
Coxeter submodular functions and

deformations of Coxeter permutahedra

Federico Ardila∗ Federico Castillo† Christopher Eur‡ Alexander Postnikov§

Abstract

We describe the cone of deformations of a Coxeter permutahedron, or equivalently, the nef
cone of the toric variety associated to a Coxeter complex. This family of polytopes contains
polyhedral models for the Coxeter-theoretic analogs of compositions, graphs, matroids, posets,
and associahedra. Our description extends the known correspondence between generalized per-
mutahedra, polymatroids, and submodular functions to any finite reflection group.

1 Introduction

The permutahedron Πn is the convex hull of the n! permutations of {1, . . . , n} in Rn. This polytopal
model for the symmetric group Sn appears in and informs numerous combinatorial, algebraic, and
geometric settings. There are two natural generalizations, which we now discuss.

1. Reflection groups: Instead of the group Sn, we may consider any finite reflection group W
with corresponding root system Φ ⊂ V . This group is similarly modeled by the Φ-permutahedron,
which is the convex hull of the W -orbit of a generic point in V . Most of the geometric and
representation theoretic properties of the permutahedron extend to this setting.

2. Deformations: We may deform the polytope by moving its faces while preserving their
directions. The resulting family of generalized permutahedra or polymatroids is special enough to
feature a rich combinatorial, algebraic, and geometric structure, and flexible enough to contain
polytopes of interest in numerous different contexts.

The goal of this paper is to describe the deformations of Φ-permutahedra or Φ-polymatroids,
thus generalizing these two directions simultaneously. We have two motivations:
• Coxeter combinatorics recognizes that many classical combinatorial constructions are inti-

mately related to the symmetric group, and have natural generalizations to the setting of reflection
groups. There are natural Coxeter analogs of compositions, graphs, matroids, posets, and clusters,
and we observe that they are all part of this framework of deformations of Φ-permutahedra.
• The Coxeter permutahedral variety XΦ is the toric variety associated to a crystallographic

Coxeter arrangement AΦ. The various embeddings of XΦ into projective spaces give rise to the nef
cone, a key object in the toric minimal model program. The nef cone of XΦ can be identified with
the cone of possible deformations of the Φ-permutahedron.
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A central result about generalized permutahedra in Rn is that they are in bijection with the
functions f : 2[n] → R that satisfy the submodular inequalities f(A) +f(B) ≥ f(A∪B) +f(A∩B).
Thus the field of submodular optimization is essentially a study of this family of polytopes. Our
main result extends this to all finite reflection groups:

Theorem 1.1. Let Φ be a finite root system with Weyl group W and R = W{λ1, . . . , λd} be the
set of W -conjugates of fundamental weights λ1, . . . , λd. The deformations of the Φ-permutahedron
are in bijection with the Φ-submodular functions h : R → R that satisfy the following inequalities:

For every element w ∈W , every simple reflection si, and corresponding fundamental weight λi,

h(wλi) + h(wsiλi) ≥
∑
j∈N(i)

−Aji h(wλj) (1)

where N(i) is the set of neighbors of i in the Dynkin diagram and A is the Cartan matrix.

These inequalities are very sparse: The right hand side of the Φ-submodular inequality has
1, 2, or 3 non-zero terms, depending on the number of neighbors of i in the Dynkin diagram of
Φ. For Φ = An−1 we get precisely the classic family of submodular functions. For Φ = Bn and
Φ = Cn we get precisely Fujishige’s notion of bisubmodular functions. More generally, we expect
Φ-submodular functions to be useful in combinatorial optimization problems with an underlying
symmetry of type Φ.

We prove that the inequalities (12) are precisely the facets of the cone SFΦ of Φ-submodular
functions. This allows us to enumerate them. On the other hand, the rays of the Φ-submodular
cone seem to be very difficult to describe, even when Φ = An−1.

We completely describe an important slice of SFΦ: the symmetric Φ submodular cone consisting
of the Φ-submodular functions that are invariant under the natural action of the Weyl group W .
When Φ is crystallographic, the lattice points in this cone correspond to the irreducible represen-
tations of the associated Lie algebra.

Theorem 1.2. The symmetric Φ-submodular cone SFsym
Φ is the simplicial cone generated by the

rows of the inverse Cartan matrix of Φ.

We conclude by characterizing which weight polytopes are indeformable; or equivalently, which
rays of the symmetric submodular cone SFsym

Φ are also rays of the submodular cone SFΦ. When
Φ is crystallographic, they are in bijection with the nodes of the Dynkin diagram whose edges are
simply laced; that is, have no labels greater than 3.

The paper is organized as follows. Sections 2 reviews some preliminaries on polytopes and their
deformations. Section 3 reviews some basic facts about root systems, reflection groups, and Coxeter
complexes. Section 4 introduces Coxeter permutahedra and some of their important deformations.
In Section 5 we describe the Φ-submodular cone SFΦ, which parameterizes the deformations of the
Φ-permutahedron. Section 6 studies weight polytopes: the deformations of the Φ-permutahedron
that are invariant under the action of the Weyl group WΦ; the fundamental weight polytopes
are especially important, and we study them in some detail. These polytope correspond to the
W -symmetric Φ-submodular functions. Section 7 describes and enumerates the facets of the Φ-
submodular cone, while Section 8 describes some of its rays. We conclude with some future research
directions in Section 9.
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2 Polytopes and their deformations

2.1 Polytopes and their support functions

Let U and V be two real vector space of finite dimension d in duality via a perfect bilinear form
〈·, ·〉 : U × V −→ R. A polyhedron P ⊂ V is an intersection of finitely many half-spaces; it is a
polytope if it is bounded. We will regard each vector u ∈ U as a linear functional on V , which gives
rise to the u-maximal face

Pu := {v ∈ P : 〈u, v〉 = max
x∈P
〈u, x〉}

whenever maxx∈P 〈u, x〉 is finite.
Let ΣP be the (outer) normal fan in U . For each `-codimensional face F of P , the normal fan

ΣP has a dual `-dimensional face

ΣP (F ) = {u ∈ U : Pu = F}.

The support |ΣP | of ΣP is the union of its faces. It equals U if P is a polytope.
A polyhedron P is simple if each vertex v ∈ P is contained in exactly d facets, or equivalently

if every cone in ΣP is simplicial in that its generating rays are linearly independent. Each relative
interior of a cone in a fan Σ is called an open face. Denote by Σ(`) the set of `-dimensional cones
of Σ. We call the elements of Σ(d) chambers and the elements of Σ(d − 1) walls; they are the
full-dimensional and 1-codimensional faces of Σ, respectively.

All fans we consider in this paper will be normal fans ΣP of polyhedra P , so from now on we
will assume that every fan Σ ⊂ U has convex support. We say that the fan Σ is complete if |Σ| = U
and projective if Σ = ΣP for some polytope P .

Given a fan Σ ⊂ U , we denote the space of continuous piecewise linear functions on Σ by

PL(Σ) := {f : |Σ| → R | f linear on each cone of Σ and continuous}.

It is a finite-dimensional vector space, since a piecewise linear function on Σ is completely deter-
mined by its restriction to the rays of Σ.

