly, we define the canonical (generalized polynomial) character β on the Hopf monoid
of weighted ordered set partitions wΣ∗ by

βI(w, `) =
⎧⎪⎪⎨⎪⎪⎩

tw1 if ` has length one,

0 otherwise.

Equivalently, we define the canonical (generalized polynomial) character β on the indicator
Hopf monoid of extended generalized permutahedra I(GP+) by

β(1P ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−1)∣I ∣−dim Lin(P )tp if P is relatively bounded and lies on hyperplane ∑
i∈I

xi = p in RI ,

0 if P is relatively unbounded.

where Lin(P ) is the lineality space of P . This is well-defined and matches the canonical character
of wΣ∗ by Proposition 4.10. We obtain the following analog to Theorem 5.4.

Theorem 5.5. The terminal object in the category of Hopf monoids with generalized polynomial
characters is (I(GP+), β), the indicator Hopf monoid of extended generalized permutahedra with
the canonical character.

Proof. A generalized polynomial character is equivalent to a multiplicative map from H+ to E+
F{t}.

The result follows from Theorem 12.2.

Similarly, the terminal object in the category of Hopf monoids with polynomial characters
is (I(GPN

+), β), where GP+
N ⊂ GP+ is the Hopf monoid of natural extended generalized per-

mutahedra for which the affine hulls of their faces are non-negative integral translates of root
subspaces. Equivalently, these are the generalized permutahedra whose submodular function take
an non-negative integral values.

The universality Theorems 5.4 and 5.5 explain why so many Hopf monoids are closely related
to the Hopf monoid of generalized permutahedra, in ways that are compatible with functions that
turn out to have valuative properties when they are viewed polyhedrally.
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Example 5.6. One consequence of Theorem 5.5 is that there is a natural bijection between
generalized polynomial characters of H and Hopf morphisms of the form φ ∶ H → I(GP+) given
by the map that sends φ to the polynomial character β ○ φ.

As an example of this bijection, consider the Hopf submonoid GP ⊂ GP+ consisting of
bounded generalized permutahedra, and the map 1− ∶ GP → I(GP+) that sends a polytope to
its indicator function. The corresponding generalized polynomial character is given by ζ = β ○1−.
For any polytope P ∈ GP, the value of β(1P ) is (−1)∣I ∣tp where p is the real number such that P
lies on the hyperplane ∑i xi = p.

This shows that the indicator function P ↦ 1P corresponds to the character ζ(P ) = (−1)∣I ∣tµ(P )

where µ ∶ 2I → R is the submodular function defining P and µ(P ) = µ(I).

6 Valuations from Hopf theory

We now apply the results of the previous section to construct new valuations. First, we will need
the following general fact about coideals in comonoids.

Proposition 6.1. Let C be a comonoid, g be a coideal, and S1⊔⋯⊔Sk = I be a set decomposition.
If f1, . . . , fk are functions fi ∶ C[Si] → R, for some ring R with multiplication m, define the
function f1⋯fk ∶ C[I]→ R by f1⋯fk =m ○ f1 ⊗ f2 ⊗⋯⊗ fk ○∆S1,⋯,Sk . Then

If fi(g[Si]) = 0 for i = 1, . . . , k, then f1⋯fk(g[I]) = 0.

Proof. By the definition of coideal, we have

∆S1,...,Sk(g[I]) ⊆ g[S1]⊗H[S2]⊗⋯⊗H[Sk]
+H[S1]⊗ g[S2]⊗⋯⊗H[Sk]
+⋯
+H[S1]⊗H[S2]⊗⋯⊗ g[Sk]

Since fi(g[Si]) = 0 for each i, we have that f1 ⊗⋯⊗ fk ○∆S1,...,Sk(g[I]) = 0.

As a corollary, we obtain a proof of one of our main theorems, Theorem C, which states that
for a Hopf submonoid H of GP+,

if fi ∶ H[Si]→ R are strong valuations for 1 ≤ i ≤ k,
then f1 ⋅ ⋯ ⋅ fk ∶ H[S1 ⊔⋯ ⊔ Sk]→ R is a strong valuation.

Proof of Theorem C. Let 1− ∶ H → I(H) be the map that sends a polytope to its indicator
function. Then by Theorem A, we have that Ker(1−) is a coideal of H and I(H) ≅ H/Ker(1−).
Since a function f ∶ H[I]→ A is a strong valuation if and only if f(Ker(1−)) = 0, the result follows
from Proposition 6.1.

We now turn to two general applications of Theorem C. The first is to the convolutions of
linear species morphisms.

In what follows, if we have a collection of linear maps g[I] ∶ F[I] → V to the same vector
space V , we will often identify this with the species map g from F to the species V[I] = V with
trivial maps V[f] = id for all f ∶ I → J .
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Definition 6.2. Let f1, . . . , fk be species maps fi ∶ GP+ → A for some algebra A with multipli-
cation m. Their convolution f1 ⋆⋯ ⋆ fk ∶ GP+ → A is the species map given by

f1 ⋆⋯ ⋆ fk[I](x) = ∑
S1⊔⋯⊔Sk=I

m ○ f1[S1]⊗⋯⊗ fk[Sk] ○∆S1,...,Sk(x).

Applying Theorem C, we obtain the following corollary.

Corollary 6.3. Let H be a submonoid of GP+. Let f1, . . . , fk be species maps from H to an
algebra A. If each fi[I] is a strong valuation, then f1 ⋆⋯ ⋆ fk is a strong valuation.

Another application regards the character theory of Hopf monoids. This theory shows that
multiplicative functions on a Hopf monoid give rise to polynomial invariants, quasisymmetric
functions, and ordered set partitions associated to the elements in the Hopf monoid [2][3][4]. This
construction has been used often to describe complicated combinatorial invariants in terms of
simpler functions as well as to study combinatorial reciprocity; see [2] or [36] for examples.

Definition 6.4. Let H be a connected Hopf monoid and F be a field. A character of H with
values in a field F is a collection of maps ζI ∶ H[I]→ F for each finite set I satisfying the following
properties.

1. (Naturality) For any bijection σ ∶ I → J , we have ζI(x) = ζJ(H[σ] ⋅ x).

2. (Multiplicativity) For any decomposition S1 ⊔⋯ ⊔ Sk = I, ζS1(x1)⋯ζSk(xk) = ζI(x1⋯xk).

3. (Unitality) The map ζ∅ maps the unit of H[∅] to the unit of F.

Definition 6.5. Let ζ be a character of a connected Hopf monoid H.

1. The polynomial invariant associated to ζ is the function that maps h ∈ H[I] to the
unique polynomial fζ(h)(t) such that for any positive integer k

fζ(h)(k) = ζ∗k(h).

2. The quasisymmetric function associated to ζ is the function that maps h to the qua-
sisymmetric function Φζ(h) given by

Φζ(h) = ∑
S1⊔⋯⊔Sk=I

m ○ ζS1 ⊗⋯⊗ ζSk ○∆S1,...,Sk(h)M∣S1∣,∣S2∣,...,∣Sk ∣.

3. The ordered set partition invariant associated to ζ is the function that maps h to the
linear combination of ordered set partitions Oζ(h) given by

Oζ(h) = ∑
S1⊔⋯⊔Sk=I

m ○ ζS1 ⊗⋯⊗ ζSk ○∆S1,...,Sk(h)[S1 ⊔ S2 ⊔⋯ ⊔ Sk].

Combining Theorem C with these invariants associated to a character, we obtain the following.

Corollary 6.6. Let H be a submonoid of GP+. Let ζ be a character of H such that ζ[I] is a
strong valuation. Then the three maps

h↦ fζ(h), h↦ Φζ(h), h↦ Oζ(h) for h ∈ H[I]

are strong valuations.
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We conclude this section by showing that valuative characters on generalized permutahedra
form a group. Aguiar, Bergeron, and Sottile showed that the characters of a combinatorial Hopf
algebra form a group. Aguiar and Ardila [2] extended character theory to Hopf monoids, giving
several combinatorial consequences. The key structural result is the following.

Proposition 6.7. [3, 2] The set of characters X(H) of a (connected) Hopf monoid form a group
under convolution. The identity is the character e where e[I] = 0 for I /= ∅ and e[∅] is the
isomorphism H[∅] ≅ F. The inverse of a character ζ is ζ−1 = ζ ○S, where S is the antipode of H.

We have done all the work needed to show that character theory interacts nicely with valuations.

Proposition 6.8. Let H be a Hopf submonoid of GP+. The characters of H that are strong
valuations X(H)val form a subgroup of the character group X(H).

Proof. The identity character is trivially a valuation. Corollary 6.3 implies that valuative char-
acters are closed under convolution. A character being a valuation is the same as ζ(ie[I]) = ⟨0⟩.
By Theorem A, we know that ie is an ideal and a coideal. This implies that

S(ie[I]) ⊆ ie[I].

Therefore, for any valuative character ζ we have ζ−1(ie[I]) = ζ ○ S(ie[I]) ⊆ ζ(ie[I]) = ⟨0⟩. This
shows that X(H)val is closed under taking inverses.

