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Abstract

We prove that two natural Markov chains on the set of monotone paths in a
strip mix slowly. To do so, we make novel use of the theory of non-positively
curved (CAT(0)) cubical complexes to detect small bottlenecks in many graphs of
combinatorial interest. Along the way, we give a formula for the number cm(n)
of monotone paths of length n in a strip of height m. In particular we compute
the exponential growth constant of cm(n) for arbitrary m, generalizing results of
Williams for m = 2, 3.

1 Introduction

This paper uses tools from geometric group theory and enumerative combinatorics to
derive probabilistic consequences about random walks of a combinatorial nature. Our
methods have wide applicability, but we focus on one example of interest, which we carry
out in detail: a random walk on the set of monotone paths in a strip.

A monotone path of length n in a strip of height m is a lattice paths that start at
(0, 0), takes steps N = (0, 1), S = (0,−1) and E = (1, 0), never retraces steps, and stays
within the strip, as shown in Figure 1 for n = 15 and m = 3.

Figure 1: A monotone path of length 15 in a strip of height 3.

All monotone paths can be connected to each other by two kinds of local moves,
illustrated in Figure 2.
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• switch corners: two consecutive steps that go in different directions exchange directions.
• flip the end: the last step of the path rotates 90◦.

Figure 2: (a) Switching corners. (b) Flipping the end.

This model was introduced by Abrams and Ghrist [AG04], who thought of this as
a model for a robotic arm in a tunnel. They showed that the graph Sm,n of possible
configurations of the robotic arm connected by these local moves is a cubical complex
Sm,n: a polyhedral complex made of unit cubes of varying dimensions. Ardila, Bastidas,
Ceballos, and Guo [ABCG17a] proved that the space Sm,n is non-positively curved, or
CAT(0), and used this to give an algorithm to move the robotic arm optimally between
any two configurations. They also derived a formula for the diameter of the graph Sm,n.

We revisit this combinatorial model, with new goals in mind. A central idea,
relying on Ardila, Owen, and Sullivant’s one-to-one correspondence between CAT(0)
cube complexes and posets with inconsistent pairs (PIPs) [AOS12], is the following:

Idea 1.1. When the transition kernel of a Markov chain M is a CAT(0) cube complex,
one can use the corresponding poset with inconsistent pairs (PIP) PM to find bottlenecks
(vertex separators) in the kernel, and obtain upper bounds on the mixing time of M .

This idea applies quite generally. In this paper we illustrate it in a detailed example:
two random walks on the set of monotone paths in a strip. We make three main
contributions, which we now describe. For precise definitions and statements, we refer
the reader to the corresponding sections of the paper.

A. In Section 2 we study the number cm(n) of monotone paths of length n in a
strip of height m. The generating functions for c2(n) and c3(n) were first computed by
Williams [Wil96]. We give a general formula for the generating function of cm(n) for
any height m. In particular, we are able to compute the exponential growth constant or
connective constant rm = limn→∞

n
√
cm(n) for any m.

Theorem 1.2. For each m ≥ 0 there are constants qm and rm such that

cm(n) ∼ qm · rnm,

where 1 = r0 < r1 < r2 < · · · , and lim
m→∞

rm = 1+
√

2 ≈ 2.4142 . . . . The growth constant

rm is the largest real root of the polynomial

am(x) = α+(x)β+(x)m + α−(x)β−(x)m,

where

α±(x) = ± x4 − 2x3 − 1

2
√

(x4 − 1)(x2 − 2x− 1)
+

1− x
2

,

β±(x) =
−x3 + x2 − x− 1±

√
(x4 − 1)(x2 − 2x− 1)

2
.

2



This theorem allows us to use computer software to easily compute rm for concrete
values of m. This description of the growth constant rm is the most explicit possible,
because Galois theory tells us that there is no exact formula for it.

B. In Section 3 we find a small bottleneck in the transition kernel Sm,n of monotone
paths, connected by the local moves described above. We prove:

Theorem 1.3. For each m ≥ 2, the transition kernel Sm,n has a small bottleneck of n+1
vertices, whose removal separates the graph into two components (Sm,n)a and (Sm,n)b of
sizes

|(Sm,n)a| ∼ (1− Cm)|Sm,n| |(Sm,n)b| ∼ Cm|Sm,n|

where Cm = 1/(r2
m(rm − 1)2). These constants satisfy 0.345 . . . ≈ C2 > C3 > C4 ≥ · · ·

and lim
m→∞

Cm = 1.5−
√

2 ≈ 0.0858 . . . .

C. In Section 4 we use the results of A. and B. above to show that two natural
Markov chains on the space of monotone paths, which we call the “symmetric” and
“lazy simple” Markov chains, mix slowly. In each step of the symmetric Markov chain
Mm,n, we choose a vertex of the path uniformly at random, and perform a local move
there if it is available. In each step of the lazy simple Markov chain Nm,n, at each step
we first decide whether to move with probability p, and if we do, we perform one of the
available moves uniformly at random.

Theorem 1.4. Let m ≥ 2. For the symmetric Markov chain Mm,n, the stationary
distribution is uniform, and the mixing time grows exponentially with n:

τMm,n(ε) ≥ C · rnm ln(ε−1)

For the lazy simple Markov chain Np
m,n, the stationary distribution is proportional to

the degree – with π(x) ∝ deg(x) for each lattice path x – and the mixing time grows
exponentially with n:

τNp
m,n

(ε) ≥ D · 1

n
rnm ln(ε−1).

Here 0 < ε < 1 is arbitrary, C and D are constants, and rm > 1 is the constant of
Theorem 1.2.

2 Enumeration of monotone paths in a strip

Let Sm be the strip of height m that extends infinitely to the right:

Sm = {(x, y) |x ≥ 0, 0 ≤ y ≤ m}.

Definition 2.1. A monotone path in a strip is a lattice path that starts at (0, 0), takes
steps N = (0, 1), S = (0,−1) and E = (1, 0), never retraces steps, and stays within the
strip.

In this section we study the enumeration of monotone paths in a strip.
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2.1 The transfer-matrix method: monotone paths as walks in a graph

To enumerate monotone paths in a strip, we use the transfer-matrix method, which we
now briefly recall. For a thorough treatment of the transfer-matrix method, including
the relevant proofs, see for example [Sta11, Chapter 4.7]

Suppose we are interested in a certain family of combinatorial objects, and we wish
to find the number an of objects of “size” n. The idea is to construct a directed graph
G = (V,E) such that the objects of size n can be encoded as – that is, they are in bijection
with – the walks of length n in G. If we succeed, then the enumeration problem becomes
a linear algebra problem. If we let A be the V × V adjacency matrix of G, given by

Auv = number of edges from u to v for u, v ∈ V

then the key observation of the transfer-matrix method [Sta11, Theorem 4.7.1] is that

Anuv = number of paths of length n from u to v for u, v ∈ V.

Our enumeration problem then reduces to computing powers of the adjacency matrix. In
particular, the eigenvalues ofA0, A1, A2, . . . control the growth of the sequence a0, a1, a2, . . ..

Let us now apply this philosophy to the problem that interests us.

A failed encoding of monotone paths as walks in a graph. A natural first idea
is to encode a path by keeping track of the height hi of each node i. For example, the
monotone path in Figure 1 has node heights 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 2, 1, 1, 2, 3. This
sequence of heights can be viewed as a walk in the graph Fm with vertices 0, 1, . . . ,m
and edges i → i − 1, i → i, i → i + 1 whenever those vertices are in the range
{0, . . . ,m}. Each monotone paths gives rise to a different walk in this graph Fm starting
at 0. However, not every such walk arises from a monotone path: a monotone path
cannot contain an edge i→ i+ 1 (resp. i→ i− 1) followed by the reverse edge i+ 1→ i
(resp. i−1→ i). For this reason, the graph Fm does not provide the necessary bijective
encoding.