The support function of a polyhedron P is the element hP ∈ PL(ΣP ) defined by

hP (u) := max
v∈P
〈u, v〉 for u ∈ |ΣP |. (2)

Notice that we can recover P from hP uniquely by

P = {v ∈ V : 〈u, v〉 ≤ hP (u) for all u ∈ |ΣP |},

so a polyhedron and its support function uniquely determine each other.
Notice that the translation P + v of a polyhedron P has support function hP+v = hP + h{v},

where h{v} is the linear functional 〈·, v〉 (restricted to |ΣP |). Therefore translating a polytope P is
equivalent to adding a global linear functional to its support function hP .

We say two polyhedra P,Q are normally equivalent (or strongly combinatorially equivalent) if
ΣP = ΣQ. It two fans Σ and Σ′ have the same support, we say Σ coarsens Σ′ (or equivalently Σ′

refines Σ) if each cone of Σ is a union of cones in Σ′ (or equivalently, each cone of Σ′ is a subset of
a cone of Σ). We denote this relation by Σ � Σ′.
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2.2 Deformations of polytopes

While we will be primarily interested in deformations of polytopes, we first define them for polyhedra
in general. Let P be a polyhedron.

Definition 2.1. A polyhedron Q is a deformation of P if the normal fan ΣQ is a coarsening of the
normal fan ΣP .

When P is a simple polytope, it is shown in [35, Theorem 15.3] that we may think of the
deformations of P equivalently as being obtained by any of the following three procedures:
• moving the vertices of P while preserving the direction of each edge, or
• changing the edge lengths of P while preserving the direction of each edge, or
• moving the facets of P while preserving their directions, without allowing a facet to move

past a vertex.

Figure 1: The standard 3-permutahedron and one of its deformations.

By allowing certain facet directions to be unbounded in this deformation process, we obtain a
larger family of polyhedra:

Definition 2.2. A polyhedron Q is an extended deformation of P if the normal fan ΣQ coarsens
a convex subfan of ΣP .

In other words, an extended deformation Q of a polyhedron P is a deformation of a polyhedron
P ′ where P ′ = {v ∈ V : 〈v, u〉 ≤ hP (u) for all u ∈ |Σ′|} for some convex subfan Σ′ of ΣP .
Deformations are extended deformations with Σ′ = ΣP .

For polytopes, Minkowski sums provide yet another way of thinking about deformations. The
Minkowski sum of two polytopes Q and R in the same vector space V is the polytope

Q+R := {q + r : q ∈ Q, r ∈ R}.

The support function of Q+R is
hQ+R = hQ + hR

and the normal fan ΣQ+R is the coarsest common refinement of the normal fans ΣQ and ΣR [5,
Proposition 1.2]. Therefore Q is a deformation of Q+R. The next result shows that this is, up to
scaling, the only source of deformations. For this reason, deformations of polytopes are also often
called weak Minkowski summands.

Theorem 2.3 (Shepard [18]). If P and Q be polytopes, then Q is a deformation of P if and only
if there exist a polytope R and a scalar λ > 0 such that Q+R = λP .
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2.3 Deformations of zonotopes

Let A = {v1, . . . , vm} ⊂ V be a set of vectors and let H = {H1, . . . ,Hm} be the corresponding
hyperplane arrangement in U given by the hyperplanes Hi = {u ∈ U : 〈u, vi〉 = 0} for 1 ≤ i ≤ m.
The hyperplane arrangement H then determines a fan ΣH whose maximal cones are the closures
of the connected components of the arrangement complement.

Definition 2.4. Let A = {v1, . . . , vm} ⊂ V . The zonotope of A is the Minkowski sum

Z(A) := [0, v1] + · · ·+ [0, vm].

The relationship between Minkowski sums and coarsening of fans imply that the normal fan of
the zonotope Z(A) is equal to ΣH. We can describe the (extended) deformations of Z(A) easily as
follows.

Proposition 2.5. Let A be a finite set of vectors in V . A polyhedron P is an extended deformation
of Z(A) if and only if every face affinely spans a parallel translate of spanR(S) for some S ⊆ A. In
particular, a polytope is a deformation of the zonotope Z(A) if and only if every edge is parallel
to some vector in A.

Proof. We start with two easy observations. First, if two cones σ ⊆ σ′ have the same dimension,
then spanR(σ) = spanR(σ′). Second, if σ ∈ ΣH, then spanR(σ) =

⋂
i∈S Hi for some S ⊆ A.

Now, let P be an extended deformation of Z(A) and F a face of P . Then since ΣP coarsens
a convex subfan of ΣH, the cone ΣP (F ) has the same R-span as spanR(σ) for some σ ∈ ΣH. This
implies that the affine span of F is a parallel translate of spanR(S) for some S ⊆ A.

Conversely, assume every face of P satisfies the given condition. Then the fan ΣP has convex
support and for each maximal cone σ ∈ ΣP , one has spanR(σ) =

⋂
i∈S Hi for some S ⊆ A. We may

assume that ΣP is not full dimensional: If it is not, then it is contained in a linear space L =
⋂
j∈T Hj

for some T ⊂ A and equivalently P has a lineality space L⊥ := {v ∈ V : 〈v, u〉 = 0 for all u ∈ L},
so we may replace U with L, V with V/L⊥, and P with P/L⊥.) Now, since ΣP is full dimensional
in U , all of its walls are contained in some hyperplane Hi. Collecting these hyperplanes gives a
subarrangement H′ of H, whose fan ΣH′ restricted to |ΣP | is exactly ΣP , as desired.

Corollary 2.6. Let A be a finite set of vectors in V . If P is a(n extended) deformation of Z(A)
then any face of P is a(n extended) deformation of Z(A).

2.4 Deformation cones

Let P be a polyhedron in V and Σ = ΣP be its normal fan in U . In this section we will assume Σ
is full dimensional. This results in no loss of generality, as shown in the proof of Proposition 2.5.

For each deformation Q of P , the normal fan ΣQ coarsens Σ, and hence the support function
hQ defined in (2) is piecewise-linear on Σ. Thus, by identifying Q with its support function hQ, we
can define the following.

Definition/Theorem 2.7. [11, Theorems 6.1.5–6.1.7]. Let P be a polyhedron in V and Σ = ΣP

be its normal fan. The deformation cone of P (or of Σ) is

Def(P ) = Def(Σ) := {hQ |Q is a deformation of P}
= {hQ ∈ PL(Σ) | ΣQ � Σ}
= {h ∈ PL(Σ) | h is convex}.
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Remark 2.8. For each ray ρ ∈ Σ(1) let uρ be a vector in the direction of ρ. When Σ is a rational
fan, we let uρ be the first lattice point on the ray ρ. Let R = {uρ : ρ ∈ Σ(1)}. A piecewise linear
function on Σ is determined by its values on each uρ, so we may regard it as a function h : R → R.
Therefore we can think of PL(Σ) as a subspace of RR. We have

PL(Σ) ∼= RR if Σ is simplicial

since in this case the values h(uρ) may be chosen arbitrarily.

It is known that Def(Σ) is a polyhedral cone of dimension dimR PL(Σ). There is a wall-crossing
criterion, consisting of finitely many linear inequalities, to test whether a piecewise linear function
h ∈ PL(Σ) ⊆ RR is convex. We now review two versions of this criterion: a general one in Section
2.4.1, and a simpler one that holds for simple polytopes (or simplicial fans) in Section 2.4.2.