7 Valuations on generalized permutahedra

We now use this Hopf theoretic framework to give simple, unified proofs for some new and some
known valuations on generalized permutahedra. We recall that for the class of generalized per-
mutahedra, weak valuations and strong valuations coincide [20].

7.1 Chow classes in the permutahedral variety

The braid fan ΣI has an associated toric variety, called the permutahedral variety XI . The
Chow ring of XI was described by McMullen [46] and Fulton and Sturmfels [31]5 in terms of
Minkowski weights: these are the functions assigning a weight wσ to each k-dimensional face
of ΣI , subject to a certain balancing condition. In the braid fan we have a face σS1∣⋯∣Sk for each
ordered set partition S1∣⋯∣Sk of I.

Fulton and Sturmfels constructed a linear6 isomorphism θ between the space of indicator func-
tions of rational generalized permutahedra in RI up to translation and the Chow ring A⋅(XΣI )⊗Q
of the permutahedral variety XΣI [31]. If D is a line bundle of XI where O(D) is generated
by its sections with corresponding generalized permutahedron PD, then θ(PD) is the exponential
exp(D). Explicitly, the element (viewed as a Minkowski weight) θ(P ) is given by

θ(P )S1∣⋯∣Sk = vS1∣⋯∣SkNVol(PS1∣⋯∣Sk),
5using slightly different conventions
6The vector space of indicator functions of generalized permutahedra forms an algebra with product given by

Minkowski sums of polytopes. With this structure, their map becomes an algebra isomorphism.
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where PS1∣⋯∣Sk is the face of P maximized by any direction w ∈ σS1∣⋯∣Sk , NVol(PS1∣⋯∣Sk) is its
(∣I ∣− k)-dimensional volume in the suitable translate of the subspace given by ∑s∈Si xs = 0 for all
i, and vS1∣⋯∣Sk is an explicit constant not depending on P .

Their proof uses the fact, due to McMullen [46], that θ is valuative. We now give a simple
Hopf theoretic proof of this fact.

Proposition 7.1. The map P ↦ θ(P ) is a valuation.

Proof. Aguiar and Ardila [2] showed that the iterated coproduct for the Hopf monoid GP is

∆S1,...,Sk(P ) = P [F0, F1]⊗⋯⊗ P [Fk−1, Fk]

where Fi = S1 ⊔ ⋯ ⊔ Si, and P [F0, F1], . . . , P [Fk−1, Fk] are the polytopes in RS1 , . . . ,RSk whose
product is PS1∣⋯∣Sk . Therefore

θ(P )S1∣⋯∣Sk = vS1∣⋯∣SkNVol(PS1∣⋯∣Sk)
= vS1∣⋯∣SkmR ○NVol[S1]⊗⋯⊗NVol[Sk] ○∆S1,...,Sk(P ),

which is valuative by Theorem C, since normalized volume is valuative and constant scalings of
valuative functions are valuative.

7.2 The universal Tutte character of generalized permutahedra

One of the most important invariants of a matroid is the Tutte polynomial defined by Tutte
[58] and Crapo [17]. It is the universal polynomial satisfying a deletion-contraction recurrence.
We will define and study it and many related invariants in Section 8.

In this section we focus on a generalization of the Tutte polynomial for generalized permuta-
hedra, due to Dupont, Fink, and Moci [23] 7 We will restrict our attention to the species GPN of
generalized permutahedra whose submodular functions take values in N. This can be adapted to
all generalized permutahedra by using generalized polynomials, as was done in the universality
results of Section 5.

Definition 7.2. [23]

1. A Tutte-Grothendieck invariant8 on generalized permutahedra is a linear species mor-
phism Φ ∶ GPN → R to a ring R such that Φ[∅](1) = 1R and there exist two ring morphisms
f1, f2 ∶ F[x, y, y−1]→ R such that

Φ(P ) = f1 (xyµ(P ∣i)) ⋅Φ(P /i) + f2 (xyµ(P /(I−i)))Φ(P ∣I−i).

for all i ∈ I.

7Their construction applies to a class of objects called minor systems, which includes comonoids; we have adapted
their definitions to GP.

8This definition is equivalent to the universality property described in Proposition 3.20 of [23]. To see the
equivalence, note that every norm to a ring R factors uniquely through the universal norm of GPN. Thus, a norm
is equivalent to a map from the Grothendieck monoid U(GPN) of GPN into the ring R. By Proposition 8.2 of [23],
the monoid U(GPN) embeds into F[x, y, y−1

] and so every norm is induced by a ring morphism f ∶ F[x, y, y−1
]→ R.
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2. The universal Tutte character T [I] ∶ GPN[I]→ F[x1, y1, y
−1
1 , x2, y2, y

−1
2 ] is given by

T [I](P ) = x∣I ∣2 y
µP (I)
2 ∑

A⊆I

(x1

x2
)
∣A∣

(y1

y2
)
µP (A)

.

for a generalized permutahedron P in RI , where µP is the submodular function associated
to P .

Any Tutte-Grothendieck invariant is an evaluation of the universal Tutte character:

Theorem 7.3. [23] If Φ ∶ GPN → R is a Tutte-Grothendieck invariant of GPN, there is a map

α ∶ F[x1, y1, y
−1
1 , x2, y2, y

−1
2 ]→ R

such that Φ(P ) = α(T [I](P )) for all P ∈ GPN[I].

Our main result of this section is that the universal Tutte polynomial is a valuation.

Proposition 7.4. The universal Tutte character T is a valuation on GPN. In particular, every
Tutte-Grothendieck invariant of GPN is a valuation.

Proof. Let N1[I],N2[I] ∶ GPN[I]→ F[x1, y1, y
−1
1 , x2, y2, y

−1
2 ] be the characters given by

N1[I](P ) = x∣I ∣1 y
µP (I)
1 , N2[I](P ) = x∣I ∣2 y

µP (I)
2 ,

for a generalized permutahedron P in RI , where µ is the submodular function of P and µ(P ) =
µ(I). By construction, T is the convolution of the two morphisms N1 ⋆N2. By Corollary 6.3 it
suffices to show that the maps N1 and N2 are valuations.

Any subdivision P of P ⊆ RI is contained in the hyperplane where ∑xi = µ(P ), so every
polytope Pi ∈ P must also be contained in that hyperplane. Thus N1 and N2 are constant on any
subdivision, so they are weak valuations by Proposition 4.3, and strong valuations by Theorem
4.2. The result follows.

Using the tools of [23], this theorem can be generalized to any linearized subcomonoid of GPN

and using generalized polynomial rings this can further be generalized to GP.

7.3 The Tutte polynomial of a matroid and of a matroid morphism

As an application, we now give a proof that the Tutte polynomial for matroids, matroid mor-
phisms, and flag matroids are all valuations. From the point of view of geometry, (representable)
matroids are naturally connected to the Grassmannian. Extending this relationship to the various
partial flag varieties gives rise to the notion of flag matroids. For a thorough discussion see [13].

A matroid morphism is a pair of matroids M → M ′ on the same ground set such that
every flat of M ′ is a flat of M ; these two matroids are called concordant. More generally, a
flag matroid M consists of k matroids M1, . . . ,Mk of different ranks such that every pair is
concordant. The flag matroid polytope of M is the Minkowski sum of the corresponding
matroid polytopes:

P (M) = P (M1) +⋯ + P (Mk) = {a1 +⋯ + ak ∶ ai ∈ P (Mi) for i = 1, . . . , k}.
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The flag matroid polytope P (M) is itself a generalized permutahedron. [13].
Las Vergnas [59] introduced the Tutte polynomial of a matroid morphism M →M ′:

TM→M ′(x, y, z) = ∑
A⊆E

(x − 1)r(M ′)−rM ′(A)(y − 1)∣A∣−rM (A)z(r(M)−rM (A))−(r(M ′)−rM ′(A))

and showed that it specializes to many quantities of interest. See also [6]. The Tutte polynomial
of a matroid M is obtained by setting M =M ′.

Proposition 7.5. The Tutte polynomial of a matroid, the Las Vergnas Tutte polynomial of a
matroid morphism, and the universal Tutte character of a flag matroid are valuations.

Proof. This follows from Proposition 7.4 and the fact, shown in [23], that the Tutte polynomial
and the Las Vergnas Tutte polynomial are reparameterizations of the universal Tutte character
for matroids and matroid morphisms.

Using the relationship between flag matroids and the flag variety Dinu, Eur, and Seynnaeve
defined a K-theoretic Tutte polynomial for flag matroids [21]. They showed that their poly-
nomial is also valuative, but it is not a Tutte-Grothendieck invariant. It would be interesting to
explain its relationship with the Hopf algebraic framework of this paper.

8 Valuations on matroids

The subdivisions of a matroid polytope into smaller matroid polytopes arise naturally in various
algebro-geometric contexts, for example, the compactification of the moduli space of hyperplane
arrangements due to Hacking, Keel, and Tevelev [37] and Kapranov [41], the compactification
of fine Schubert cells in the Grassmannian due to Lafforgue [44, 43], the K-theory of the Grass-
mannian [55], the stratification of the tropical Grassmannian [53] and the study of tropical linear
spaces by Ardila and Klivans [9] and Speyer [54].