A successful encoding of monotone paths as walks in a graph. To resolve
the issue above, we redundantly insert some memory into the bookkeeping procedure.
We encode a path as a sequence of pairs: for the ith node, we keep track of the
height pair (hi−1, hi) of heights of nodes i − 1 and i. (We define h−1 = 0.) For
example, the monotone path in Figure 1 is recorded by the successive height pairs
00, 00, 01, 11, 12, 22, 23, 33, 33, 32, 22, 21, 11, 12, 23.1

Now we consider the directed graph whose vertices are the possible height pairs, and
whose edges are the possible transitions between two consecutive height pairs.

Definition 2.2. Let m be a positive integer. The transfer graph Gm is the directed
graph with
• vertices: (i, i− 1), (i, i), (i, i+ 1) whenever the indices are between 0 and m, and
• edges: (i, j)→ (j, k) unless j = i± 1 and k = i.
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(0, 1)

(1, 1) (2, 2)

(2, 1)

(1, 2)

(1, 0)

(0, 0)



00 01 10 11 12 21 22

00 1 1 0 0 0 0 0
01 0 0 0 1 1 0 0
10 1 0 0 0 0 0 0
11 0 0 1 1 1 0 0
12 0 0 0 0 0 0 1
21 0 0 1 1 0 0 0
22 0 0 0 0 0 1 1


Figure 3: The graph G2 and its adjacency matrix A2..

The graph G2 is illustrated in Figure 3.

Lemma 2.3. The number cm(n) of monotone paths of length n in a strip of height m
equals the number of walks of length n in the transfer graph Gm that start at vertex (0, 0).

Proof. For a monotone path of length n, let 0 = h0, h1, h2, . . . , hn be the heights of
the nodes. Since the path cannot retrace steps, the sequence above cannot contain a
consecutive subsequence h, h + 1, h or h + 1, h, h + 1. Therefore (0, 0) → (0, h1) →
(h1, h2) → · · · → (hn−1, hn) is a walk of length n in Gm. Conversely, every walk of
length n starting at (0, 0) corresponds to such a monotone path.

2.2 The characteristic polynomial

Having established the encoding of monotone paths as walks in a transfer graph Gm, we
proceed with the linear algebraic analysis. Let Am be the (3m+1)× (3m+1) adjacency
matrix of Gm; its non-zero entries are:

(Am)(i,j),(j,k) = 1 unless j = i± 1 and i = k

all other entries equal 0. Let its characteristic polynomial be

am(x) = det(Am − xI).

The adjacency matrix A2 is shown in Figure 3, and its characteristic polynomial is
a2(x) = −x7 + 3x6 − 3x5 + x4 + 2x3 − 2x2 + x+ 1.

Lemma 2.4. The characteristic polynomial am(x) = det(Am − xI) of the adjacency
matrix of the graph Gm is given by the recurrence

am(x) =


1− x m = 0

x4 − 2x3 + x2 − 1 m = 1

(−x3 + x2 − x− 1)am−1(x)− x4am−2(x) m ≥ 2.
1We write ij for the pair (i, j) when it introduces no confusion.
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Proof. Consider the 3× 3 matrices

X =

1 1 0
0 0 0
0 0 0

 , Y =

−x 0 0
1 1− x 1
0 0 −x

 , Z =

0 0 0
0 0 0
0 1 1


For a matrix S, let Si,, S,j and Si,j respectively denote the matrix S with its i-th

row, j-th column or the i-th row and j-th column deleted. Then one can verify that
Am − xI is the (3m+ 1)× (3m+ 1) matrix with block format given below.

Am − xI =



Y 1,1 Z1, 0 0 · · · 0 0 0

X ,1 Y Z 0 · · · 0 0 0
0 X Y Z · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · Y Z 0

0 0 0 0 · · · X Y Z ,3
0 0 0 0 · · · 0 X3, Y 3,3


Expanding by cofactors,

am(x) = det(Am − xI)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− x 1 0 0 0 0 · · ·
0 −x 0 1 1 0 · · ·
1 0 −x 0 0 0 · · ·
0 0 1 1− x 1 0 · · ·
0 0 0 0 −x 0 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (1− x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
−x 0 1 1 0 · · ·
0 −x 0 0 0 · · ·
0 1 1− x 1 0 · · ·
0 0 0 −x 0 · · ·
0 0 0 0 0 · · ·

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− (1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
0 0 1 1 0 · · ·
1 −x 0 0 0 · · ·
0 1 1− x 1 0 · · ·
0 0 0 −x 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (1− x)(−x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
· · ·

−x 0 0 0 · · ·
1 1− x 1 0 · · ·
0 0 −x 0 · · ·
0 0 0 0 · · ·

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− (1)(−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
0 1 1 0 · · ·
−x 0 · · ·
1 1− x 1 0 · · ·
0 0 −x 0 · · ·
0 0 0 0 · · ·

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6



= (1− x)(−x)(−x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
· · ·
· · ·

1− x 1 0 · · ·
0 −x 0 · · ·
0 0 0 · · ·

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ bm−1(x)

where bm(x) = det(Bm(x)) for the (3m+ 2)× (3m+ 2) matrix

Bm(x) =


W Z · · · 0
X Y · · · 0
...

...
. . .

...

0 0 · · · Y 3,3

 where W =

0 1 1
1 1− x 1
0 0 −x

 .
Therefore we have

am(x) = x2(1− x)am−1(x) + bm−1(x).

Now, subtracting row 1 of Bm(x) from row 2 and expanding by cofactors, we obtain
the following:

bm(x) = detBm(x)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 0 0 0 · · ·
1 1− x 1 0 0 0 · · ·
0 0 −x 0 1 1 · · ·
1 1 0 −x 0 0 · · ·
0 0 0 1 1− x 1 · · ·
0 0 0 0 0 −x · · ·
...

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 0 0 0 · · ·
1 −x 0 0 0 0 · · ·
0 0 −x 0 1 1 · · ·
1 1 0 −x 0 0 · · ·
0 0 0 1 1− x 1 · · ·
0 0 0 0 0 −x · · ·
...

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
1 0 0 0 0 · · ·
0 −x 0 1 1 · · ·
1 0 −x 0 0 · · ·
0 0 1 1− x 1 · · ·
0 0 0 0 −x · · ·
...

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
1 −x 0 0 0 · · ·
0 0 0 1 1 · · ·
1 1 −x 0 0 · · ·
0 0 1 1− x 1 · · ·
0 0 0 0 −x · · ·
...

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Subtracting the first (non-grayed) row from the third (non-grayed) row in the second
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matrix above, we obtain that bm(x) equals

= (−1)(−x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
1 0 0 0 · · ·

· · ·
1 −x 0 0 · · ·
0 1 1− x 1 · · ·
0 0 0 −x · · ·
...

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
1 −x 0 0 0 · · ·
0 0 0 1 1 · · ·
0 1 + x −x 0 0 · · ·
0 0 1 1− x 1 · · ·
0 0 0 0 −x · · ·
...

...
...

...
...

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)(−x)(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
· · ·
· · ·

−x 0 0 · · ·
1 1− x 1 · · ·
0 0 −x · · ·

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (1)(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
· · ·

0 0 1 1 · · ·
1 + x −x 0 0 · · ·

0 1 1− x 1 · · ·
0 0 0 −x · · ·

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)(−x)(1)(−x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
· · ·
· · ·
· · ·

1− x 1 · · ·
0 −x · · ·

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (1)(1)(−1− x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · ·
· · ·

0 1 1 · · ·
· · ·

1 1− x 1 · · ·
0 0 −x · · ·

...
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

= (−1)(−x)(1)(−x) det(Am−1 − xI) + (1)(1)(−1− x) detBm−1(x)

Thus we have the recursion formulas

am(x) = (x2 − x3)am−1(x) + bm−1(x)

bm(x) = −x2am−1(x)− (1 + x)bm−1(x)

The first equation gives a formula for each term of the b-sequence in terms of the
a-sequence. Substitituting that formula for bm and bm−1 in the second equation gives
the desired recurrence for am(x).