2.4.1 The wall crossing criterion

Definition 2.9. (Wall-crossing inequalities) Let τ ∈ Σ(d− 1) be a wall separating two chambers
σ and σ′ of Σ. Choose any d− 1 linearly independent rays ρ1, . . . , ρd−1 of τ and any two rays ρ, ρ′

of σ, σ′, respectively, that are not in τ . Up to scaling, there is a unique linear dependence of the
form

c · uρ + c′ · uρ′ =
d−1∑
i=1

ci · uρi (3)

with c, c′ > 0. To the wall τ we associate the wall-crossing inequality

IΣ,τ (h) := c · h(uρ) + c′ · h(uρ′)−
d−1∑
i=1

ci · h(uρi) ≥ 0, (4)

which a piecewise linear function h ∈ PL(Σ) must satisfy in order to be convex.

We will often write Iτ (h) instead of IΣ,τ (h) when there is no potential confusion in doing so.
We are mostly interested in cases where the fan Σ is complete and simplicial, where there is no
choice for ρ1, . . . , ρd−1 and ρ, ρ′. In general, since h is linear in σ and in σ′, different choices of
the d − 1 rays ρ1, . . . , ρd−1 and the two rays ρ, ρ′ give rise to equivalent wall-crossing inequalities.
Therefore the element Iτ ∈ PL(Σ)∨ is well-defined up to positive scaling. Notice that Iτ (h) = 0 if
and only if h is represented by the same linear functional at both sides on τ , which happens if and
only if τ is no longer a wall in the fan of lineality domains of h.

Lemma 2.10. (Wall-Crossing Criterion) [11, Theorems 6.1.5–6.1.7] Let Σ be a full dimensional
fan with convex support in U . A continuous piecewise linear function h ∈ PL(Σ) is a support
function of a polyhedron Q with ΣQ � Σ if and only if it satisfies the wall-crossing inequality
IΣ,τ (h) ≥ 0, as defined in (4), for each wall τ of Σ.

Sketch of Proof. To check whether h is convex, it suffices to check its convexity on a line segment
xy. Furthermore, it suffices to check this condition locally, on short segments xy where x and y are
in adjacent domains of lineality σ and σ′. If τ = σ∩σ′ is the wall separating σ and σ′ and z = xy∩τ ,
it is enough to check convexity between the extreme points x and y and their intermediate point
z. One then verifies, using the linearity of h in σ, that it is enough to check this when x and y are
rays of σ and σ′ respectively; but these are precisely the wall-crossing inequalities (4).
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We now describe the deformation cones for polytopes. Note that V embeds into PL(Σ) by
v 7→ 〈v, ·〉. The following is a rephrasing of [11, 4.2.12, 6.3.19–22].

Proposition 2.11. Let Σ be the normal fan of a polytope P . Say h ∼ h′ for two functions
h, h′ ∈ PL(Σ) if h − h′ is a globally linear function on U , or equivalently, if h − h′ ∈ V ⊂ PL(Σ).
Then:

• Def Cone: Def(Σ) is the polyhedral cone parametrizing deformations of P . It is the full
dimensional cone in PL(Σ) cut out by the wall-crossing inequalities IΣ,τ (h) ≥ 0 for each wall
τ of Σ. Its lineality space is the d-dimensional space V ⊂ PL(Σ) of global linear functions on
|Σ| = U , corresponding to the d-dimensional space of translations of P .

• Nef Cone: Nef(Σ) := Def(Σ)/V = Def(Σ)/ ∼ is the quotient of Def(Σ) by its lineality space
V of globally linear functions. It is a strongly convex cone in PL(Σ)/V parametrizing the
deformations of P up to translation.

Two things must be kept in mind when applying Lemma 2.10. It is not true that all the wall
crossing inequalities are facet defining for Def(Σ). Furthermore, it may happen that two walls give
the exact same inequality. Both situations are illustrated in [10, Example 2.13].

When Σ is a rational fan, it has an associated toric variety X(Σ) [11, Chapter 6.3], and Nef(Σ)
is the Nef (numerically effective) cone of the toric variety X(Σ). The Mori cone NE(Σ) of Σ is

NE(Σ) := Cone (IΣ,τ | τ ∈ Σ(d− 1)) ⊆ PL(Σ)∨.

The Wall-Crossing Criterion of Lemma 2.10 states that the Nef cone and the Mori cone are dual
cones in PL(Σ)/V and (PL(Σ)/V )∨, respectively; in the toric setting, this is [11, Theorem 6.3.22].
The structure of the strongly convex cones Nef(Σ) and NE(Σ) plays an important role in the
geometry of the minimal model program for associated toric varieties. For details in this direction
see [11, §15].

2.4.2 Batyrev’s criterion

When Σ is simplicial, Batyrev’s criterion ([11, Lemma 6.4.9]) offers another useful test for convexity,
and hence an alternative description of the deformation cone Def(Σ) = Def(P ) when Σ = ΣP . To
state it, we need the following notion.

Definition 2.12. Let Σ be a simplicial fan. A primitive collection F is a set of rays of Σ such that
any proper subset F ′ ( F forms a cone in Σ but F itself does not. In other words, the primitive
collections of a simplicial fan correspond to the minimal non-faces of the associated simplicial
complex.

Lemma 2.13. (Batyrev’s Criterion) [11, Theorem 6.4.9] Let Σ be a complete simplicial fan. A
piecewise linear function h ∈ PL(Σ) is in the deformation cone Def(Σ) (and hence the support
function of a polytope) if and only if

∑
ρ∈F

h(uρ) ≥ h

∑
ρ∈F

uρ


for any primitive collection F of rays of Σ.
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Remark 2.14. The material in this section can be rephrased in terms of triangulations of point
configurations (see [13, Section 5]). Deformation cones are instances of secondary cones for the
collection of vectors {uρ : ρ ∈ Σ(1)}. The Wall-Crossing criterion Lemma 2.10 is called the local
folding condition in [13, Theorem 2.3.20]. The secondary cones form a secondary fan whose faces
are in bijection with the regular subdivisions of the configuration. When the configuration is acyclic
(so it can be visualized as a point configuration), this secondary fan is complete, and it is the normal
fan of the secondary polytope. Our situation is more subtle because our vector configurations is not
acyclic, so the secondary fan is not complete, and there is no secondary polytope.

3 Reflection groups and Coxeter complexes

In this section we review the combinatorial aspects of finite reflection groups that we will need. We
refer the reader to [22] for proofs.

3.1 Root systems and Coxeter complexes

From now on, we will identify V with its own dual by means of a positive definite inner product
〈·, ·〉 : V × V → R. Any vector v ∈ V defines a linear automorphism sv on V by reflecting across
the hyperplane orthogonal to v; that is,

sv(x) := x− 2〈x, v〉
〈v, v〉

v. (5)

Definition 3.1. A root system Φ is a finite set of vectors in an inner product real vector space V
satisfying

(R0) span(Φ) = V ,

(R1) for each root α ∈ Φ, the only scalar multiples of α that are roots are α and −α, and

(R2) for each root α ∈ Φ we have sα(Φ) = Φ.