The study of valuations on matroids was initiated by Speyer in [54, 55] in order to understand
the constraints on matroid subdivisions. He discovered several valuations on matroids – some
coming from the K-theory of the Grassmannian – and used them to prove bounds on the f -
vector of a tropical linear space. With this paper as motivation, many authors have constructed
other valuations of matroids. We now show that many of these valuations arise easily from our
construction. We note that for the class of matroids, weak valuations and strong valuations
coincide [20].

Two key matroid invariants are the Tutte polynomial and the characteristic polynomial:

TM(x, y) = ∑
A⊆E

(x − 1)r(M)−rM (A)(y − 1)∣A∣−rM (A),

χM(t) = ∑
F⊆M
F flat

µ(∅, F )trk(M)−rk(F ) = (−1)rTM(1 − t,0)

where µ is the Möbius function of the lattice of flats of M . We saw in Proposition 7.5 that TM
is a valuation. Since all matroids involved in a matroid subdivision lie on the same hyperplane

∑i xi = r, they must have the same rank, and hence the above expression shows that χM(t) is a
valuation as well.
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8.1 The Chern-Schwartz-MacPherson cycles of a matroid

The deep connection between matroids and tropical geometry, which stem from the fact that the
Bergman fan of a matroid is a tropical fan [9], leads to many old and new invariants of matroids
coming from geometry. A very interesting example is the Chern-Schwartz-MacPherson (CSM)
cycle of a matroid defined by López de Medrano, Rincón, and Shaw [19].9

The beta invariant β(M) of a matroid is the coefficient of x1y0 in the Tutte polynomial of
M . The beta invariant of a flag F = {F1 ⊂ ⋯ ⊂ Fk} is β(M[F]) = ∏k

i=0 β(M[Fi, Fi+1]) where
M[A,B] = (M ∣B)/A for A ⊆ B; this is non-zero if and only if F is a flag of flats.

Definition 8.1. Let M be matroid of rank r on ground set I. For 0 ≤ k ≤ r − 1, the k-th Chern-
Schwartz-MacPherson cycle CSMk(M) is the k-dimensional Minkowski weight on the braid
fan ΣI given by

CSMk(M)(S1∣⋯∣Sk) = (−1)r−kβ(M[F])
for each ordered set partition S1∣⋯∣Sk of I, where Fi = S1 ⊔⋯ ⊔ Si for 1 ≤ i ≤ k.

To interpret this as a Minkowski weight on the braid fan ΣI , we note that the faces of this fan
are in natural bijection with the ordered set partitions of I.10 We obtain a much simpler proof of
a theorem of López de Medrano, Rincón, and Shaw.

Theorem 8.2. [19] For any fixed k, the kth Chern-Schwartz-MacPherson class CSMk(M) is a
valuation of matroids.

Proof. Since the Tutte polynomial is a valuation by Proposition 7.5, the β invariant is also a
valuation; this was first observed by Speyer [54]. Theorem C then implies that the function

m ○ β⊗k ○∆S1,...,Sk(M) = β(M[F])

is also a valuation for any set partition S1 ⊔⋯ ⊔ Sk. Since a matroid polytope P (M) lies on the
hyperplane ∑i xi = r(M), all the matroids in a matroid subdivision must have the same rank. It
follows that CSMk(M) = (−1)r(M)−km ○ β⊗k ○∆S1,...,Sk(M) is a valuation as well.

8.2 The volume polynomial of a matroid

One of the most recent celebrated results in matroid theory is the construction of the combinatorial
Chow ring of a matroid by Adiprasito, Huh, and Katz [1]. In the case when M is a realizable
matroid, this ring agrees with the Chow cohomology ring of the wonderful compactification of
the hyperplane arrangement associated to M . For each loopless matroid, Eur constructed a
multivariate polynomial which encodes all the information of its combinatorial Chow ring [27].

The characteristic polynomial of a loopless matroid M is given by

χM(t) = ∑
F⊆M
F flat

µ(∅, F )trk(M)−rk(F ) = (−1)rTM(1 − t,0)

where µ is the Möbius function of the lattice of flats of M and TM is the Tutte polynomial. If
M has a loop, we set χM(t) = 0. This is a multiple of t − 1, and the reduced characteristic

polynomial is χM(t) = χM (t)
t−1 . Let µi(M) denote the unsigned coefficient of ti in the reduced

characteristic polynomial of M .

9The CSM cycle of a matroid was originally defined as a tropical cycle; we describe it as a Minkowski weight.
10The fact that the function above is indeed a Minkowski weight on this fan is a non-trivial result in [19].
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Definition 8.3. [27] Let I be a finite set and R[tF ] be the polynomial ring on variables tF for
F ⊂ I. The volume polynomial11 of a matroid M is

V PM(t) = ∑
∅=F0⊂F1⊂⋯⊂Fk⊂Fk+1

d1+⋯+dk=d

(−1)d−k( d

d1,⋯, dk
)∏

i

( di − 1

d̂i − r(Fi)
)µd̂i−r(Fi)(M[Fi, Fi+1])tF1⋯tFk ,

where the sum over flags of flats of M and over sets of positive integers di with ∑di = d, and we
denote d̂j = ∑ji=1 di.

Theorem 8.4. [27] The volume polynomial V PM(t) is a valuation of matroids.

Proof. Since the Tutte polynomial is a valuation, the function µe(M) is also a valuation for
fixed e. Once again, the matroids involved in a matroid subdivision have a fixed rank, so
the term corresponding to a fixed choice of F1, . . . , Fk and d1, . . . , dk is a constant multiple of

∏µei(M[Fi, Fi+1]) = µe1 ⋆⋯ ⋆ µek(M) for fixed e1, . . . , ek; this is a valuation by Theorem C.

Eur’s proof is similar in spirit, but he relies on the universality of the Derksen-Fink invariant.

8.3 The Kazhdan-Lusztig polynomial of a matroid

Definition 8.5. [26] The Kazhdan-Lusztig polynomial of a matroid M is the unique poly-
nomial PM(t) satisfying the following conditions for all matroids:

1. If M is the trivial matroid of rank 0 , then PM(t) = 1.

2. If r(M) > 0, then deg(PM(t)) < 1
2r(M).

3. For every matroid M on I,

tr(M)PM(t−1) = ∑
F⊆I flat

χM ∣F
(t)PM/F

(t).

Definition 8.6. [32] The inverse Kazhdan-Lusztig polynomial of a matroid M is the unique
polynomial QM(t) satisfying the following conditions for all matroids:

1. If M is the trivial matroid of rank 0, then QM(t) = 1.

2. If r(M) > 0, then deg(QM(t)) < 1
2r(M).

3. For every matroid M on I,

(−t)r(M)QM(t−1) = ∑
F⊆I flat

(−1)r(M ∣F )QM ∣F
(t)tr(M/F )χM/F

(t−1).

Remark 8.7. In [26] and [32], these polynomials are only defined for loopless matroids. The
definitions we have given extend their definitions to the case of all matroids. Note that PM = 0
whenever M is non-trivial and has a loop.

11The motivation for this definition is algebro-geometric; this is a non-trivially equivalent formulation.

38



Theorem 8.8. The inverse Kazhdan-Lusztig polynomial QM(t) is a valuation of matroids.

Proof. We proceed by induction on the size of the ground set I. When ∣I ∣ = 1, there are two
matroids on I. Their matroid polytopes are both points. Thus, every function is trivially a
valuation on these matroids. Now suppose QM(t) is a strong valuation for matroids on ground
sets of size less than k, and consider a ground set I with size ∣I ∣ = k.

Define

RM(t) = ∑
F /=I flat

(−1)r(M ∣F )QM ∣F
(t)tr(M/F )χM/F

(t−1).

If S ⊊ I is not a flat of M , then the contraction M/S will have a loop, so χM/S
(t) = 0. Thus

RM(t) = ∑
S⊔T=I
T /=∅

m ○ ((−1)r(−)Q−(t)⊗ tr(−)χ−(t−1)) ○∆S,T (M).

For each decomposition S ⊔ T = I with T /= ∅, Q−(t) is a valuation for matroids on S by the
induction hypothesis, and χ−(t) = (−1)r(−)T−(1− t,0) is a valuation for matroids on T . Since the
matroids in a matroidal subdivision have the same rank, the assignments M ↦ (−1)r(M)QM(t)
and M ↦ tr(M)χM(t−1) are also valuations on S and T respectively. Theorem C then shows that
R−(t) is a valuation. In view of Definition 8.6(3) of QM(t), the function

(−1)r(M)RM(t) = tr(M)QM(t−1) −QM(t)

is also a valuation.
Let ∑i ±1Mi = 0 be a relation coming from a matroidal subdivision, where all the matroids

have rank r. Then, we have

∑
i

± (trQMi(t−1) −QMi(t)) = 0;

that is,

∑
i

±trQMi(t−1) =∑
i

±QMi(t).

But each term in the left hand side has degree greater than r/2 and each term in the right hand
side has degree less than r/2 by Definition 8.6(2), so both sides must equal 0. Thus ∑i ±QMi = 0
and M ↦ QM is a weak valuation. For matroids, weak and strong valuations agree [20], so this is
also a strong valuation.