The first few characteristic polynomials am(x) are shown in Table 1. We now give
an explicit formula for them.

Proposition 2.5. The polynomial am(x) is given explicitly by the formula

am(x) = α+(x)β+(x)m + α−(x)β−(x)m
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for all m ≥ 0, where

α±(x) = ± x4 − 2x3 − 1

2
√

(x4 − 1)(x2 − 2x− 1)
+

1− x
2

,

β±(x) =
−x3 + x2 − x− 1±

√
(x4 − 1)(x2 − 2x− 1)

2
.

for any x /∈ {±1,±i, 1±
√

2}.

Proof. The relation

am(x) = (−x3 + x2 − x− 1)am−1(x)− x4am−2(x) for m ≥ 2

is a linear recurrence with constant coefficients in the field of power series in x. To solve
it, we need to compute the characteristic polynomial of the recurrence:

β2 + (x3 − x2 + x+ 1)β + x4 = 0,

whose discriminant is

γ(x) := (x3 − x2 + x+ 1)2 − 4x4 = x6 − 2x5 − x4 − x2 + 2x+ 1 = (x4 − 1)(x2 − 2x− 1);

its roots are ±1,±i, 1±
√

2.
For γ(x) 6= 0, this polynomial has two different roots β±, given in the statement

of the proposition. The general theory of recurrences tells us that there must exist
constants α± such that

an = α+β
n
+ + α−β

n
−

for all natural numbers n. Substituting n = 0, 1 gives the system of equations

1− x = α+ + α−

x4 − 2x3 + x2 − 1 = α+β+ + α−β−

whose solution for α+ and α− is as given.

It feels like a small miracle that the discriminant γ(x) arising in this problem has
such a nice factorization; it would be interesting to explain this conceptually.

Proposition 2.6. The number cm(n) of monotone paths of length n in the strip of height
m is the sum of the entries in row 00 of Anm; equivalently,

cm(n) = [10 · · · 0]Anm[11 · · · 1]T .

Proof. The number cm(n) equals the number of paths of length n in the transfer graph
Gm that start at 00, so it is the sum of the entries in the first row of Anm, which is given
by [10 · · · 0]An[11 · · · 1]T .
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For any fixed height m, Proposition 2.6 may be used to give an explicit formula for
the function cm(n) as n varies. To do so, one computes the Jordan normal form Jm
of Am, so that if Am = KJmK

−1 then Anm = KJnmK
−1, where the powers of Jm are

easily computed; see for example [GVL13, (9.1.4)]. We get an even nicer answer for the
generating function of this sequence.

Theorem 2.7. Let m be a fixed positive integer. The generating function for the number
cm(n) of monotone paths of length n in the strip of height m is∑

n≥0

cm(n)xn =
det(I − xAm ; 00)

det(I − xAm)

where (I − xAm ; 00) is the matrix obtained from I − xAm by replacing every entry in
the first column 00 with a 1.

Proof. For any N ×N matrix A we have

∑
n≥0

Anijx
n =

∑
n≥0

(Ax)n


ij

=
(
(I −Ax)−1

)
ij

=
(−1)i+j det(I − xA : j, i)

det(I − xA)

where (K : j, i) denotes the matrix K with row j and column i removed. Therefore

N∑
j=1

∑
n≥0

Anijx
n =

N∑
j=1

(−1)j+i det(I − xA : j, i)

det(I − xA)
,

=
det(I − xA ; j)

det(I − xA)
,

where (K ; j) denotes the matrix K with every entry in row j replaced by a 1; in the
last step we use the expansion of det(I − xA) by cofactors along the jth row. Applying
this formula to Proposition 2.6 gives the desired result.

Remark 2.8. Using Theorem 2.7 for the transition matrix A2 of Figure 3, we readily
obtain the generating function for monotone paths in a strip of height 2:∑

n≥0

c2(n)xn =
1− x+ x2 + x3 − x4 + x5 + x6

1− 3x+ 3x2 − x3 − 2x4 + 2x5 − x6 − x7

=
1 + x2 + x3

1− 2x+ x2 − x3 − x4

= 1 + 2x+ 4x2 + 8x3 + 15x4 + 28x5 + 53x6 + 101x7 + · · ·

This matches the computation of Williams in [Wil96, (3)] and Ardila, Bastidas, Ceballos,
and Guo in [ABCG17a, Corollary 3.6]; Williams also computed the generating function
for c3(n). Their methods require a careful analysis for each fixed height m, and the
complexity of that analysis grows with m. The advantage of our method is that it works
uniformly for any height m.
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2.3 Asymptotic analysis

Theorem 2.7 shows that for any fixed n, the generating function for cm(n) is a rational
function in x. This implies that the asymptotic growth of cm(n) is controlled by the
roots of the denominator of that rational function. Let us make that precise.

Theorem 2.9. [Sta11, Theorem 4.1.1] Let α1, . . . , αd be a fixed sequence of complex
numbers, d ≥ 1 and αd 6= 0. Let Q(x) = 1 + α1x + · · · + αdx

d =
∏k
i=1(1 − λix)di

where the λis are distinct and d1 + · · ·+ dk = d. The following conditions on a function
f : N→ C are equivalent:

1. There is a polynomial P (x) of degree less than d and polynomials pi(x) with
deg pi(x) < di for i = 1, . . . , k such that

∑
n≥0

f(n)xn =
P (x)

Q(x)
=

k∑
i=1

pi(x)

(1− λix)di
.

2. For all n ≥ 0,

f(n+ d) + α1f(n+ d− 1) + α2f(n+ d− 2) + · · ·+ αdf(n) = 0.

3. There exist polynomials Pi with degPi(x) < di for i = 1, . . . , k such that, for all
n ≥ 0,

f(n) =

k∑
i=1

Pi(n)λni .

If one is interested in the asymptotic growth of f(n), one needs to pay attention to the
dominant terms of the expression in Theorem 2.9.3. This can be a subtle matter, because
our polynomial Q(x) can have complex roots 1/λi, which can occur with multiplicites.
If we are in the fortunate situation where a simple real root dominates the others, the
situation is simpler, as follows.

Say two sequences (f(n))n≥0 and (g(n))n≥0 are asymptotically equivalent, and write

f(n) ∼ g(n) if lim
n→∞

f(n)

g(n)
= 1

Lemma 2.10. Assume that the conditions of Theorem 2.9 hold, and that λ = λ1 ∈ R>0

has the property that d1 = 1 and |λi| < λ for i = 2, . . . , k. Then

f(n) ∼ a · λn where a =
−λP (1/λ)

Q′(1/λ)
.

Proof. Since d1 = 1 the corresponding polynomial p1(x) = a is a constant, and the
Taylor expansion of

∑
n≥0

f(n)xn =
P (x)

Q(x)
=

a

1− λx
+

k∑
i=2

pi(x)

(1− λix)di

11



gives f(n) ∼ a · λn. To identify the constant a, notice that

a = lim
x→1/λ

P (x)

Q(x)
(1− xλ)

= lim
x→1/λ

−λP (x) + P ′(x)(1− xλ)

Q′(x)

=
−λP (1/λ)

Q′(1/λ)

by L’Hôpital’s rule.

Now let us apply this framework to the monotone paths that interest us. Let
λ1, . . . , λk be the eigenvalues of our transition matrix Am with respective multiplicities
d1, . . . , dk, so that

det(I −Amx) =

k∏
i=1

(1− λix)di .