It is called crystallographic if it also satisfies

(R3) for each pair of roots α, β ∈ Φ we have that 2〈α, β〉/〈α, α〉 is an integer,

Each root α ∈ Φ gives rise to a hyperplane Hα = {x ∈ V : 〈α, x〉 = 0}. This set of hyperplanes
HΦ = {Hα : α ∈ Φ} is called the Coxeter arrangement. The Coxeter complex is the associated fan
ΣΦ, which is simplicial. We will often use these two terms interchangeably, and drop the subscript
Φ when the context is clear. Let sα ∈ GL(V ) be the reflection accross hyperplane Hα; we have

sα(x) = x− 2
〈α, x〉
〈α, α〉

α for x ∈ V.

Definition/Proposition 3.2. Let Φ be a finite root system spanning V and let W = WΦ be the
subgroup of GL(V ) generated by the reflections sα for α ∈ Φ. Then W is a finite group, called the
Weyl group of Φ.
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The combinatorial structure of the Coxeter complex ΣΦ is closely related to the algebraic
structure of the Weyl group WΦ, as we explain in the remainder of this section. Let us fix a
chamber (maximal cone) of ΣΦ to be the fundamental domain D; recall that it is simplicial. Then
the simple roots ∆ = {α1, . . . , αd} ⊂ Φ are the roots whose positive halfspaces minimally cut out
the fundamental domain; that is,

D = {x ∈ V : 〈αi, x〉 ≥ 0 for 1 ≤ i ≤ d}.

The simple roots form a basis for V , and we call d = dimV the rank of the root system Φ. The
positive roots are those that are non-negative combinations of simple roots; we denote this set by
Φ+ ⊂ Φ. We have that Φ = Φ+ t (−Φ+).

The Cartan matrix is the d× d integer matrix A whose entries are

Aij := 2
〈αi, αj〉
〈αi, αi〉

for 1 ≤ i, j ≤ d.

This is a very sparse matrix: each row or column of A contains at most four nonzero entries. For
most root systems, the entries of the Cartan matrix are integers.

There exist positive integers mij = mji such that AijAji = 4 cos2(π/mij). These entries form
the Cartan matrix of Φ. This information is more economically encoded in the Dynkin diagram
Γ(Φ), which has vertices {1, . . . , d}, and an edge labelled mij between i and j whenever mij > 2.
Labels equal to 3 are customarily omitted.

The direct sum of two root systems Φ1 and Φ2, spanning V1 and V2 respectively, is the root
system Φ1 ⊕ Φ2 := {(α, 0) ∈ V1 ⊕ V2 : α ∈ R1} ∪ {(0, β) ∈ V1 ⊕ V2 : β ∈ R2} which spans V1 ⊕ V2.
An irreducible root system is a root system that is not a non-trivial direct sum of root systems.
The connected components of the Dynkin diagram Γ(Φ) correspond to the irreducible root systems
whose direct sum is Φ.

Theorem 3.3. [22, §2] The irreducible root systems can be completely classified into four infinite
familiesAd, Bd, Cd, Dd occurring in every dimension, the exceptional types E6, E7, E8, F4, G2, H3, H4

in the dimensions indicated by their subscripts, and I2(m) for m ≥ 3. Their Dynkin diagrams are:

Ad :

Bd, Cd :
4

Dd :

F4 :
4

G2 :
6

I2(m) :
m

m ≥ 3 and m 6= 6.

E6 :

E7 :

E8 :

H3 :
5

H4 :
5
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Example 3.4. In particular, the classical root systems are

Ad−1 = {±(ei − ej) : 1 ≤ i 6= j ≤ d}
Bd = {±ei ± ej : 1 ≤ i 6= j ≤ d} ∪ {±ei : 1 ≤ i ≤ d}
Cd = {±ei ± ej : 1 ≤ i 6= j ≤ d} ∪ {±2ei : 1 ≤ i ≤ d}
Dd = {±ei ± ej : 1 ≤ i 6= j ≤ d}

where {e1, . . . , ed} is the standard basis of Rd. Notice that the root system Ad−1 spans the subspace
Rd0 := {x ∈ Rd : x1 + · · ·+xd = 0} of Rd. For a suitable choice of fundamental chamber, the simple
roots of the classical root systems are

∆Ad−1
= {e1 − e2, e2 − e3, . . . , ed−1 − ed}

∆Bd
= {e1 − e2, e2 − e3, . . . , ed−1 − ed, ed}

∆Cd
= {e1 − e2, e2 − e3, . . . , ed−1 − ed, 2ed}

∆Dd
= {e1 − e2, e2 − e3, . . . , ed−1 − ed, ed−1 + ed}

α1

α2

α3

λ1

λ2

λ3

s1

s2

s3

Figure 2: (a) The root system C3 consists of 24 roots, which are the vertices and edge midpoints
of a regular octahedron. The simple roots α1, α2, α3 are emphasized. (b) The Coxeter complex of
C3 has 48 chambers. One of them, the fundamental domain, is emphasized; its rays contain the
fundamental weights λ1, λ2, λ3, and its walls determine the simple reflections s1, s2, s3.

Definition/Proposition 3.5. If Φ is a root system, the coroot α∨ of a root α is defined to be

α∨ =
2

〈α, α〉
α.

The coroots form the dual root system Φ∨. We have Φ∨∨ = Φ.

Notice that the reflection across αi can be rewritten simply as

si(x) = x− 〈x, α∨i 〉αi (6)
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Also notice that the Cartan matrix can be rewritten as

Aij = 〈α∨i , αj〉. (7)

This implies that the Cartan matrix of the dual root system Φ∨ is AT .

Definition/Proposition 3.6. Let the fundamental weights (λ1, . . . , λd) form the basis of V dual
to the simple coroots (α∨1 , . . . , α

∨
d ); that is, 〈λi, α∨j 〉 = δij . Let the fundamental weight conjugates

or rays of Φ be
R = RΦ := W{λ1, . . . , λd}.

Each ray in RΦ can be expressed as wλi for a unique i; the choice of w is not unique. There is
exactly one ray of RΦ on each ray of the Coxeter arrangement HΦ, explaining our terminology.

Similarly, let the fundamental coweights (λ∨1 , . . . , λ
∨
d ) form the basis of V dual to the simple

roots (α1, . . . , αd). Clearly λ∨i = 1
2〈αi, αi〉λi.

Let e1, . . . , ed be an orthonormal basis for Rd. Let eS :=
∑

i∈S ei for S ⊆ [d] and 1 = e[d] =

(1, . . . , 1) ∈ Rd. For x ∈ Rd define x := x− (x1 + · · ·+ xd)/d · 1 ∈ Rd0.

Example 3.7. The fundamental weights of the classical root systems are:

Ad−1 : {e1, e1 + e2, . . . , e1 + · · ·+ ed−1}
Bd : {e1, e1 + e2, . . . , e1 + · · ·+ ed−1, (e1 + · · ·+ ed)/2}
Cd : {e1, e1 + e2, . . . , e1 + · · ·+ ed−1, e1 + · · ·+ ed}
Dd : {e1, e1 + e2, . . . , e1 + · · ·+ ed−2, (e1 + · · ·+ ed−1 − ed)/2, (e1 + · · ·+ ed−1 + ed)/2}

In light of (7), the transition matrix between the roots and the fundamental weights is the
transpose of the Cartan matrix:

αj =
d∑
i=1

Aijλi and λj =
d∑
i=1

A−1
ij αi for 1 ≤ j ≤ d, (8)

and we have
〈λ∨i , λj〉 = A−1

ij . (9)

We say Φ is simply laced if it is of type ADE; that is, its Dynkin diagram has no labels greater
than 3. These root systems are self dual; there is no distinction between roots and coroots, or
between weights and coweights.