Theorem 8.9. The Kazhdan-Lusztig polynomial PM(t) is a valuation of matroids.

Proof. We proceed by induction on the size of the ground set M . As with the inverse Kazhdan-
Lusztig polynomial, the base case trivially holds. Now suppose that M ↦ PM(t) is valuative for
all matroids on ground sets of size less than k, and consider a ground set I with ∣I ∣ = k.

If a matroid M contains a loop e, then its matroid polytope lies on the hyperplane xe = 0,
and all matroids in a matroid subdivision of M will also contain that loop. Thus the Kazhdan-
Lusztig polynomial is valuative on any such subdivision, because it equals 0 on all of the matroids
involved. If M is loopless, then Gao and Xie [32] show that

PM(t) = − ∑
F≠∅
flat

(−1)r(M ∣F )QM ∣F
(t) ⋅ PM/F

(t).
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Since PM vanishes whenever M has loops and M/S will have a loop if S is not a flat, we can
rewrite this equation as

PM(t) = − ∑
S≠∅

(−1)r(M ∣S)QM ∣S
(t) ⋅ PM/S

(t)

= − ∑
S≠∅

m ○ ((−1)r(−)Q− ⊗ P−(t)) ○∆S,T (M).

By induction, the functions in the summand are valuative. Theorem C then allows us to conclude
that M ↦ PM(t) is valuative.

Example 8.10. Consider the following matroid subdivision described in [12]. Let U3,6 denote
the uniform matroid on ground set [6]. Let M1 be the Schubert matroid with maximal element
{2,4,6}. The bases of this matroid are all subsets 1 ≤ a < b < c ≤ 6 with a ≤ 2, b ≤ 4, c ≤ 6. Let σ be
the permutation 345612. Then, the matroids M1, σ ⋅M1, and σ2 ⋅M1, with σ acting by relabelling
the ground set and bases, are the maximal dimensional matroids of a subdivision of the uniform
matroid U3,6.

The other matroids in this subdivision are the matroid M2 with bases

B(M2) = {134,135,136,145,146,234,235,236,245,246},

two isomorphic matroids given by σ ⋅M2 and σ2 ⋅M2 and a final matroid M3 with bases

B(M3) = {135,136,145,146,235,236,245,246}.

This subdivision gives the inclusion-exclusion relation among indicator functions

1U3,6 = 1M1 + 1σ⋅M1 + 1σ2⋅M1
− 1M2 − 1σ⋅M2 − 1σ2⋅M2

+ 1M3 .

Using the methods of [26], we compute the Kazhdan-Lusztig polynomials

PU3,6 = 9t + 1 PM1 = Pσ⋅M1 = Pσ2⋅M1
= 3t + 1 PM2 = Pσ⋅M2 = Pσ2⋅M2

= 1 PM3 = 1,

which indeed satisfy the inclusion-exclusion relation 9t + 1 = 3(3t + 1) − 3(1) + 1.

8.4 The motivic zeta function of a matroid

In [39], Jensen, Kutler, and Usatine constructed three motivic zeta functions for matroids which, in
the case of realizable matroids, coincide with the Igusa zeta functions of hyperplane arrangements.
The local motivic zeta function of a matroid M on ground set I is

Z0
M(q, t) = ∑

w∈ZE>0

χMw(q)q−r(M)−wtM (w)t∣W ∣,

where Mw is the matroid of w-maximal bases of M , and wtM(w) is the weight of those bases.
The motivic zeta function ZM(q, t) and reduced motivic zeta function ZM(q, t) are defined
similarly, and can be obtained from Z0

M(q, t) through the following relations.

ZM(q, t) = q−1(q − 1)( 1

1 − q−r(M)t∣I ∣
)ZM(q, t), Z0

M(q, t) = q−1(q − 1)( q−r(M)t∣I ∣

1 − q−r(M)t∣I ∣
)ZM(q, t)
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Theorem 8.11. The motivic zeta functions ZM(q, t), Z0
M(q, t), ZM(q, t) are valuations.

Proof. To show that a function is valuative, it suffices to show that it is valuative on matroids of
a fixed ground set and fixed rank. Thus, from the above relations, to prove that the three motivic
zeta functions are valuative, it suffices to prove that M ↦ qr(M)Z0

M(q, t) is a strong valuation.
We proceed by induction on ∣I ∣. Again, every function is trivially a valuation on the two

matroids with ∣I ∣ = 1. Now suppose this assignment is a strong valuation for matroids on ground
sets of size less than k, and consider a ground set I with ∣I ∣ = k. We use the following recurrence,
proved in [39, Theorem 1.12]:

qr(M)Z0
M(q, t) = (q − 1)q−r(M)t∣I ∣

1 − q−r(M)t∣I ∣

⎛
⎜
⎝
χM(q) + ∑

0̂⊊F⊊I flat

χM/F
(q)qr(M ∣F )Z0

M ∣F
(q, t)

⎞
⎟
⎠
.

Assume momentarily that M is loopless, so 0̂ = ∅. If S ⊊ I is not a flat of M , then the contraction
M/S will have a loop, so χM/S

(t) = 0. Thus the equation above is equivalent to

qr(M)Z0
M(q, t) = (q − 1)q−r(M)t∣I ∣

1 − q−r(M)t∣I ∣
⎛
⎝
χM(q) + ∑

∅⊊S⊊I

χM/S
(q)qr(M ∣S)Z0

M ∣S
(q, t)

⎞
⎠

= (q − 1)q−r(M)t∣I ∣

1 − q−r(M)t∣I ∣
⎛
⎝
χM(q) + ∑

∅⊊S⊊I

m ○ (qr(−)Z0
−(q, t)⊗ χ−(q))⊗∆S,T (−)

⎞
⎠
.

If M is non-trivial and has a loop, then both equations above say 0 = 0, and the equivalence
is still valid. Since the matroids in a matroid subdivision have the same rank and ground set,

we may ignore the factor
(q−1)q−r(M)t∣I∣

1−q−r(M)t∣I∣
. For each decomposition S ⊔ T = I with T /= ∅, the

map M ↦ qr(M)Z0
M(q, t) is a valuation for matroids on S by the induction hypothesis, and

χ−(q) = (−1)r(−)T−(1 − q,0)/(q − 1) is a valuation for matroids on T by Proposition 7.5. By
Theorem C, qr(M)Z0

M(q, t) is a valuation on I as desired.

8.5 The Billera-Jia-Reiner quasisymmetric function of a matroid

For a matroid M , a function f from the ground set I of M to the natural numbers N is M -generic
if M has a unique basis B that minimizes f(B) = ∑b∈B f(b).

Definition 8.12. The Billera-Jia-Reiner quasisymmetric function [12] of a matroid M on
ground set I is the quasisymmetric function given by

F (M,x) = ∑
w∶I→N

M -generic

∏
b∈B

xw(b).

Billera, Jia, and Reiner showed this is the quasisymmetric function Φζ associated by Definition
6.5 to the character

ζ(M) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if M has a unique basis

0 otherwise

on the Hopf monoid of matroids M.
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Theorem 8.13. [12] The Billera-Jia-Reiner quasisymmetric function is a valuation on matroids.

Proof. By Corollary 6.6 it suffices to show that the map ζ is a strong valuation on matroids. We
use the following useful lemma proved by Ardila, Fink, and Rincón [8]. For any closed convex set
X ⊂ RI , the function

jX(M) =
⎧⎪⎪⎨⎪⎪⎩

1 if P (M) ∩X = ∅,

0 otherwise.

is a valuation for the matroids on I.
Let Br,I be the subset of {0,1}I consisting of those vectors with exactly r ones. For each point

b ∈ Br,I , consider the valuation ib = jconv(Br,I−b). For matroids of rank r on I, the function ib(M)
is equal to 1 if and only if b is the unique basis of M . Therefore ζ = ∑b∈Br,I ib is a valuation.

8.6 The Derksen-Fink invariant of a matroid

A valuative invariant on matroids is a valuation f on matroids such that f(M) = f(N) whenver
M and N are isomorphic. Derksen and Fink constructed a valuative invariant on matroids which is
universal among all valuative invariants in the sense that any other valuative invariant is obtained
from theirs by a specialization [20].

Definition 8.14. Let M be a matroid on I with ∣I ∣ = n and let ` be a linear order of I. The
rank jump function with respect to ` is the function rkjump` ∶ M[I]→ {0,1}n given by

(rkjump`(M))i = rM({`1, . . . , `i}) − rM({`1, . . . , `i−1}).

The Derksen-Fink invariant is the function G ∶ M[I]↦ R[Uα ∣ α ∈ {0,1}n] given by

G(M) =∑
`

Urkjump`(M),

where the sum is over all linear orders ` on I.

Let us give a short proof that G is indeed a valuation using Theorem C. To do this, we will
identify the vector space R[Uα ∣ α ∈ {0,1}n] as a subspace of the algebra R⟨x, y⟩ of noncommutative
polynomials in x and y through the map

Uα ↦ z1z2⋯zn,

where

zi =
⎧⎪⎪⎨⎪⎪⎩

x if αi = 0

y if αi = 1

With this, G extends to a map which we also denote by G from M[I] into R⟨x, y⟩.