Theorem 2.7 tells us that Theorem 2.9 applies to the sequence cm(n). We can use it to
immediately read off a linear recurrence relation for cm(n), as well as an explicit formula:

cm(n) =
k∑
i=1

Pi(n)λni (1)

For a fixed height m, the polynomials Pi – and hence the exact formula for cm(n) – can
be computed explicitly: this is done by writing down the partial fraction decomposition
of the right hand side of Theorem 2.7, and then computing its Taylor series.

Additionally, we are in the fortunate situation where a single real eigenvalue of Am
dominates the others and Lemma 2.10 applies, as we now explain.

Definition 2.11. A square matrix A is primitive if it is entrywise non-negative and
some positive power Ak is entrywise positive.

Theorem 2.12 (Perron-Frobenius). Every primitive matrix A has a Perron eigenvalue
r: this is a positive eigenvalue r > 0 such that r > |λ| for any other eigenvalue λ of
A. Furthermore, r is a simple eigenvalue of A – that is, it has multiplicity 1 – and it is
between the minimum and the maximum column sums of A.

Lemma 2.13. The matrix Am is primitive and its Perron eigenvalue rm = λ(Am)
satisfies 1 ≤ rm ≤ 3.

Proof. Our matrix Am is clearly non-negative. By inspecting the graph Gm, we see that
for any vertices u and v there is a walk from u to v of length at most 2m+ 1. This walk
must use at least one vertex (i, i), and adding loops (i, i) → (i, i) to the walk, one can
extend it to have length exactly 2m + 1. Therefore A2m+1

m is positive. The first claim
follows, and the second one follows readily from the Perron-Frobenius theorem and the
observation that the indegree and outdegree of any vertex of Gm is at least 1 and at
most 3.

12



m am(x) = det(Am − xI) rm
0 −x+ 1 1
1 x4 − 2x3 + x2 − 1 1.6180 . . .
2 −x7 + 3x6 − 3x5 + x4 + 2x3 − 2x2 + x+ 1 1.8971 . . .
3 x10 − 4x9 + 6x8 − 4x7 − 2x6 + 6x5 − 5x4 + 2x2 − 2x− 1 2.0507 . . .
4 −x13 + 5x12 − 10x11 + 10x10 − x9 − 11x8 + 15x7 − 7x6 − 4x5 + 8x4 − 3x3 − x2 + 3x+ 1 2.1444 . . .
↓ ↓
∞ 1 +

√
2

Table 1: Characteristic polynomial am(x) and Perron eigenvalue rm of the transition
matrix Am. The number rm is the exponential growth constant of the number cm(n) of
monotone paths of length n in a tunnel of height m.

Corollary 2.14. The Perron eigenvalue If rm := λ(Am) of the matrix Am, that is, the
largest positive root of the polynomial am(x) of Proposition 2.5, is the exponential growth
rate constant for monotone paths in a strip of height m; more precisely,

cm(n) ∼ qm · rnm

for a constant qm.

Proof. This follows readily from Lemma 2.10 and Lemma 2.13.

Table 1 shows the growth constants rm for monotone paths in height m; that is, the
Perron eigenvalues of the transition matrices Am, for the first few values of m. We note
that our description of the growth constant rm as the largest real root of the polynomial
am(x) in Proposition 2.5 is the most explicit possible, because Galois theory tells us that
there is no exact formula for it. For example, a3(x) factors into two irreducible quintics,
and the quintic x5 − 2x4 + x2 − 2x− 1 that has r3 as a root has full Galois group S5.

We now offer an optimal upper bound for the growth constants rm as the height m
of the tunnel grows.

Proposition 2.15. The Perron eigenvalues r0, r1, r2, . . . of the matrices A0, A1, A2, . . .
satisfy

1 = r0 < r1 < r2 < · · · , and lim
m→∞

rm = 1 +
√

2.

Proof. If we had rm+1 < rm for some m, Corollary 2.14 would imply

lim
n→∞

cm+1(n)

cm(n)
= lim

n→∞

am+1

am

(
rm+1

rm

)n
= 0,

contradicting the fact that cm(n) ≤ cm+1(n). Also, if we had rm+1 = rm, then this
would be a common root of the polynomials am+1(x) and am(x), and the recurrence of
Lemma 2.4 would imply that it is also a root of am−1(x), am−2(x), . . . , a0(x). However
a0 and a1 don’t have a root in common. This proves the first claim.

For the second part, notice that the Perron eigenvalues are increasing and bounded
above by 3 by Lemma 2.13, so the sequence does converge. Let the limit be

lim
m→∞

rm = r
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and assume, for the sake of contradiction, that r 6= 1 +
√

2.
Since rm is an eigenvalue for Am, it is a root of am(x), so Proposition 2.5 gives

0 = am(rm) = α+(rm)β+(rm)m + α−(rm)β−(rm)m.

Let us write α(x) = α+(x)/α−(x) and β(x) = β−(x)/β+(x); these are well defined and
non-zero for all but a finite number of values x. Thus for all sufficiently large m we have

−α(rm) = β(rm)m

and
1

m
log(−α(rm)) = log β(rm). (2)

We now wish to take limits, but since the discriminant γ(x) = (x4 − 1)(x2 − 2x− 1)
– whose square root arises in α± and β± – can be negative, we need to regard these as
complex functions. Making a branch cut along the ray spanned by 1 + i gives rise to two
branches of the square root function ±

√
z, each of which is continuous in the domain

D = C \ (1 + i)R≥0.

Now rm → r implies γ(rm)→ γ(r). This limit is real and non-zero, since r > 1 and we
assumed r 6= 1 +

√
2. Thus

√
z is continuous at γ(r), so

√
γ(rm)→

√
γ(r). This implies

that α(rm)→ α(r) and β(rm)→ β(r).
One may verify computationally that α+, α−, β+, β− have no real roots. Furthermore,

α− and α+ only have two positive poles, located at x = 1 and x = 1 +
√

2, the positive
roots of the polynomial γ(x). Thus we can choose a branch of the logarithm function
that is continuous at −α(r) and β(r). Since α(r) 6= 0, the left hand side of (2) converges
to 0, while the right hand side converges to log β(r); this means that β(r) = 1. Thus
β−(r) = β+(r), which implies that γ(r) = 0, a contradiction.

We conclude that indeed r = 1 +
√

2 as desired.

We note that these results are consistent with the observation, recorded by Janse
van Rensburg, Prellberg, and Rechnitzer in [JVRPR08, Lemma 2.1], that the growth
constant for the monotone paths in the first quadrant. equals 1 +

√
2. Remarkably,

they showed that the growth constant still equals 1 +
√

2 when considering monotone
paths in the wedges bound by lines y = 0 and y = mx, or bound by lines y = −mx and
y = mx, for any integer slope m. It would be interesting to generalize our results to
those settings.

3 Using CAT(0) cube complexes to find a small bottleneck

For many Markov chains M , the transition kernel is the skeleton of a CAT(0) cube
complex. When that is the case, Ardila, Owen, and Sullivant [AOS12] showed how to
associate a poset with inconsistent pairs (PIP) PM to M . The central idea, which bears
repeating, that gave rise to this paper is the following:
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Figure 4: The transition kernel G2,6 of length 6 monotone paths in a strip of height 2.

Idea 3.1. When the transition kernel of a Markov chain M is a CAT(0) cube complex,
one can use the corresponding poset with inconsistent pairs (PIP) PM to find bottlenecks
(vertex separators) in the kernel, and obtain upper bounds on the mixing time of M .

In this section we make this statement precise, and in the next section we will use it
to bound the mixing time of the Markov chain Mm,n.