3.2 Weyl groups, parabolic subgroups, and the geometry of the Coxeter complex

Let Φ be a finite root system spanning V and let W = WΦ be its Weyl group; recall that it is finite.
Let ∆ = {α1, . . . , αd} be a choice of simple roots of Φ, and let si = sαi be the reflection across the
hyperplane Hαi orthogonal to αi for 1 ≤ i ≤ d.

Proposition 3.8. The Weyl group W of the root system Φ is generated by the set of simple
reflections S := {s1, . . . , sd}, with presentation given by the Coxeter matrix as follows:

W = 〈s1, . . . , sd | (sisj)
mij = e for 1 ≤ i, j ≤ d)〉 (10)
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Example 3.9. The Weyl groups of the classical root systems are:

WAd−1
= {permutations of [d]}

WBd
= WCd

= {signed permutations of [d]}
WDd

= {evenly signed permutations of [d]}.

As matrix groups, WAd−1
is the set of d× d permutation matrices, WBd

= WCd
is the set of d× d

“generalized permutation matrices” whose non-zero entries are 1 or −1, and WDd
is the subgroup

of WBd
whose matrices involve an even number of −1s.

The action of W on V induces an action on the Coxeter complex ΣΦ. Every face of ΣΦ is
W -conjugate to a unique face of the fundamental domain. This action behaves especially well on
the top-dimensional faces:

Proposition 3.10. The Weyl group W acts regularly on the set ΣΦ(d) of chambers of the Coxeter
arrangement; that is, for any two chambers σ and σ′ there is a unique element w ∈ W such that
w · σ = σ′. In particular, the chambers of the Coxeter arrangement are in bijection with W .

The previous proposition implies that a different choice wD of a fundamental domain (where
w ∈W ) gives rise to a new set of simple roots w∆ that is linearly isomorphic to the original set ∆
of simple roots, since W acts by isometries. It follows that the presentation for the Weyl group in
(10) and the Cartan matrix A are independent of the choice of fundamental domain D.

The lower dimensional faces of ΣΦ correspond to certain subgroups of W and their cosets. The
parabolic subgroups of W are the subgroups

WI := 〈sα : α ∈ I〉 ⊆W for each I ⊆ ∆.

They are in bijection with the faces of the fundamental domain, where WI is mapped to the face

CI := {x ∈ D : 〈x, α〉 = 0 for all α ∈ I, 〈x, α〉 ≥ 0 for all α ∈ ∆\I}

The parabolic cosets are the cosets of parabolic subgroups.

Proposition 3.11. The faces of the Coxeter complex are in bijection with the parabolic cosets of
W , where the face F is labeled with the parabolic coset {w : F ⊆ wD}. More explicitly, the face
CI of the fundamental domain is labeled with the parabolic subgroup WI , and its W -conjugate
vCI is labeled with the coset vWI for v ∈W .

Two special cases, stated in the following corollaries, are especially important to us.

Corollary 3.12. The walls of the Coxeter complex are labeled by the pairs {w,wsi} = wW{i} for
w ∈ W and si ∈ S. The wall labeled {w,wsi} separates the chambers labeled w and wsi. This
correspondence is bijective, up to the observation that wW{i} = wsiW{i}.

Corollary 3.13. The d rays of the fundamental domain are spanned by the fundamental weights
{λ1, . . . , λd}, and the rays of the Coxeter complex are spanned by the fundamental weight conjugates
R = W{λ1, . . . , λd}. These correspondences are bijective.
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Note that the faces of the fundamental chamber are given by

CI = D∩
( ⋂
i∈I

Hαi

)
= cone(λi | i /∈ I) for I ⊆ ∆.

The parabolic subgroups arise as isotropy groups for the action of W on V [22, Theorem 1.12,
Proposition 1.15]:

Theorem 3.14. The isotropy group of the face CI is precisely the parabolic subgroup WI . More
generally, if V ′ is any subset of V then the subgroup of W fixing V ′ pointwise is generated by those
reflections sα whose normal hyperplane Hα contains V ′.

Let [±d] = {1, 2, . . . , d,−1,−2, . . . ,−d}. Say that a subset S of [±d] is admissible if it is
nonempty and j ∈ S implies that −j /∈ S. In this case, write S ⊆ [±d], and let eS = eA− eB where
A = {a ∈ [d] : a ∈ S} and B = {b ∈ [d] : −b ∈ S}.

Example 3.15. For the classical root systems, the rays or fundamental weight conjugates are:

RAd−1
= {eS : ∅ ( S ( [d]}

RBd
= {eS : admissible S v [±d] , |S| ≤ d− 1} ∪

{1

2
eS : admissible S v [±d] , |S| = d

}
RCd

= {eS : admissible S v [±d]}

RDd
= {eS : admissible S v [±d] , |S| ≤ d− 2} ∪

{1

2
eS : admissible S v [±d] , |S| = d

}
.

4 Coxeter permutahedra and some important deformations

One of the main goals of this paper is to describe the cone of deformations of the Φ-permutahedron;
we will do so in Theorem 5.2. Before we do that, we motivate that result by discussing some notable
examples of generalized Φ-permutahedra in this section.

Throughout this section, let Φ be a root system and W be its Weyl group. The following
definitions will play an important role.

Definition 4.1. Define the length l(w) of an element w ∈W to be the smallest k for which there
exists a factorization w = si1 · · · sik into simple reflections si1 , . . . , sik ∈ S.
• The Bruhat order on W is the poset defined by decreeing that w < wsα for every element w ∈W
and reflection sα with α ∈ Φ such that l(w) < l(wsα).
• The weak order on W is the poset defined by decreeing that w < wsi for every element w ∈ W
and simple reflection si with αi ∈ ∆ such that l(w) < l(wsi).

4.1 The Coxeter permutahedron

Definition/Proposition 4.2. The standard Coxeter permutahedron of type Φ or Φ-permutahedron
is the Minkowski sum of the roots of Φ; that is, the zonotope of the Coxeter arrangement Hφ given
by

ΠΦ :=
∑
α∈Φ

[0, α]

= 2 conv{w · δ : w ∈W},
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where δ = 1
2(
∑

α∈Φ+ α) = λ1 + · · ·+ λd is the sum of the fundamental weights.

The 1-skeleton of the Φ-permutahedron can be identified with the Hasse diagram of the weak
order on W : vertices wδ and w′δ are connected by an edge if and only if w′ = wsi for some simple
reflection si, and in that situation w < w′ in the weak order if and only if 〈wδ, δ〉 > 〈w′δ, δ〉.

Definition 4.3. A generalized Coxeter permutahedron or Coxeter polymatroid is a deformation of
the Φ-permutahedron ΠΦ; that is, a polytope whose normal fan coarsens the Coxeter complex ΣΦ.

We collect the results of this section in the following proposition. The following subsections
include precise definitions and further details.