Theorem 8.15. The Derksen-Fink invariant is a valuation on matroids.

Proof. For each singleton {a} define the map f ∶ M[{a}]→ R⟨x, y⟩ by

f(M) =
⎧⎪⎪⎨⎪⎪⎩

x if r(M) = 0,

y if r(M) = 1.
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There are only two matroids on {a}, namely a loop and a coloop, so their matroid polytopes have
no matroid subdivisions. Therefore, f is trivially a valuation.

Now, notice that for each linear order `, the map mA○f⊗n○∆{`1},...,{`n}, which is a valuation by
Theorem C, sends M to the noncommutative polynomial identified with Urkjump`(M). Summing
over all possible ` we obtain the desired result.

9 Valuations on poset cones

We now study valuations on poset and preposet cones. Recall from Theorem 2.8 that the map
p ↦ cone(p) is a bijection between (pre)posets and (not necessarily) pointed conical generalized
permutahedra where the origin is in the lineality space. Furthermore, this map induces Hopf
monoid isomorphisms

PP ≅ CGP+
0 P ≅ PCGP+

0

from (pre)posets to (not necessarily) pointed generalized permutahedra where 0 is (in) the apex.
We call these (pre)poset cones, and identify the isomorphic pairs of Hopf monoids above.

Proposition 9.1. 1. There is an equality of Hopf monoids I(P) = I(PP).

2. The indicator functions of the totally ordered preposets ` on ground set I form a basis for
I(PP[I]). For any preposet q, the expansion of 1q in this basis is

1q = ∑
` prelin. ext. of q

(−1)∣q∣−∣`∣1`.

3. A valuation f on poset cones extends uniquely to a strong valuative extension f̂ on
preposet cones. The assignment f ↦ f̂ is compatible with Theorem C and Corollary 6.6.

The compatibility of the assignment f ↦ f̂ with Theorem C is the following: Suppose f̂1, . . . , f̂k
are valuations on preposets which extend the valuations f1, . . . , fk on posets. Then for any ordered
set partition S1 ⊔⋯⊔Sk, the valuation on preposets given by mA ○ f̂1 ⊗⋯⊗ f̂k ○∆S1,...,Sk extends
the valuation on posets given by mA ○ f1 ⊗ ⋯ ⊗ fk ○ ∆S1,...,Sk . Similarly, the compatibility with

Corollary 6.6 is the following: If ζ is a character on posets and ζ̂ is its extension to preposets,
then the extension of the poset invariants fζ ,Φζ , and Oζ are the preposet invariants fζ̂ ,Φζ̂ , and
Oζ̂ , respectively.

Proof. 1. We prove the equality of species by proving that the vector spaces are isomorphic on
any fixed finite ground set I.

⊆: Every poset is a preposet.

⊇: We need to prove that every preposet cone equals a linear combination of poset cones in I(PP).
We proceed by reverse induction on ∣q∣. If ∣q∣ = ∣I ∣ then q is a poset and the result is trivial. For
∣q∣ < ∣I ∣, consider an equivalence class A of q of size at least 2 and an element a ∈ A. Define the
preposets obtained from q as follows:

q+ ∶ Make a greater than A − a and keep all other relations of q intact.

q− ∶ Make a less than A − a and keep all other relations of q intact.

q± ∶ Make a incomparable to A − a and keep all other relations of q intact.
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Let C = cone(q±). Let b ∈ A − a; notice that neither ea − eb nor eb − ea is in the cone C. We have

cone(q+) = C + R≥0(ea − eb), cone(q−) = C + R≤0(ea − eb), cone(q) = C + R(ea − eb)

and one readily verifies that:

cone(q+) ∩ cone(q−) = cone(q±), cone(q+) ∪ cone(q−) = cone(q).

The only nontrivial claim here is that cone(q+) ∩ cone(q−) ⊆ cone(q±). This follows by observing
that for any point x ∈ cone(q+) such that x ∉ cone(q±), there is a hyperplane H for which x is
in the positive half-space and cone(q±) is in the negative half-space. But then ea − eb is in the
positive half-space, so cone(q−) is in the negative half-space and cannot contain x.

It follows that
1q + 1q± = 1q+ + 1q− .

Since ∣q±∣ = ∣q+∣ = ∣q−∣ = ∣q∣+1, by induction, the cones 1q± ,1q+ ,1q− are linear combinations of poset
cones. Therefore, so is 1q. The result follows by induction.

2. This follows from the proof of Lemma 4.7. The linear relation says that the aligning generators.
The cones of the totally ordered preposets of I are the centered plates; their indicator functions
are linearly independent by [28, Theorem 2.7].

3. This follows readily, since valuations on (P)P correspond to linear functions on I((P)P). The
compatibility follows readily from the definitions.

All of the valuations on posets studied in this section will be built out of the following simple
valuation. Say a preposet is a preantichain if there are no x, y such that x < y; in other words,
if x ≤ y then y ≤ x. Note that for posets, this restricts to the usual notion of antichains.

Definition 9.2. The antichain and preantichain characters are defined as follows.

1. The antichain character12 α ∶ P[I]→ F on posets is given by

α(p) =
⎧⎪⎪⎨⎪⎪⎩

1 if p is an antichain

0 otherwise.

2. The preantichain character α̂ ∶ PP[I]→ F on preposets is given by

α̂(q) =
⎧⎪⎪⎨⎪⎪⎩

(−1)∣I ∣−∣q∣ if q is a preantichain

0 otherwise.

We now show that these characters are indeed valuations.

Proposition 9.3. The preantichain character α̂ and the antichain character α are strong val-
uations on preposets PP and posets P, respectively. Furthermore, the preantichain character α̂
on preposets is the strong valuative extension of the antichain character α on posets given by
Proposition 9.1.3.

12When we regard posets P ≅ PCGP+
0 ⊂ GP as a Hopf submonoid of generalized permutahedra, the antichain

character of P is the restriction of the basic character of GP defined in [2].
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Proof. By Lemma 4.7 and Theorem 4.8, to prove that α̂ is a strong valuation, it suffices to check
that α̂ is zero on any aligning generator C −A−(C) corresponding to C = cone(q) for a preposet
q.

If q is not a preantichain, then none of its linear extensions is a preantichain either, so we
have α̂(C −A−(C)) = 0 − 0 = 0. If q is a preantichain then its only prelinear extension that is a
preantichain is the trivial antichain t consisting of all elements in one equivalence class; therefore
we have α̂(C −A−(C)) = α̂(q − (−1)∣q∣−∣t∣ t) = (−1)∣I ∣−∣q∣ − (−1)∣q∣−1(−1)∣I ∣−1 = 0.

We conclude that α̂ is a valuation on preposets. Restricting to posets, we obtain that α is a
valuation on posets as well.

Since α and α̂ agree on posets, α̂ must be the strong valuative extension of α.

9.1 The order polynomial

As a first application, we study the order polynomial of posets. The (strict) order polynomial
of the poset p is defined as the unique polynomial such that for any positive integer k we have

Ω(s)(p)(k) = number of (strictly) order-preserving maps p→ [k].

Proposition 9.4. [2] The associated polynomial Ωα(p)(t) to the antichain character α is the
strict order polynomial Ωs(p)(t).

This Hopf-theoretic interpretation readily gives the following result.

Proposition 9.5. The order polynomial and strict order polynomial are strong valuations on
posets.

Proof. The antichain character is a strong valuation by Proposition 9.3, so Corollary 6.6 implies
that the strict order polynomial is a strong valuation. Stanley’s reciprocity theorem (which is
explained Hopf-theoretically in [2]) says that Ω(p)(n) = (−1)∣I ∣Ωs(p)(−n), so the order polynomial
is a strong valuation as well.

9.2 The poset Tutte polynomial

For any antichain A ⊆ I of p, let

J≥(A) = {x ∈ p ∣ x ≥ y for some y ∈ A}, J>(A) = {x ∈ p ∣ x > y for some y ∈ A}.

For any poset p, let A(p) denote the set of antichains of p.

Definition 9.6. [33] The Tutte polynomial of a poset p on ground set I is

Tp(x, y) = ∑
A∈A(p)

x∣J≥(A)∣(y + 1)∣J>(A)∣.

The set of lower ideals of a poset forms an antimatroid, and the Tutte polynomial for posets
is a special case of the Tutte polynomial of antimatroids; see [42]. We now show it is a strong
valuation.

Proposition 9.7. The poset Tutte polynomial Tp(x, y) is a strong valuation of posets.
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Proof. Let
f1(p) = 1, f2(p) = α(p) ⋅ x∣p∣, f3(p) = x∣p∣(y + 1)∣p∣.

where α(p) is the antichain character of Definition 9.2. Their convolution is

f1 ⋆ f2 ⋆ f3(p) = ∑
S1⊔S2⊔S3=I
S2 antichain

x∣S2∣(x(y + 1))∣S3∣. = Tp(x, y).

where we sum over ordered set partitions S1 ⊔ S2 ⊔ S3 where S1 is a lower ideal of p, S2 is an
antichain and a lower ideal of p − S1, and S3 is an upper ideal of p. For a fixed ground set I, the
functions f1, f2, f3 are constant multiples of 1 and α(p), which are strong valuations thanks to
Proposition 4.3 and 9.3. Therefore their convolution is a strong valuation by Corollary 6.3.