3.1 The cube complex of monotone paths in a strip

There are numerous contexts where a discrete system moves according to local, reversible
moves. Abrams, Ghrist, and Peterson introduced the formalism of reconfigurable systems
to model a very wide variety of such contexts. In particular, they showed how a
reconfigurable system X leads to a cube complex S(X). Ardila, Bastidas, Ceballos,
and Guo described the complex Sm,n of monotone paths in a strip, using the language
of robotic arms in a tunnel. We now give their description, and refer the reader to
[AG04, ABY14, GP07] for the general framework.

Definition 3.2. Let Sm,n be the transition kernel of the Markov chain Mm,n. Its vertices
correspond to the cm(n) monotone paths of length n in a strip of height m. Two vertices
are connected to each other if the corresponding paths can be obtained from one another
by one of the following moves:
• switch corners: two consecutive steps that go in different directions exchange directions,
• flip the end: the last step of the path rotates 90◦.

These moves are illustrated in Figure 2. The transition kernel G2,6 is shown in Figure
4. It feels natural, and is very useful, to “fill in the cubes” in this graph; let us make
this precise.
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Definition 3.3. Given a path P and two moves available at P , say these two moves are
compatible if no step of the path is involved in both of them.

Intuitively, two moves M1 and M2 on a path P are compatible when they are
“physically independent” from each other in P . Performing M1 and then M2 gives
the same result as performing M2 and then M1, so we can imagine that M1 and M2 can
be performed simultaneously if desired.

For a path P and k moves of P that are pairwise compatible, we can obtain 2k

different paths by performing any subset of these k moves to P . These 2k vertices form
the graph of a k-dimensional cube in Sm,n.

Definition 3.4. Let Sm,n be the transition cube complex of the Markov chain Mm,n.
Its vertices correspond to the cm(n) monotone paths of length n in a strip of height m.
Its k-dimensional cubes correspond to the k-tuples of pairwise compatible moves.

This cube complex is naturally a metric space, where each individual cube is a unit
cube with the standard Euclidean metric.

3.2 CAT(0) cube complexes and posets with inconsistent pairs

The cube complex S(X) of a reconfigurable system is always locally non-positively curved
[AG04, ABY14, GP07] and sometimes globally non-positively curved, or CAT(0). The
reader may consult the definitions in the references above. When a cube complex is
CAT(0), Ardila, Owen, and Sullivant [AOS12] showed how to find geodesic between any
two points under various metrics. This has consequences for robotic motion planning,
among others [ABCG17b, AM20]. As we stated in Idea 3.1, this also has implications
for the mixing times of Markov chains.

3.2.1 CAT(0) cube complexes: how to define them

The CAT(0) property is the metric property of being non-positively curved, as witnessed
by the fact that triangles are “thinner” than in Euclidean space. Let us make this precise
for completeness, although we will not use this definition in what follows.

Definition 3.5. Let X be a metric space where there is a unique geodesic (shortest) path
between any two points. Consider a triangle T in X of side lengths a, b, c, and build a
comparison triangle T0 with the same side lengths in Euclidean plane. Consider a chord
of length d in T that connects two points on the boundary of T ; there is a corresponding
comparison chord in T0, say of length d0. If for every triangle T in X and every chord
in T we have d ≤ d0, we say that X is CAT(0).

3.2.2 CAT(0) cube complexes: how to recognize them topologically

Testing whether a general metric space is CAT(0) is quite subtle. However, Gromov
[Gro87] proved that this is easier to do this if the space is a cubical complex. In a
cubical complex, the link of any vertex is a simplicial complex. We say that a simplicial
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complex ∆ is flag if it has no empty simplices; that is, any d + 1 vertices which are
pairwise connected by edges of ∆ form a d-simplex in ∆.

Theorem 3.6. (Gromov, [Gro87]) A cubical complex is CAT(0) if and only if it is
simply connected and the link of any vertex is a flag simplicial complex.

If one has a reasonably small cubical complex, one can easily use this criterion to
determine whether it is CAT(0). Roughly speaking, the first property says that the
space should be connected and have no holes. The second one says that if we stand at a
vertex and see that our complex contains all the 2-faces of a d-cube that contain v, then
in fact it also contains that d-cube. For example we see, by inspection, that the cube
complex of monotone paths S2,6 in Figure 4 is CAT(0). More generally Sm,n is always
CAT(0); see Theorem 3.12.

3.2.3 CAT(0) cube complexes: how to describe and build them combinatorially

Most relevantly to us, Ardila, Owen, and Sullivant [AOS12] gave a combinatorial criterion
to determine whether a cube complex is CAT(0). They showed that rooted CAT(0) cube
complexes are in bijection with posets with inconsistent pairs (PIPs). Thus, if we wish to
prove that a cube complex is CAT(0), it is sufficient to choose a root for it, and identify
the corresponding PIP. Let us describe this carefully now.

Definition 3.7. A poset with inconsistent pairs (PIP) is a finite poset P , together with
a collection of inconsistent pairs {p, q} – denoted p= q – such that:

1. If p and q are inconsistent, then there is no r such that r ≥ p and r ≥ q.

2. If p and q are inconsistent and p′ ≥ p and q′ ≥ q, then p′ and q′ are inconsistent.

The Hasse diagram of a PIP is obtained by drawing the poset, and connecting each
minimal inconsistent pair with a dotted line. An inconsistent pair p = q is minimal if
there is no other inconsistent pair p′ = q′ with p′ ≤ p and q′ ≤ q. The left panel of
Figure 5 shows a PIP.

Recall that I ⊆ P is an order ideal or downset of poset P if a ≤ b and b ∈ I imply
a ∈ I. A consistent downset is one which contains no inconsistent pairs.

Definition 3.8. Let P be a poset with inconsistent pairs. The rooted cube complex of
P , denoted S(P ), is defined as follows:
• vertices: The vertices of S(P ) are identified with the consistent order ideals of P .
• edges: There is an edge joining two vertices if the corresponding order ideals differ

by a single element.
• cubes: More generally, there is a cube C(I, L) for each pair (I, L) of a consistent

order ideal I and a subset L ⊆ Imax, where Imax is the set of maximal elements of I.
This cube has dimension |L|, and its vertices are obtained by removing from I the 2|L|

possible subsets of L.
The cubes are naturally glued along their faces according to their labels. The root of

S(P ) is the vertex corresponding to the empty order ideal.
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We denote the corresponding graph S(P ). The right panel of Figure 5 shows the
rooted cube complex S(P ) (rooted at ∅) corresponding to the PIP on the left panel.

Theorem 3.9 (Ardila, Owen, Sullivant). [AOS12] The map P 7→ S(P ) is a bijection
between finite posets with inconsistent pairs and finite rooted CAT(0) cube complexes.

1

2

3

4

5 6

8 7

9

10
∅ 1 12 123

1245 124 1234 12346

12457

124578

1247 12347
123467

1234679

123467910

Figure 5: A PIP P ∼= C2,4 and the corresponding CAT(0) cubical complex S(P ) ∼= S2,4.

When a cube complex is CAT(0), Ardila, Owen, and Sullivant [AOS12] showed how to
find geodesic paths between any two points under various metrics. This has consequences
for robotic motion planning, among others [ABCG17b, AM20]. We will see here that it
also has implications for the mixing times of Markov chains.

3.3 The bottleneck lemma for CAT(0) cube complexes

Definition 3.10. Let G be a connected graph, we say that a set of vertices T ⊂ V (G)
is a vertex separator or bottleneck if the removal of T and the edges incident to T
disconnects the graph.

Lemma 3.11. Let P be a poset with inconsistent pairs and S(P ) be the graph of the
corresponding CAT(0) cubical complex. Let p= q be an inconsistent pair of P , and

S(P )p=q = vertices of S(P ) whose consistent order ideals contain neither p nor q.