Proposition 4.4. The following families of polytopes are deformations of Coxeter permutahedra:
1. the weight polytopes describing the representations of semisimple Lie algebras [16],
2. the Coxeter graphic zonotopes of Zaslavsky [47],
3. the Coxeter matroids of Gelfand–Serganova [7, 17],
4. the Coxeter root cones of Reiner [39] and Stembridge [43], and
5. the Coxeter associahedra of Hohlweg-Lange-Thomas [19].

These families of polyhedra model the Coxeter-theoretic analogs of compositions, graphs, matroids,
posets, and clusters, respectively.

4.2 Weight polytopes

Definition 4.5. The weight polytope PΦ(x) of a point x ∈ V is the convex hull of the orbits of x
under the action of the Weyl group W :

PΦ(x) := conv{w · x : w ∈W}.

These polytopes are of fundamental importance in the theory of Lie algebras1. [16, 23, 24] A
semisimple complex Lie algebra g has an associated root system Φ which controls its representation
theory. The irreducible representations L(λ) of g are in bijection with the points λ ∈ D ∩Λ, where
D is the dominant chamber of the root system Φ and Λ is the weight lattice generated by the
fundamental weights. The representation L(λ) decomposes as a direct sum of weight spaces L(λ)µ
which are indexed precisely by the lattice points µ in the weight polytope PΦ(x).

Proof of Proposition 4.4.1. Every edge of PΦ(x) is parallel to a root in Φ by [26, Lemma 4.13], so
Proposition 2.5 implies that weight polytopes are generalized Φ-permutahedra.

Remark 4.6. An important special case of this construction is the root polytope of Φ, which is the
convex hull of the roots.

4.3 Coxeter graphic polytopes

Definition 4.7. For any subset Ψ ⊆ Φ+ of positive roots, we define the Coxeter graphic zonotope
to be the Minkowski sum

Z(Ψ) =
∑
α∈Ψ

[0, α].

1when Φ is crystallographic
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In type An−1, a subset Ψ of Φ+ = {ei − ej : 1 ≤ i < j ≤ n} corresponds to a graph GΨ with
vertex set [n] and an edge connecting i and j whenever ei − ej ∈ Ψ. The definition above is the
usual definition of the graphic zonotope of GΨ.

Proof of Proposition 4.4.2. The normal fan of Z(Ψ) is given by the subarrangement HΨ ⊆ HΦ

consisting of the normal hyperplanes to the roots in Ψ. This is clearly a coarsening of ΣΦ, so
Coxeter graphic zonotopes are indeed generalized Φ-permutahedra.

4.4 Coxeter matroids

Gelfand and Serganova [17] introduced Coxeter matroids, a generalization of matroids that arises
in the geometry of homogeneous spaces G/P . The book [8] offers a detailed acount; here we give
a brief sketch. Throughout this subsection, fix a parabolic subgroup WI of the Weyl group W
generated by I.

Let λI =
∑

i/∈I λi. As we will see in Proposition 6.2, the quotient W/WI is in bijection with the
set of vertices of the weight polytope Q(W/WI) := PΦ(λI). The coset w ∈ W/WI corresponds to
the vertex δI(w) = wλI , which is independent of the choice of w ∈ w because λI ∈ CI .

Definition/Theorem 4.8. [8, Theorem 6.3.1] For each subset M ⊆W/WI define the polytope

Q(M) := conv{δI(w) | w ∈M} ⊆ Q(W/WI). (11)

Then M is a Coxeter matroid if and only if every edge of Q(M) is parallel to a root in Φ.

We call this a theorem because Coxeter matroids are usually defined differently, in terms of
a Coxeter analog of the greedy algorithm; but this alternative characterization will best suit our
purposes. If M is a Coxeter matroid, we call Q(M) its base polytope or Coxeter matroid polytope.

Proof of Proposition 4.4.3. Theorem 4.8 and Proposition 2.5 readily imply that Coxeter matroid
polytopes are generalized Φ-permutahedra.

In type An−1, when W = Sn and WI = 〈s1, . . . , sk−1, sk+1, . . . , sn−1〉 is a maximal parabolic
subgroup, the quotient W/WI is in bijection with the collection of k-subsets of [n], and a (W,WI)-
matroid is precisely a matroid on [n] of rank k.

4.5 Coxeter root cones

Definition 4.9. For any subset Ψ ⊆ Φ of roots we define the Coxeter root cone

cone(Ψ) =

{∑
α∈Ψ

cαα : cα ≥ 0 for all α ∈ Ψ

}

Coxeter root cones are dual to the Coxeter cones of Stembridge [43]. Furthermore, pointed
Coxeter root cones are in one-to-one correspondence with Reiner’s parsets [39]. In type A, these
families are in bijection with preposets and posets on [n], respectively. This correspondence sends
cone(Ψ) to the (pre)poset given by i < j if ei − ej ∈ cone(Ψ).

Proof of Proposition 4.4.5. Every face of cone(Ψ) is generated by roots, so its dual face in the
normal fan Σcone(Ψ) is cut out by hyperplanes in the Coxeter arrangement. Therefore any Coxeter
root cone is an extended Coxeter generalized permutahedron.
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4.6 Coxeter associahedra

A Coxeter element c of W is the product of the simple reflections of W taken in some order. Reading
[37] introduced the Cambrian fan Fc, a complete fan with rich combinatorial properties and close
connections with the theory of cluster algebras [38]. Hohlweg, Lange, and Thomas constructed
the Coxeter associahedron Assoc(W ), a polytope whose normal fan is the Cambrian fan Fc; for a
precise definition, see [20].

In type A, a particular choice of Coxeter element gives rise to Loday’s realization of the as-
sociahedron, a polytope with Cn = 1

n+1

(
2n
n

)
vertices discovered by Stasheff in homotopy theory.

[28] In type B, a particular choice of Coxeter element gives Bott and Taubes’s cyclohedron, which
originally arose in knot theory. [9]

Proof of Proposition 4.4.5. This follows from the fact that the Cambrian fan Fc is a coarsening of
the Coxeter fan. [38]

5 Deformations of Coxeter permutahedra: the Φ-submodular cone

Our next goal is to describe the deformation cone of a Coxeter permutahedron. Throughout this
section, we let Φ be a fixed finite root system of dimension d. Let W be the corresponding Weyl
group, Σ = ΣΦ the Coxeter complex, D a fixed choice of a fundamental chamber, A the Cartan
matrix, and R = W{λ1, . . . , λd} the set of conjugates of the fundamental weights {λ1, . . . , λd}.

Recall that a piecewise linear function on a fan is uniquely determined by its restriction to the
rays of the fan. Since each ray of the Coxeter complex ΣΦ contains a conjugate to a fundamental
weight, and this correspondence is bijective, we may identify the space PL(ΣΦ) of piecewise-linear
functions on ΣΦ, with the space RR of functions from R to R.

5.1 Φ-submodular functions

Definition 5.1. A function h : R → R is Φ-submodular if the following equivalent conditions hold:
• h is in the deformation cone Def(ΣΦ) of the Coxeter complex of Φ.
• When regarded as a piecewise linear function in PL(ΣΦ), the function h is convex.
• The polytope Ph := {v ∈ V : 〈λ, v〉 ≤ h(λ) for all λ ∈ R} is a generalized Φ-permutahedron.

We call Def(ΣΦ) ⊂ RR the Φ-submodular cone.