Corollary 9.8. The following quantities and their dual quantities are strong valuations on posets:

• The number of order ideals of p of size k.

• The number of antichains of size k.

• The number of maximal elements of p.

• The generating function Gp(s, t) = ∑
A antichain

s∣J≤(A)∣t∣A∣.

Proof. This follows from the fact that these quantities are the coefficient of t∣I ∣−k of Tp(t,0), the
coefficient of tk in Tp(t, t−1−1), the exponent of Tp(t,−1) = (t+1)M – which equals d

dt(Tp(t,−1))∣t=0

– and Tp(st, t−1 − 1), respectively [33]. Since the cone of the reverse poset −p is cone(−p) =
− cone(p), the dual quantities are also strong valuations.

9.3 The Poincaré polynomial

Let ΣI be the braid arrangement in RI and L(ΣI) be its lattice of intersections, ordered by reverse
inclusion; its minimum element is V = RI . For a poset p, consider the open braid cone

σop = {x ∈ RI ∣ xi > xj whenever i ≥p j}.

Its closure is dual to the poset cone of p.

Definition 9.9. [22, 60] Let p be a poset on I. The interior intersection lattice of the braid
arrangement ΣI with respect to the poset p is the sublattice of intersections which meet the
interior of the cone σo(p)

Lp(ΣI) = {X ∈ L(ΣI) ∣X ∩ σop /= ∅}.
ordered by reverse inclusion. The Poincaré polynomial of poset p is

Poin(p, t) ∶= ∑
X∈Lp(ΣI)

∣µ(V,X)∣ tk =∶∑
k

ck(p) tk.

Zaslavsky showed that Poin(p,1) is the number of chambers of the braid arrangement ΣI

that lie inside the cone σop. In order to relate the Poincaré polynomial to a valuation, we use the
following formula of Dorpalen-Barry, Kim, and Reiner.
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Definition 9.10. Let p be a poset on ground set I. A transverse ordered set partition of p
is an ordered set partition S1 ⊔⋯⊔ Sk = I such that p∣Si is an antichain and Si is a lower ideal of
p∣Si⊔⋯⊔Sk for each i. A transverse unordered set partition of p is an unordered set partition
{S1, . . . Sk} such that there exists an ordering that makes it into a transverse ordered set partition
of p.

Proposition 9.11. [22] Let p be a poset on I. Let ΠT
p denote the set of transverse unordered

set partitions of p. Then,

Poin(p, t) = ∑
{S1,...,Sk}∈ΠTp

k

∏
i=1

(∣Si∣ − 1)! tk

Before we describe the connection between the Poincaré polynomial and valuations, we will
describe an ordered analog of the Poincaré polynomial.

Proposition 9.12. Let p be a poset on I and ΣT
p denote the set of transverse ordered set

partitions of p. The function Φ given by

Φ(p, t) = ∑
S1⊔⋯⊔Sk∈ΣTp

k

∏
i=1

(∣Si∣ − 1)! tk

is a strong valuation on posets.

Proof. Let α be the antichain character. The function

p↦m ○ α⊗k ○∆S1,...,Sk(p).
equals 1 if S1 ⊔ ⋯ ⊔ Sk = I is a transverse ordered set partition of p, and equals 0 otherwise. By
Theorem C, this function is a strong valuation. The function Φ is a linear combination of these;
we have

Φ(p, t) = ∑
S1⊔⋯⊔Sk

k

∏
i=1

(∣Si∣ − 1)! tk ⋅ (m ○ α⊗k ○∆S1,...,Sk(p)) ,

summing over all ordered set partitions of I. Therefore it is a strong valuation.

The functions Poin(p, t) and Φ(p, t) have a similar form, but the former is given by a sum over
transverse unordered set partitions while the latter is given by a sum over transverse ordered set
partitions. To prove results about Poin(p, t), we will pay more careful attention to the labelling
of the poset.

Definition 9.13. Let ` be a linear order on the ground set I. An ordered set partition S1⊔⋯⊔Sk =
I is `-increasing if min` S1 <` ⋯ <` min` Sk.

With these definitions, define the function Φ` by

Φ`(p, t) = ∑
S1⊔⋯⊔Sk∈Σ

T
p

`−increasing

k

∏
i=1

(∣Si∣ − 1)! tk

= ∑
S1⊔⋯⊔Sk
`−increasing

k

∏
i=1

(∣Si∣ − 1)! (m ○ α⊗k ○∆S1,...,Sk(p))

By a similar argument as Proposition 9.12, we have that Φ` is a strong valuation for each `.
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Proposition 9.14. For any linear extension ` of the poset p we have

Poin(p, t) = Φ`(p, t).

Proof. We prove this by constructing a bijection between the `-increasing transverse ordered set
partitions and the unordered transverse set partitions. Let {T1, . . . , Tk} be a transverse unordered
set partition. We will find an ordered set partition S1 ⊔ ⋯ ⊔ Sk such that for all i we have that
Si = Tj for some j. Let `1 denote the minimal element of I with respect to `. In order for
S1 ⊔ ⋯ ⊔ Sk to be `-increasing, it must be the case that S1 is the part Tj which contains `1.
Because p is `-increasing, S1 will be a lower ideal of p. Recursively, to determine Si, let `i be the
minimal element of I − S1 − S2 −⋯ − Si−1 and note that Si must be the part Tj that contains `i.
By construction, S1 ⊔⋯⊔ Sk will be an ordered transverse set partition. Further, it is clear from
this construction that this is the only ordering of {T1, . . . , Tk} with the required properties.

This gives a bijection between `-increasing ordered transverse set partitions and unordered
transverse set partitions. Therefore the formulas for Poin(p, t) and Φ`(p, t) coincide.

Since every poset p is properly labelled with respect to some linear order, this gives a way of
studying Poin(p, t) for any poset p using valuations. We illustrate this general principle with the
following concrete result.

Corollary 9.15. The Poincaré polynomial is a weak valuation for posets: If the poset cone of a
poset p can be subdivided into the poset cones of the posets p1, . . . , pk, then

Poin(p, t) =
k

∑
i=1

(−1)c(pi)−c(p) Poin(pi, t).

where c(q) is the number of connected components of the Hasse diagram of q.

Proof. Let ` be a linear extension of p. Then cone(`) contains cone(p) and hence it contains
cone(pi) for each preposet pi, so ` is also a linear extension for them. Thus for each one of these
posets the Poincaré polynomial coincides with Φ`, which is a strong valuation. Since the poset
cone of q has dimension ∣I ∣ − c(q), the desired equation follows.
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Figure 4: A poset subdivision of a poset cone and the corresponding relation on posets in ie∩P.

Example 9.16. Figure 4 shows a subdivision of the poset cone of the chain 1 < 2 < 3 < 4 into
four full-dimensional poset cones and five lower dimensional ones. Since Poincaré polynomials
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of posets are weak valuations by Corollary 9.15, we obtain the following relation between the
corresponding Poincaré polynomials:

1 = (1 + 3t + 2t2) + (1 + 3t + 2t2) + (1 + 3t + t2) + (1 + 2t + t2)
−(1 + 4t + 3t2) − (1 + 4t + 3t2) − (1 + 4t + 3t2) − (1 + 4t + 3t2) + (1 + 5t + 6t2).

10 Building sets and nestohedra

Building sets are a combinatorial abstraction of the notion of connectedness. They were introduced
independently by Schmitt, seeking methods of understanding the chromatic polynomial [51], and
by De Concini and Procesi, in order to study the wonderful compactification of a hyperplane
arrangement [18]. Postnikov defined a polytope that encodes the combinatorial structure of a
building set, called a nestohedron. [48] In this section we show that the f -polynomial of a
nestohedron is strongly valuative, and we use this to show that there are no subdivisions of a
nestohedron into smaller nestohedra.

As explained in [2], nestohedra do not form a Hopf submonoid of GP. Thus it will be more
convenient for us to work with a larger class of objects, namely, multinestohedra and the
corresponding building multisets.

Definition 10.1. A building multiset B on ground set I is a multiset of subsets of I satisfying
the following axioms:

• If A,B ∈ B and A ∩B /= ∅, then A ∪B ∈ B.

• For all i ∈ I, {i} ∈ B.

The multinestohedron of a building multiset B is the generalized permutahedron

NB = ∑
J∈B

∆J ,

where ∆J is the simplex given by ∆J = conv(ej ∣ j ∈ J), and the Minkowski sum contains repeated
summands corresponding to the repeated subsets in B.

A building set is a building multiset with no repeated subsets, and its corresponding polytope
is called a nestohedron. The simplification of a building multiset B is the building set B
obtained by forgetting the multiplicities of the subsets in B. The multinestohedron NB has the
same normal fan as the nestohedron N

B
.