S(P )p = vertices of S(P ) whose consistent order ideals contain p

S(P )q = vertices of S(P ) whose consistent order ideals contain q

Then S(P )p=q is a bottleneck for S(P ) that separates the sets S(P )p and S(P )q from
each other.

Proof. Because p= q form an inconsistent pair of P , every vertex of S(P ) lies in exactly
one of these three sets. Thus it suffices to show that there cannot be an edge of S(P )
connecting a vertex v ∈ S(P )p to vertex w ∈ S(P )q. But vertex v corresponds to an
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order ideal I containing p (and hence not containing q) and vertex w corresponds to
an order ideal J containing q (and hence not containing p). It follows that the ideals I
and J differ by at least two elements, so there cannot be an edge between v and w, as
desired.

3.4 The cube complex Sm,n of monotone paths in a strip is CAT(0)

Recall that Sm,n is the cube complex of monotone paths of length n in a strip of height
m. For example, for m = 2 and n = 4, Figure 6 shows the 10 possible paths, labeled
to match Figure 5. This labeling shows that in fact S2,4 is the CAT(0) cube complex
in that figure. Ardila, Bastidas, Ceballos, and Guo [ABCG17a] proved that this is an
instance of a general phenomenon:

Theorem 3.12. [ABCG17a] For any positive integers m and n, the cube complex Sm,n
of monotone paths of length n in a strip of height m is CAT(0).

∅ 1 12

123 124 1234

1245 1247 12346

12347 12457 123467

124578 1234679 123467910

Figure 6: The monotone paths of length 4 in a tunnel of height 2.

3.4.1 The coral PIP

To prove that Sm,n is CAT(0), [ABCG17a] introduced and used the technique shown
in Section 3.2.3: the authors introduced the coral PIP Cm,n, and showed that its
corresponding CAT(0) cube complex is S(Cm,n) ∼= Sm,n. To describe the coral PIP,
we need to introduce the notion of a coral snake.

Definition 3.13. A coral snake λ of height at most m is an oriented path of unit squares,
colored alternatingly black and red (starting with black), inside the strip of height m such
that:

(i) The snake λ starts with the bottom left square of the strip, and takes unit steps up,
down, and right.

19



(ii) Suppose λ turns from a vertical segment V1 to a horizontal segment H to a vertical
segment V2 at corners C1 and C2. Then V1 and V2 face the same direction if and
only if C1 and C2 have the same color. (Note: we consider the first column of the
snake a vertical segment going up, even if it consists of a single cell.)

| C1 C2 | C1 C2

Figure 7: Illustration of condition (ii) in Definition 3.13.

The length l(λ) is the number of unit squares of λ, the height h(λ) is the number of
rows it touches, and the width w(λ) is the number of columns it touches. We say that µ
contains λ, in which case we write λ � µ, if λ is an initial sub-snake of µ obtained by
restricting to the first k cells of µ for some k. We write λ ≺ µ if λ � µ and λ 6= µ. For
technical reasons, sometimes we will also consider the empty snake ∅.

Figure 8: A coral snake λ of length l(λ) = 11, height h(λ) = 3, and width w(λ) = 7. We
encourage the reader to check condition (ii).

Although the colors of a coral snake are a useful visual aid, we sometimes omit them
since they are uniquely determined by the shape of the snake.

Definition 3.14. Define the coral PIP Cm,n as follows:
• Elements: pairs (λ, s) consisting of a coral snake λ 6= ∅ with h(λ) ≤ m and an integer
0 ≤ s ≤ n− l(λ)− w(λ) + 1.
• Order: (λ, s) ≤ (µ, t) if λ � µ and s ≥ t.
• Inconsistency: (λ, s) = (µ, t) if neither λ nor µ contains the other.

For simplicity, we call the elements (λ, s) of the coral PIP numbered snakes. We
write them by placing the number s in the first cell of λ.

The left panel of Figure 9 shows the coral PIP C2,9. The right panel shows how
C2,8, C2,7, . . . are subPIPs of C2,9; they are obtained from it by removing one colored
layer at a time.

Theorem 3.15. [ABCG17a] The monotone paths of length n in a strip of height m are
in bijection with the order ideals of the coral PIP Cm,n.
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Figure 9: (a) The coral PIP C2,9 with its numbered snakes. (b) The coral PIPs
C2,8, C2,7, . . . are obtained from C2,9 by removing one colored layer at a time.

3.4.2 Using the coral PIP to find a small bottleneck in Sm,n

We now use Bottleneck Lemma 3.11 to find a small bottleneck in Sm,n. Figure 9 shows
us the way: there is a natural choice of an inconsistent pair in the coral PIP Cm,n.

Definition 3.16. Let the low inconsistent pair of the coral PIP Cm,n consist of:

a =
n−2

, b =
n−3

.

Let the backbone of Cm,n be the consistent order ideal

B =

{
n−1

<
n−2

< · · · < 0
}
⊂ Cm,n.

Notice that a and b have the largest possible indices among the tableaux of their
respective shapes. This inconsistent pair decomposes the set of consistent order ideals
into three subsets S(Cm,n) = S(Cm,n)a=b tS(Cm,n)a tS(Cm,n)b, depending on whether
an order ideal contains neither a nor b, only a, or only b.

As an example, in Figure 5, a = 3, b = 5, and

S(C2,4)3=5 = {∅, 1, 12, 124, 1247},
S(C2,4)3 = {123, 1234, 12347, 12346, 123467, 1234679, 12346710},
S(C2,4)5 = {1245, 12457, 124578}.
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Each one of these order ideals corresponds to a path shown in Figure 6. The reader may
wish to compare the lists above with those paths, to motivate the following lemmas.

The statements of the following two lemmas can be understood independently, but
the proofs assume familiarity with the details of the bijection S(Cm,n) → Sm,n of
Theorem 3.15, as explained in Lemma 5.9 and Theorem 5.5 of [ABCG17b].

Lemma 3.17. The bijection S(Cm,n)→ Sm,n of Theorem 3.15 restricts to a bijection

S(Cm,n)a=b → paths containing at most one vertical step.

There are n+ 1 such paths.

Proof. We claim that the order ideals I in S(Cm,n)a=b are precisely those that only
contain numbered snakes of length 1. Indeed, assume I ∈ S(Cm,n)a=b. We claim that
I only contains numbered snakes of length 1. Indeed, if I contained a numbered snake
(λ, s) of length at least 2, then it would also contain the numbered snake (λ2, s) ≤ (λ, s),
where λ2 consists of the first two squares of λ. If λ2 consists of two vertically arranged
squares, then s ≤ n − 2 − 1 + 1 = n − 2 by the definition of Cm,n, so I also contains
a = (λ2, n − 2) ≤ (λ2, s), a contradiction. Similarly, if λ2 consists of two horizontally
arranged squares, then s ≤ n−2−2+1 = n−3, so I also contains b = (λ2, n−3) ≤ (λ2, s),
a contradiction. The converse is clear.

It follows that S(Cm,n)a=b consists of the empty ideal – which corresponds to the
horizontal path – and for 0 ≤ k ≤ n − 1, the order ideal generated by (�, k), which
corresponds to the path that takes k horizontal steps, then one vertical step, and then
n− 1− k horizontal steps, as desired.

Lemma 3.18. The bijection S(Cm,n)→ Sm,n of Theorem 3.15 restricts to a bijection

S(Cm,n)b → paths that contain a second vertical step, which points down.

The number of such paths is

um(n) := cm(n− 4) + 2cm(n− 5) + 3cm(n− 6) + · · ·+ (n− 3)cm(0).