Recall that, thanks to Theorem 2.7, this correspondence between Φ-submodular functions h and
generalized Φ-permutahedra Ph is a bijection. Furthermore, every defining inequality 〈λ, v〉 ≤ h(λ)
of the polytope Ph is tight, in the sense that h(λ) = max

v∈Ph

〈λ, v〉 for all λ ∈ R.

We now describe the Φ-submodular cone.

Theorem 5.2. A function h : R → R is Φ-submodular if and only if the following two equivalent
sets of inequalities hold:

1. (Local Φ-submodularity) For every element w ∈ W of the Weyl group and every simple
reflection si and corresponding fundamental weight λi,

h(wλi) + h(wsiλi) ≥
∑
j∈N(i)

−Aji h(wλj) (12)

where A is the Cartan matrix and N(i) is the set of neighbors of i in the Dynkin diagram.
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2. (Global Φ-submodularity) For any two conjugates of fundamental weights λ, λ′ ∈ R

h(λ) + h(λ′) ≥ h(λ+ λ′) (13)

where h is regarded as a piecewise-linear function on ΣΦ.

Remark 5.3. The sparseness of the Cartan matrix implies that the local Φ-submodular inequalities
(12) have at most three terms on the right hand side, given by the neighbors of i in the Dynkin
diagram.

Remark 5.4. To interpret the global Φ-submodular inequalities (13) directly in terms of the
function h ∈ RR , we need to find the minimal cone C of ΣΦ containing λ + λ′. If RC = C ∩R is
the set of conjugates of fundamental weights in the cone C, we can write λ+ λ′ =

∑
w∈RC

cww for
a unique choice of non-negative constants cw, and (13) means that h(λ) + h(λ′) ≥

∑
w∈RC

cwh(w).
In particular, (13) holds trivially when λ and λ′ span a face of ΣΦ.

Proof of Theorem 5.2.1. We know that the deformation cone Def(ΣΦ) is given by the wall crossing
inequalities of Lemma 2.10. We first compute them for the walls of the fundamental domain D.

Let us apply Definition 2.9 to the wall Hi = Hαi of D orthogonal to the simple root αi, which
separates the chambers D and siD. Notice that the only ray of D that is not on the wall Hi is
precisely the one spanned by the fundamental weight λi. Similarly, the only ray of siD that is not
on Hi is the one spanned by siλi ∈ R. Therefore we need to find the coefficients such that

cλi + c′siλi =
∑
i 6=j

cjλj .

Since λi and siλi are symmetric across the wall Hi, the coefficients c and c′ in the equation above
are equal, and we may set them both equal to 1. To compute the coefficient cj for j 6= i, let us
take the inner product of both sides with α∨j . We obtain that

〈siλi, α∨j 〉 = cj ,

keeping in mind that the bases {α∨1 , . . . , α∨d } and {λ1, . . . , λd} are dual. Thus

cj =
〈
λi − 〈λi, α∨i 〉αi , α∨j

〉
= 0− 〈αi, α∨j 〉 = −Aji.

It follows that
λi + siλi =

∑
i 6=j
−Ajiλj , (14)

so the wall-crossing inequality is

h(λi) + h(siλi) ≥
∑
j 6=i
−Ajih(λj). (15)

It remains to observe that Aji = 0 unless i and j are neighbors in the Dynkin diagram.
More generally, consider the wall-crossing inequality for the wall wHi, which separates chambers

wD and wsiD. The rays of these chambers that are not on the wall are wλi and wsiλi, and

wλi + wsiλi =
∑
j∈N(i)

−Aji wλj .

by (14). Therefore the wall-crossing inequalities are indeed the ones given in (12).
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Proof of Theorem 5.2.2. Since the Coxeter complex is simplicial, the deformation cone Def(ΣΦ) is
also given by Batyrev’s condition as described in Lemma 2.13. To apply it, we need to understand
the primitive collections of rays in ΣΦ.

The Coxeter complex ΣΦ is flag, in the sense that a set of rays R1, . . . , Rk forms a k-face of Σ
if and only if every pair of them forms a 2-face of Σ. [1, p. 29] This is equivalent to saying that the
primitive collections are the pairs that do not form a 2-face. The desired result follows.

5.2 The classical types: submodular, bisubmodular, disubmodular functions

For the classical root systems, these notions are of particular combinatorial importance. Let us
now describe them, keeping in mind that fundamental weights and their conjugates have simple
combinatorial interpretations, as explained in Example 3.15.

1. (Type A: submodular functions) For f : RAd−1
→ R, let us write f(S) := f(eS) for ∅ ( S ( [d]

and f(∅) = f([d]) = 0. The Ad−1-submodular inequalities of Theorem 5.2 say

local: f(Sa) + f(Sb) ≥ f(S) + f(Sab) for S ⊆ [d], {a, b} ⊆ [d]− S

global: f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) for S, T ⊆ [d]

where for simplicity we omit brackets, for instance, denoting Sab := S ∪ {a, b}.
The only difference with the classical notion of submodular functions is the additional condition

that f([d]) = 0. In fact, the submodular functions F : 2[d] → R are precisely those of the form
F (S) = f(eS) + α|S| for a Φ-submodular function f and a constant α. Geometrically, we go from
F to f by translating the generalized permutahedron along the 1 direction so that it lies on the
hyperplane x1 + · · ·+ xd = 0.

2. (Type B and C: bisubmodular functions) The submodular inequalities of type Bd and Cd are
equivalent since they correspond to the same fan; we focus on Cd. For f : RCd

→ R, let us write
f(S) = f(eS) for any admissible S v [±d]. The Cd-submodular inequalities of Theorem 5.2 say

local: f(Sa) + f(Sb) ≥ f(S) + f(Sab) for S v [±d], |S| ≤ d− 2, {a, b} @ [±d]− S
f(Sa) + f(Sa) ≥ 2f(S) for S v [±d], |S| = d− 1, {a} @ [±d]− S

global: f(S) + f(T ) ≥ f(S u T ) + f(S t T ) for S, T v [d]

where S u T = S ∩ T and S t T = {e ∈ S ∪ T : −e /∈ S ∪ T} are admissible. This is precisely the
classical notion of bisubmodular functions from optimization. [15]

3. (Type D: disubmodular functions) For f : RDd
→ R, let us write f(S) = f(eS) for any

admissible S v [±d] of size at most d − 2, and g(S) = f(1
2eS) for any admissible S v [±d] of size

d. The local Dd-submodular inequalities of Theorem 5.2 say that for any admissible S v [±d]

f(Sa) + f(Sb) ≥ f(S) + f(Sab) for |S| ≤ d− 4, {a, b} v [±d]− S,
f(Sa) + f(Sb) ≥ f(S) + g(Sabc) + g(Sabc) for |S| = d− 3, {a, b, c} v [±d]− S
g(Sab) + g(Sab) ≥ f(S) for |S| = d− 2, {a, b} v [±d]− S

The global Dd-submodular inequalities can similarly be derived in a case-by-case analysis. It
is easier to notice that a function that is piecewise linear on the Coxeter arrangement Dd is also
piecewise linear on the Coxeter arrangement Bd, where its convexity can be checked more cleanly.
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Accordingly, if f and g are defined on the admissible subsets of [d] sizes at most d− 2 and equal to
d, respectively, define h on all admissible subsets by

h(S) =


f(S) if |S| ≤ d− 2

g(Sa) + g(Sa) if |S| = d− 1 and a /∈ S
2g(S) if |S| = d

Then (f, g) is disubmodular if and only if h is bisubmodular; that is,

h(S) + h(T ) ≥ h(S u T ) + h(S t T ) for S, T v [d].