Several important polytopes are nestohedra; for example:
● The permutahedron, for the building set containing all subsets of I.
● The associahedron, for the building set consisting of all intervals [i, j] of {1, . . . , n} for i < j.
● The graph associahedron of Carr and Devadoss [15], for the graphical building set of a
graph G, which consists of the subsets I of the vertex set for which the graph G∣I is connected.

The species of building multisets has the structure of a Hopf monoid, defined as follows.
Consider any decomposition S ⊔T = I. For a building multiset B1 on ground set S and a building
multiset B2 on ground set T , let

mS,T (B1,B2) = B1 ⊔ B2
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where ⊔ denotes the disjoint union of multisets. For a building multiset B on ground set I, let

B∣S = {A ⊆ S ∣ A ∈ B},

where the multiplicity of A in B∣S is the multiplicity of A in B. Let

B/S = {C ∩ T ∣ C ∈ B},

where the multiplicity of B ∈ B/S is the total number of C ∈ B such that C ∩T = B, counted with
multiplicities. One readily verifies that B1 ⊔ B2,B∣S , and B/S are building sets.

The coopposite Hcop of a Hopf monoid H has the same product and the reverse coproduct
of H; in Sweedler notation, if ∆S,T (z) = ∑ z∣S ⊗ z/S in H, then ∆S,T (z) = ∑ z/T ⊗ z∣T in Hcop.

Proposition 10.2. The linear species BMScop[I] = F{building multisets on I} forms a Hopf
monoid with multiplication maps

mS,T (B1,B2) = B1 ⊔ B2,

and comultiplication maps
∆S,T (B) = B/S ⊗ B∣S .

The map B ↦ NB induces an embedding of BMScop into GP as Hopf monoids.

Proof. The species BMScop is a Hopf submonoid of the coopposite Hopf monoid of hypergraphs
HGcop given in [2], and the map above is the restriction of the analogous map from the coopposite
HGcop to the Hopf monoid HGP of hypergraphic polytopes described there.

We denote our Hopf monoid BMScop because it naturally extends the coopposite BScop of
the Hopf monoid of building sets BS defined in [2].

10.1 The f-vector

For any polytope P , let
fP (t) = ∑

F face of P

tdimF

denote the f-polynomial of the polytope. For any building multiset B, let fB(t) denote the
f -polynomial of the hypernestohedron NB. Its coefficients constitute the f-vector of P .

The f -polynomial of a hypernestohedron can be computed recursively as follows. If B can
not be written as a disjoint union of other building multisets, we say that B is connected.
Otherwise, B will have a unique factorization B = B1⊔⋯⊔Bk. The building multisets Bi are called
the connected components of B.

Proposition 10.3. [48] The f -polynomial of a hypernestohedron NB is the unique polynomial
satisfying the following properties:

1. If B is equal to a singleton, then fB(t) = 1.

2. If B is disconnected with connected components B1, . . . ,Bk, then

fB(t) = fB1(t)⋯fBk(t).
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3. If B is connected, then
fB(t) = ∑

S⊊I

t∣I ∣−∣S∣−1fB∣S(t).

This recursion was first proved for nestohedra but extends to hypernestohedra since the f -
polynomial of a hypernestohedron NB is equal to the f -polynomial of the nestohedron N

B
.

Theorem 10.4. The f -polynomial fNB(t) is a strong valuation on hypernestohedra.

Proof. We proceed by induction on the size of the ground set I. When ∣I ∣ = 1 every hypernesto-
hedron is a point, so f− is trivially a strong valuation. Now suppose that f− is a strong valuation
for all J with ∣J ∣ < k, and consider a finite set I with ∣I ∣ = k.

First, assume B is disconnected with connected components B1, . . . ,Bk. Let S1⊔⋯⊔Sk be the
ordered set partition where Si is the ground set of Bi. Then ∆S1,...,Sk(B) = B1 ⊗ . . .⊗ Bk and the
recurrence of Proposition 10.4.2 takes the form

fB(t) =m ○ (f−(t)⊗ . . .⊗ f−(t)) ○∆S1,...,Sk(B).

By the inductive hypothesis, the function f−(t) is a strong valuation on ground sets of size less
than k. Therefore, f−(t) is a strong valuation on connected building multisets on I by Theorem
C.

We now turn to the case when B is connected. Let g be the function on building multisets
given by g(B) = t∣T ∣−1 for building multisets B on T . Now the recurrence of Proposition 10.4 can
be written as

fB(t) = ∑
S⊔T=I
T /=∅

m ○ (f−(t)⊗ g) ○∆S,T (B).

For each decomposition S⊔T = I, the function f− is strongly valuative by the inductive hypothesis,
and the function g is constant so it is also strongly valuative. Theorem C implies that f− is also
strongly valuative for building multisets on the ground set I. This completes the induction.

This has the following consequence for nestohedral subdivisons.

Corollary 10.5. Hypernestohedra have no subdivisions into other hypernestohedra.

Proof. Since f−(t) is a strong valuation, it is also a weak valuation. If a hypernestohedron N of
dimension d had a non-trivial subdivision P, then P would contain more than one hypernestohe-
dron of dimension d. Then, the coefficient of td of fN(t) would be 1 and the coefficient of td of
fP(t) would be larger than one. This is a contradiction.
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Los Andes in Bogotá. He is very thankful to the Simons Foundation and San Francisco State Uni-
versity for funding this visit, and to Los Andes and the cafés of Bogotá for providing a wonderful
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12 Appendix: Hopf algebraic background

12.1 Hopf monoids

In this appendix we give the precise definition of a Hopf monoid. We also prove the First Isomor-
phism Theorem in this setting.

Species. A (connected) linear species F is a functor from the category of finite sets with
bijections to the category of vector spaces over F such that F[∅] ≅ F. Explicitly, this consists of
the following data.

• For each finite set I, a vector space F[I] called the structures of type F on label set I.

• For each bijection f ∶ I → J an isomorphism

F(f) ∶ F[I]→ F[J],

such that F[id] = id and for any two bijections f ∶ I → J and g ∶ J →K we have

F[g ○ f] = F[g] ○F[f].

A morphism of linear species α from F1 to F2 is a natural transformation of functors. In
other words, α is a collection of linear maps α[I] ∶ F1[I]→ F2[I] such that the following diagram
commutes

F1[I] F2[I]

F1[J] F2[J]

α[I]

F1[f] F2[f]

α[J]

for any two sets I, J and any bijection f ∶ I → J .
If we have a collection of linear maps g[I] ∶ F[I]→ V to the same vector space V , we will often

identify this with the species map g from F to the species V[I] = V with trivial maps V[f] = id
for all f ∶ I → J .

Monoids. A (connected) linear monoid (M,m) is a linear species equipped with a collection of
linear maps

mS,T ∶ M[S]⊗M[T ]→M[I],
for each decomposition I = S ⊔ T . These maps must satisfy the following axioms:

● (Naturality) Let I and J be two sets and f ∶ I → J be a bijection. Let I = S ⊔ T be a
decomposition and let f ∣S and f ∣T be the restrictions of f to S and T , respectively. This gives us
a decomposition of J = f(S) ⊔ f(T ) and a pair of bijections f ∣S ∶ S → f(S) and f ∣T ∶ T → f(T )
Then, we have the following commutative diagram

M[S]⊗M[T ] M[I]

M[f(S)]⊗M[f(T )] M[J]

mS,T

M[f ∣S]⊗M[f ∣T ] M[f]

mf(S),f(T )
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● (Unitality) We have M[∅] ≅ F. Denote the unit of that vector space by 1. For any x ∈ M[I]
and for the two trivial decompositions I = I ⊔ ∅ and I = ∅ ⊔ I, we have

1 ⋅ x = x ⋅ 1 = x

● (Associativity) Let I = R ⊔ S ⊔ T be a decomposition of the index set I. Then the following
diagram commutes

M[R]⊗M[S]⊗M[T ] M[R]⊗M[S ⊔ T ]

M[R ⊔ S]⊗M[T ] M[I]

id ⊗mS,T

mR,S ⊗ id mR,S⊔T

mR⊔S,T

This allows us to define a multiplication map mS1,S2,...,Sk for any set decomposition I = S1⊔⋯⊔Sk.
A morphism of monoids from M1 to M2 is a species morphism α ∶ M1 → M2 that is

compatible with the monoid structure; that is,

α[I] ○mS,T =mS,T ○ α[S]⊗ α[T ];

equivalently, for any x ∈ M1[S] and y ∈ M1[T ] we have α(x ⋅ y) = α(x) ⋅ α(y).

Comonoids. A (connected) linear comonoid (C,∆) is a linear species equipped with a collection
of linear maps

∆S,T ∶ C[I]→C[S]⊗C[T ].
for each set decomposition I = S ⊔ T . These functions must satisfy the following axioms:

● (Naturality) Let I and J be two sets and σ ∶ I → J be a bijection. Let I = S ⊔ T be a
decomposition and let σ∣S and σ∣T be the restrictions of σ to S and T , respectively. Then, we
have the following commutative diagram

C[I] C[S]⊗C[T ]

C[J] C[σ(S)]⊗C[σ(T )]

∆S,T

C[σ] C[σ∣T ]⊗C[σ∣S]

∆σ(S),σ(T )

● (Counitality) We have C[∅] ≅ F. Denote the (co)unit of that vector space by 1. For any x ∈ C[I]
and the two trivial decompositions I = I ⊔ ∅ and I = ∅ ⊔ I we have

∆I,∅(x) = x⊗ 1,

∆∅,I(x) = 1⊗ x.