Proof. First consider an order ideal I in S(Cm,n)b. Then b = (��, n − 2) ∈ I, so the
first two steps of the coral snake tableaux T corresponding to I in [ABCG17b, Lemma
5.9] are horizontally arranged. In the corresponding monotone path, the first and second
vertical steps point up and down, respectively.

Conversely, consider a monotone path P whose first two vertical steps are the jth and
kth, which point up and down, respectively for some 1 ≤ j < k ≤ n. The corresponding
coral snake tableaux T and its decomposition into join-irreducibles – as described in the
proof of [ABCG17b, Theorem 5.5], starts:

T = j−1 k−2 · · · = j−1 ∨ k−3 k−2 ∨ · · ·
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The second join-irreducible above corresponds to element (��, k− 3) of Cm,n, which
must be in the ideal I corresponding to P . But then (��, k − 3) ≥ (��, n − 3) = b
implies that the ideal I contains b as well, as desired.

Now let us count the number of arm configurations for a given choice of k ≥ 3. There
are k − 2 choices for the value of j, and this choice entirely determines the first k steps
of the path. Step k + 1 must be horizontal, and there are cm(n− k − 1) choices for the

rest of the path. It follows that um(n) =
∑
k≥3

(k − 2)cm(n− k − 1), as desired.

These combinatorial considerations allows us to show that the small bottleneck of
n+1 vertices in S(Cm,n)a=b separates the cube complex S(Cm,n) into two parts S(Cm,n)a
and S(Cm,n)b that each contain roughly a constant fraction of the (exponentially many)
vertices.

Lemma 3.19. For any fixed height m ≥ 2 of the strip, there is a constant 0 < Cm < 1
such that

lim
n→∞

S(Cm,n)b
S(Cm,n)

= lim
n→∞

um(n)

cm(n)
= Cm.

The constant Cm decreases with m, and approaches 1.5−
√

2 ≈ 0.0858 . . . as m goes to
infinity.

Proof. We saw that the generating function for cm(n) is rational∑
n≥0

cm(n)xn =
p(x)

q(x)

and Lemma 3.18 shows that∑
n≥0

um(n)xn = (
∑
n≥0

um(n)xn)(x4 + 2x5 + 3x6 + · · · ) =
p(x)

q(x)

x4

(1− x)2
.

Furthermore, as discussed in Corollary 2.14, the denominators q(x) and q(x)(1 − x)2

have a simple factor 1 − rmx that dominates the others, where rm > 1 is the Perron
eigenvalue of Am, so that Corollary 2.14 then tells us that

cm(n) ∼ qm · rnm and um(n) ∼ vm · rnm,

where

qm =
−rmp(1/rm)

q′(1/rm)

and

vm =
−rm[p(x)x4]x=1/rm

[q(x)(1− x)2]′|x=1/rm

=
−rmp(1/rm)

q′(1/rm)(1− 1
rm

)2 r4
m.
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taking into account that q(1/rm) = 0. It follows that

lim
n→∞

um(n)

cm(n)
=
vm
qm

=
1

r2
m(rm − 1)2

.

Since the Perron eigenvalues rm increase starting at 1.618 . . . and converging to 1 +
√

2
by Proposition 2.15, the constants Cm = 1

r2m(rm−1)2
decrease starting at 0.345 . . . and

converge to 1.5−
√

2 as desired.

4 The Markov chains of monotone paths in a strip mix slowly.

We are finally ready to turn to the main goal of this paper: to investigate the mixing
times of two natural Markov chains on the set of monotone paths of length n in a strip
of height m, based on the local moves introduced in Section 1. We can think of these as
random walks on the graph Sm,n.

4.1 Preliminaries on Markov chains

Let us review some basic facts about the mixing of Markov chains; for a more detailed
account, see for example [LPW09].

Definition 4.1. A sequence of random variables (X0, X1, ...) is a finite Markov chain
with finite state space Ω and transition matrix P if for all x, y ∈ Ω, all t ≥ 1, and all
events Ht−1 =

⋂
0≤s≤t−1(Xs = xs) satisfying P(Ht−1 ∩ (Xt = x)) > 0, we have

P(Xt+1 = y |Ht−1 ∩ (Xt = x)) = P(Xt+1 = y |Xt = x) = P (x, y).

In words, the Markov property requires that the probability P (x, y) of moving from
the current state Xt = x to the next state Xt+1 = y does not depend on any earlier
states.

A Markov chain is irreducible if for any x, y ∈ Ω there exists an integer r ≥ 0 such
that P r(x, y) > 0. The period of a state x is the greatest common divisor of the return
times t such that P t(x, x) > 0. A Markov chain is aperiodic if every state x has period
1.

Definition 4.2. A probability distribution π over Ω is a stationary distribution for a
Markov chain on Ω with transition matrix P if π = πP .

Theorem 4.3. If a Markov chain with transition matrix P is irreducible and aperiodic
then it has a unique stationary distribution π. We have, for all x, y ∈ Ω,

lim
t→∞

P t(x, y) = π(y).

Proposition/Definition 4.4. [LPW09, Proposition 1.19] Suppose a Markov chain on
Ω has transition matrix P . If a probability distribution π on Ω satisfies

π(x)P (x, y) = π(y)P (y, x) ∀x, y ∈ Ω
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the chain is said to be reversible with respect to π, and moreover, π is a stationary
distribution for the Markov chain.

Consequently, if a Markov chain is irreducible, aperiodic, and reversible with respect
to a distribution π, then π is the unique stationary distribution for the chain.

In order to quantify how quickly the chain converges to stationarity, we introduce
the notions of total variation distance and mixing time.

Proposition/Definition 4.5. [LPW09, Proposition 4.2] The total variation distance
between two probability distributions µ and ν on a state space Ω is:

||µ− ν||TV := max
A⊆Ω
|µ(A)− ν(A)|

=
1

2

∑
x∈Ω

|µ(x)− ν(x)|.

Definition 4.6. For a Markov chain (X0, X1, ...) we define

d(t) := max
x∈Ω
||P t(x, ·)− π(·)||TV

The ε-mixing time of the Markov chain is defined to be

τ(ε) := min{t : d(t) ≤ ε}.

The distance d(t) measures how far the farthest t-step distribution P t(x, ·) starting
at an x ∈ Ω is from the stationary distribution π. The mixing time tells us how many
steps we need to take until the t-step distribution starting at any state is within ε of the
stationary distribution, measured in total variation distance.

The bottleneck ratio of a Markov chain is a geometric quantity that can provide
upper as well as lower bounds on the mixing time. In our case, it is the lower bound
which is relevant.

Definition 4.7. The bottleneck ratio or conductance of an irreducible and aperiodic
Markov chain on Ω with transition matrix P is given by

Φ := min
S⊂Ω:0<π(S)≤ 1

2

∑
x∈S,y/∈S

π(x)P (x, y)

π(S)
.

In what follows in the rest of this section, we will always assume that the Markov
chain in question is irreducible and aperiodic. Let the eigenvalues of its transition matrix
be given by 1 = λ0 > λ1 ≥ · · · ≥ λ|Ω|−1 > −1. Let λmax = max{λ1, |λ|Ω|−1|}. A lower
bound in the mixing time can be established in two steps. The total variation distance
to stationarity can be shown to be lower bounded below by the second largest eigenvalue
in magnitude.

Theorem 4.8. [MT+06, Theorem 4.9] The mixing time of an irreducible Markov chain
can be bounded as

τ(ε) ≥ |λmax|
1− |λmax|

ln((2ε)−1).
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Secondly, the second largest eigenvalue in magnitude can be related to the conductance
of the chain.

Theorem 4.9. [Sin93, Lemma 2.6] For an irreducible and reversible Markov chain with
conductance Φ,

λ1 ≥ 1− 2Φ.

Since λmax ≥ λ1, the following is an immediate consequence.