● (Coassociativity) Let I = R ⊔ S ⊔ T be a decomposition of the index set I into three. Then the
following diagram commutes

C[I] C[R]⊗C[S ⊔ T ]

C[R ⊔ S]⊗C[T ] C[R]⊗C[S]⊗C[T ]

∆R,S⊔T

∆R⊔S,T id ⊗ ∆S,T

∆R,S ⊗ id
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A morphism of comonoids is a species morphism α ∶ C1 →C2 that is compatible with the
comonoid structure; that is,

∆S,T ○ α[I] = α[S]⊗ α[T ] ○∆S,T

or equivalently, for any c ∈ C1[I] we have ∆S,T (α(c)) = ∑α(c∣S)⊗ α(c/S) in Sweedler notation.

Hopf monoids. A linear species H is a Hopf monoid if it is a monoid and a comonoid, and
those structures are compatible in the following sense.

● (Compatibility) Let I = S1 ⊔ S2 and I = T1 ⊔ T2 be two decompositions of I. Let A = S1 ∩ T1,
B = S1 ∩ T2, C = S2 ∩ T1, and D = S2 ∩ T2 be their pairwise intersections. Then, we have the
commutative diagram

H[S1]⊗H[S2] H[I] H[T1]⊗H[T2]

H[A]⊗H[B]⊗H[C]⊗H[D] H[A]⊗H[C]⊗H[B]⊗H[D]

mS1,S2

∆A,B ⊗ ∆C,D

∆T1,T2

id ⊗ β ⊗ id

mA,C ⊗mB,D

where β is the braiding map β(x⊗ y) = (y ⊗ x).
A Hopf morphism is a species morphism α ∶ H1 → H2 that is a monoid morphism and a

comonoid morphism.

The antipode of a Hopf monoid H is the map s[I] ∶ H[I]→H[I] given by

s[I](x) = ∑
S1⊔⋯⊔Sk=I

(−1)kmS1,...,Sk ○∆S1,...,Sk(x).

In general this formula has a large amount of cancellation. One major question is to give a
combinatorial description of the antipode that is cancellation-free and grouping-free.

12.2 Hopf ideals and quotients and the First Isomorphism Theorem

● An ideal of a monoid M is a subspecies g such that for any set partition S ⊔ T = I we have

mS,T (g[S]⊗M[T ]) ⊂ g[I] and mS,T (M[S]⊗ g[T ]) ⊂ g[I].

● A coideal of a comonoid C is a subspecies g such that for any set partition S ⊔ T = I we have

∆S,T (g[I]) ⊂ C[S]⊗ g[T ] + g[S]⊗C[T ].

● A Hopf ideal of a Hopf monoid H is a subspecies g that is both an ideal and a coideal.

Let F be a species and g be a subspecies. Let F/g denote the species given by the vector
spaces F/g[I] = F[I]/g[I] with the natural maps between them. For any x ∈ F[I] let [x] denote
the class of x in the vector space quotient F[I]/g[I].

1. If F is a monoid and g is an ideal, then F/g inherits the structure of a monoid called the
monoid quotient of F by g given by

mS,T ([x], [y]) = [mS,T (x, y)] for x ∈ F[S], y ∈ F[T ].
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2. If F is a comonoid and g is a coideal, then F/g inherits the structure of a comonoid called
the comonoid quotient of F by g given by

∆S,T ([x]) = [∆S,T (x)] for x ∈ F[I].

3. If F is a Hopf monoid and g is a Hopf ideal, then the Hopf quotient of F by g is the Hopf
monoid given by the comonoid and monoid structures above.

Noether’s First Isomorphism Theorem holds for Hopf monoids in the following formulation.

Theorem 12.1. (The First Isomorphism Theorem) Let H1 and H2 be two linear Hopf monoids.
Let f ∶ H1 →H2 be a Hopf monoid morphism. Then,

• The image of f is a Hopf submonoid of H2.

• The kernel of f is a Hopf ideal of H1

• The quotient H1/Ker(f) is isomorphic to Im(f) as Hopf monoids.

Proof. To show that the image of f is a Hopf submonoid H2, we need to show that the image is
closed under multiplication and comultiplication. For multiplication, let S⊔T be a decomposition
of I and let x ∈ H1[S] and y ∈ H1[T ]. Then, since f is a Hopf monoid morphism we have the
two equations

mS,T (f[S](x)⊗ f[T ](y)) = f[I](mS,T (x⊗ y)) ∆S,T (f[I](x)) = (f[S]⊗ f[T ])(∆S,T (x))

and hence the image is closed under multiplication and comultiplication.
To show that the kernel of f is a Hopf ideal, let x ∈ Ker(f[I]) and y ∈ H1. Then,

f[I](mS,T (x⊗ y)) =mS,T (f[S](x)⊗ f[T ](y)) =mS,T (0⊗ f[T ](y)) = 0.

This shows that the kernel is an ideal. Similarly, if x ∈ Ker(f[I]), then

(f[S]⊗ f[T ])(∆S,T (x)) = 0 = ∆S,T (f[I](x)).

This means that

∆S,T (x) ⊆ Ker(f[S]⊗ f[T ])
= Ker(f[S])⊗H1[T ] +H1[S]⊗Ker(f[T ])

and hence the kernel is also a comonoid ideal. The equality follows from [35, Section 1.19].
Finally, by the First Isomorphism Theorem for vector spaces we have a well-defined linear

isomorphism from H1[I]/Ker(f[I]) to Im(f[I]). The previous two statements of this theorem
show that this is also a Hopf isomorphism.
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12.3 Cofree Hopf Monoids and Universality

An important aspect of combinatorial Hopf algebras is the theory of characters developed by
Aguiar, Bergeron, and Sottile [3]. This gives a method of converting multiplicative functions on
a Hopf algebra into quasisymmetric function invariants. We now describe Aguiar and Mahajan’s
generalization of this theory to Hopf monoids [4, Section 11.4].

Cofree Hopf monoids. A positive monoid is a linear species q such that dim(q[∅]) = 0,
equipped with a multiplication map m that satisfies all the axioms of a monoid except for unitality.
The tensor species T ∨(q) on a positive monoid q is the linear species generated by ordered set
partitions ` decorated with a q-structure on each part of `; that is,

T ∨(q)[I] = span{(`1∣⋯∣`k, x1 ⊗⋯⊗ xk) ∣ `1 ⊔⋯ ⊔ `k = I, xi ∈ q[Ai] for 1 ≤ i ≤ k}.

The tensor species T ∨(q) has a comultiplication map given by

∆S,T (`1∣⋯∣`k, , x1⊗⋯⊗xk) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(`1∣⋯∣`i, , x1 ⊗⋯⊗ xi)⊗ (`i+1∣⋯∣`k, , xi+1 ⊗⋯⊗ xk) if S = `1 ⊔⋯ ⊔ `i.

0 otherwise.

It also has a multiplication map defined as follows. For ordered set partitions ` of S and m on T ,

mS,T ((`, x1 ⊗⋯⊗ xj)⊗ (m,y1 ⊗⋯yk)) = ∑
n quasishuffle

of ` and m

(n, z1 ⊗⋯⊗ zh),

where

zi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xa if ni = `a,
yb if ni =mb,

mq[ni](`a ⊗mb) if ni = `a ⊔mb.

This makes T ∨(q) into a Hopf monoid. This is the cofree Hopf monoid on q. We say that a
Hopf monoid is cofree if it is isomorphic to T ∨(q) for some positive monoid.

Universality. Let β ∶ T ∨(q)→ q be the projection map given by

β(`1∣⋯∣`k, x1 ⊗⋯⊗ xk)) =
⎧⎪⎪⎨⎪⎪⎩

x1 if k = 1

0 otherwise
.

For any Hopf monoid H, we can construct a positive monoid H+ whose underlying species
agrees with H whenever I /= ∅ and otherwise H[∅] = ⟨0⟩. This inherits the structure of a
positive monoid from the multiplication of H. The cofree Hopf monoid on q satisfies the following
universality result.

Theorem 12.2. [4, Theorem 11.23] Let H be a Hopf monoid and let q be a positive monoid. For
every multiplicative map ζ ∶ H+ → q, there exists a unique Hopf morphism ζ̂ ∶ H → T ∨(q) such
that β ○ ζ̂ = ζ. Furthermore,

ζ̂(x) = ∑
`1⊔⋯⊔`k=I

(`1∣⋯∣`k, ζ(x1)⊗⋯⊗ ζ(xk)),

summing over the ordered set partitions ` = `1∣⋯∣`k of I, where ∆`1,...,`k(x) = x1 ⊗⋯⊗ xk.
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