Corollary 4.10. For an irreducible and reversible Markov chain with conductance Φ,

λmax ≥ 1− 2Φ.

Combining Theorem 4.8 and Corollary 4.10 results in the following lower bound on
the mixing time.

Theorem 4.11. For an irreducible and reversible Markov chain with conductance Φ,

τ(ε) ≥ 1− 2Φ

2Φ
ln((2ε)−1).

Therefore, to show that a Markov chain mixes slowly, it suffices to find a set S whose
bottleneck ratio is very small.

4.2 The symmetric Markov chain of monotone paths in a strip .

Definition 4.12. (The symmetric Markov chain Mm,n on monotone paths) Let
Ωm,n denote the set of monotone paths of length n in a strip of height m. For t ≥ 0, if
Xt ∈ Ωm,n is the path at time t, we obtain the next path Xt+1 as follows.

1. Choose any of the n+ 1 vertices of the path uniformly at random, except the first
one, so that each possibility has probability 1

n .

2. (a) Suppose an interior vertex j is chosen. If Xt has a corner at vertex k, and
the corner can be switched, switch that corner to get Xt+1. If it does not, let
Xt+1 = Xt.

(b) Suppose the last vertex is chosen. If the last step is N or S, flip it to E with
probability 1

2 and do nothing with probability 1
2 . If the last step is E, flip it to

S with probability 1
2 and to N with probability 1

2 .

Theorem 4.13. Let m ≥ 2 be a fixed integer. The stationary distribution of the
symmetric Markov chain Mm,n is uniform. The mixing time of the chain Mm,n grows
exponentially with n; explicitly, there exists a constant C > 0 such that for n sufficiently
large, the mixing time τ(ε) satisfies

τ(ε) ≥ C · rnm ln(ε−1)

where rm > 1 is the Perron eigenvalue of Am in Lemma 2.13.
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Proof. To prove the first statement, we verify that our Markov chain Mm,n on monotone
paths has all the properties of Theorems 4.3 and 4.11. It is irreducible since there is
a set of moves that allows us to go between any two arm configurations: one can start
with the downset corresponding to the starting configuration, remove elements one at a
time until we are at the empty downset, and then add elements back in to get to the
final configuration. The chain is aperiodic since it contains states that are connected
by one move to themselves. Finally, the chain is reversible with respect to the uniform
distribution over monotone paths: for every pair of states x, y connected by a corner
flip, P (x, y) = P (y, x) = 1

n while for a pair of states connected by flipping the end,
P (x, y) = P (y, x) = 1

2n . It follows that the stationary distribution is uniform.
To bound the mixing time, recall that in Lemma 3.19 we identified a small bottleneck

of n+1 vertices in Sa=b := S(Cm,n)a=b that separates the transition kernel S = S(Cm,n)
of our Markov chain into two parts Sa and Sb that each contain roughly a constant
fraction of the (exponentially many) vertices. This gives us that

Φ ≤

∑
x∈Sb,y /∈Sb

π(x)P (x, y)

π(Sb)

=

∑
x∈Sb,y∈Sa=b

P (x, y)

|Sb|

since an edge xy that leaves Sb can only arrive in Sa=b, and π(x) = 1/cm(n) for all x.
Now, each y ∈ Sa=b is connected to at most one x ∈ Sb: if y corresponds to an order
ideal I of the coral PIP Pm,n that does not contain a or b, then x can only correspond
to the order ideal I ∪ b that contains b – if I ∪ b is indeed an order ideal. It follows that

Φ ≤
|Sa=b| · 1

n

|Sb|

∼ 1

Cmqm · rnm

by Lemmas 3.17 and 3.19 and Corollary 2.14. The desired bound on the mixing time
then follows from Theorem 4.11.

4.3 The lazy simple Markov chain of monotone paths in a strip

The lazy simple Markov chain Nm,n on monotone paths starts at an initial state Y0, and
proceeds to state Yt+1 by uniformly at random performing one of the local moves that
are available at Yt. This Markov chain has period 2, because the parity of the number of
vertical steps changes with every local move. To make it aperiodic, we apply the usual
strategy: slow down the walk with probability 1− p at each step.

Definition 4.14. (The lazy simple Markov chain Np
m,n on monotone paths) Let

0 < p < 1. Let Ωm,n denote the set of monotone paths of length n in a strip of height m.
For t ≥ 0, if Yt ∈ Ωm,n is the position of the path at time t, we obtain Yt+1 as follows:
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1. With probability (1− p), do nothing: let Yt+1 = Yt.

2. With probability p obtain Yt+1 by uniformly at random performing one of the local
moves that are available at Yt.

Theorem 4.15. Let m ≥ 2 be a fixed integer. Let Np
m,n be the lazy simple Markov chain

on monotone paths of length n in a strip of height m. The stationary distribution of
Np
m,n is given by

π(x) ∝ deg x

for each path x, where deg x is the number of different local moves available at x.
The mixing time of the chain Np

m,n grows exponentially with n; explicitly, there exists
a constant C > 0 such that for n sufficiently large, the mixing time τ(ε) satisfies

τ(ε) ≥ C · 1

n
rnm ln(ε−1)

where rm > 1 is the Perron eigenvalue of Am in Lemma 2.13.

Proof. The chain Nm,n is irreducible for the same reasons as the chain Mm,n. It is
aperiodic by construction. It can be verified that the chain is reversible with respect to
the distribution π since for each pair of states x 6= y, P (x, y) = p/deg(x). Hence, π is
the unique stationary distribution of the chain.

For the mixing time, we modify the proof in Theorem 4.13. Following the same
notation, we have

Φ ≤

∑
x∈Sb,y /∈Sb

π(x)P (x, y)

π(Sb)

=

∑
x∈Sb,y∈Sa=b

deg(x)P (x, y)∑
x∈Sb

deg(x)

=

∑
x∈Sb,y∈Sa=b,xy∈E(Sm,n)

p∑
x∈Sb

deg(x)

since P (x, y) = p(1/deg(x)) whenever x and y are adjacent in the graph Sm,n, by the
definition of the Markov chain.

Again, there are exactly n + 1 vertices in Sa=b; let Y0, . . . , Yn be the corresponding
order ideals of the coral PIP Cm,n, where Yi is a chain of length i. Notice that Yi has
exactly one neighbor in Sb – namely Xi = Yi ∪ {b} – for i = 2, . . . , n, and none for
i = 0, 1. Also deg(x) ≥ 1 for all x. This implies

Φ ≤ p(n− 1)

|Sb|

∼ pn

Cmqm · rnm
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by Lemma 3.19 and Corollary 2.14. The desired bound on the mixing time follows by
Theorem 4.11.

5 Further Directions

• For the first few values of m, the polynomial am(x) factor into two polynomials of
degree b1

2(3m+ 1)c and d1
2(3m+ 1)e that are irreducible over Z. Is this always the

case? Which factor contributes the largest real root rm? Is rm always inexpressible
in terms of radicals?

• The denominator det(I−xAm) = (−x)3m+1am(−1/x) in Theorem 2.7 is essentially
equal to the characteristic polynomial am(x), for which we found an explicit
formula in Proposition 2.5. Can we also find an explicit formula for the numerator?

• Can we generalize the results in this paper to monotone paths in wedges, as studied
by Janse van Rensburg, Prellberg, and Rechnitzer[JVRPR08]?

• The authors of [ABCG17a], ask whether the configuration space of not necessarily
monotone, but still self-avoiding paths in a strip of height m is still CAT(0).
In our context, we can ask about the growth rate constants – which have been
computed for m ≤ 2 by Dangovski and Lalov [DL17] – and the mixing times of
the corresponding Markov chains.

• Is there a natural set of moves that connects the monotone paths of length n in a
strip of height m, for which the Markov chain mixes in polynomial time?
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