This seems to be a new notion, which we call disubmodular function. We expect it to be useful in
combinatorial optimization problems with underlying symmetry of type D.

4. (Exceptional types) It would be very interesting to find applications of these notions for the
exceptional Coxeter groups. For instance, might submodular functions of type E shed new light
on problems with an underlying symmetry of type E6, E7, or E8?

6 The symmetric case: weight polytopes and the inverse Cartan matrix

The action of the Weyl group W on the Coxeter complex naturally gives rise to actions of W on
the vector space PL(ΣΦ) and the deformation cone Def(ΣΦ) ⊂ PL(ΣΦ). This section is devoted to
studying the deformations of the Coxeter permutahedron and the Coxeter submodular functions
that are invariant under this action.

6.1 Weight polytopes

Recall that the weight polytope PΦ(x) of a point x ∈ V is

PΦ(x) := conv{w · x : w ∈W}.

These are precisely the generalized Coxeter permutahedra that are invariant under the action of
the Coxeter group. In this section we study them in more detail, collecting some properties that
will play an important role in what follows.

Definition 6.1. The fundamental weight polytopes or Φ-hypersimplices of the root system Φ are
the d weight polytopes PΦ(λ1), . . . , PΦ(λd) corresponding to the fundamental weights of Φ.
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4 4 4

Figure 3: The three fundamental weight polytopes of C3; compare with Figure 2.b.

Since W acts transitively on the chambers of the Coxeter complex ΣΦ, in the study of the
weight polytopes PΦ(x) it is sufficient to consider only points x in the fundamental domain D. For
those points, the combinatorial type of the weight polytope PΦ(x) is determined by the face of D
containing x in its interior:

Proposition 6.2. [22, §1.12] For x in the interior of CI , the chambers of the normal fan of PΦ(x)
are in bijection with W/WI . The chamber of ΣPΦ(x) corresponding to the coset wWI is the union
of the |WI | chambers of the Coxeter complex ΣΦ labeled wwI for wI ∈WI .

The following special cases of weight polytopes PΦ(x) will be important to us.

Corollary 6.3. 1. When x is the sum of the positive roots, PΦ(x) is precisely the standard
Φ-permutahedron ΠΦ.

2. When x is in the interior of the fundamental chamber D, PΦ(x) is normally equivalent to ΠΦ.

3. When x is in the interior of face C[d]\I of D, the polytope PΦ(x) has positive edge length on
the edge between wx and wsix for each w ∈W and i ∈ I, and zero everywhere else. In other
words, its normal fan is obtained from ΣΦ by only keeping the walls between the chambers
wD and wsiD for each w ∈W and i ∈ I.

Proof. 1. This follows directly from the definitions.

2. and 3. The normal fan of PΦ(x) is obtained from the Coxeter complex ΣΦ by keeping only the
W -translates of the walls of the fundamental chamber D that do not contain x; that is, the walls
between chambers D and siD for each i ∈ I.

We can describe any weight polytope as a Minkowski sum of the fundamental weight polytopes
as follows.

Proposition 6.4. Let λ1, . . . , λd be a set of fundamental weights of Φ and a1, . . . , ad ≥ 0. Then

PΦ

(
d∑
i=1

aiλi

)
=

d∑
i=1

aiPΦ(λi)

In particular, for any x is in the interior of C[d]\I , the weight polytope PΦ(x) is normally equivalent
to the Minkowski sum

∑
i∈I PΦ(λi) = PΦ(λI).
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Proof. Let us first prove the second statement. By Corollary 6.3, the normal fan Σ of PΦ(x) is the
coarsest common refinement of the fans Σi for i ∈ I, where Σi = ΣPΦ(λi) is obtained from ΣΦ by
only keeping the walls between chambers wD and wsiD.

Now let us call the two polytopes in the equation P and Q, respectively. For any x ∈ D, the
x-maximal face of PΦ(λi) is its vertex λi. Therefore the x-maximal face of Q is

∑
aiλi, which is

thus a vertex of Q. By W -symmetry, w(
∑
aiλi) is also a vertex of Q for every w ∈W . Since every

vertex of P is a vertex of Q, and P and Q are normally equivalent by the previous paragraph, we
must have P = Q.

We now establish some lemmas about the edges and 2-faces of the fundamental weight polytopes.
By symmetry, it is sufficient to describe the local geometry of PΦ(λi) around λi.

λ2

s2λ2

s3s2λ2

s1s2λ2

s1s3s2λ2

Figure 4: The neighbors of λ2 in PC3(λ2) are ws2λ2 for w ∈W13/W∅ = {e, s1, s3, s1s3}.

Lemma 6.5. The edges containing the vertex λi in the fundamental weight polytope PΦ(λi) are
in bijection with W[d]−i/W[d]−i−N(i). More precisely:

1. The vertices adjacent to λi in PΦ(λi) are those of the form usiλi for u ∈W[d]−i.

2. For each u ∈W[d]−i, the vector from λi to usiλi is −uα∨i , a negative multiple of uαi.

3. For u, v ∈W[d]−i we have usiλi = vsiλi if and only if u−1v ∈W[d]−i−N(i).

Proof. 1. Recall that λi is in the interior of the ray C[d]−i, and its stabilizer is W[d]−i. By Corollary
6.3.3, the vertices λi and wλi are adjacent when we can find u ∈ W such that, without loss of
generality, λi = uλi and wλi = usiλi. The first condition says that u ∈W[d]−i and the second says
that siu

−1w ∈ W[d]−i. Combined, they are equivalent to the condition that w ∈ W[d]−isiW[d]−i.
Therefore we have wλi ∈ (W[d]−isiW[d]−i)λi = (W[d]−isi)λi, as desired.

2. Since u ∈W[d]−i stabilizes λi, we have

usiλi − λi = usiλi − uλi = u(siλi − λi) = u(−α∨i ).
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3. We have usiλi = vsiλi if and only if siv
−1usi ∈W[d]−i; that is, u−1v ∈ siW[d]−isi. The result

then follows from the claim that

W[d]−i ∩ (siW[d]−isi) = W[d]−i−N(i),

which we now prove.
⊇: If w ∈W[d]−i−N(i) then w ∈W[d]−i; and since w and si commute, w = siwsi ∈ siW[d]−isi.
⊆: If w is in W[d]−i and siW[d]−isi, which are the stabilizers of the faces C[d]−i and siC[d]−i of

D, respectively, then it stabilizes λi and siλi. Therefore it also stabilizes

λi + siλi = −
∑
j 6=i

Ajiλj , (16)

using (14). But this is an interior point of C[d]−i−N(i) since Aji < 0 for j ∈ N(i) − i and Aji = 0
for j ∈ [d]−N(i)− i, so its stabilizer is W[d]−i−N(i) as desired.

Recall that the vertex figure P/v of a polytope P at a vertex v is the intersection of P with
a hyperplane H separating v from the other vertices. The precise polytope P/v depends on the
choice of H, but different choices of H give rise to combinatorially equivalent polytopes. More
precisely, there is an order preserving bijection between the faces of P containing v and the faces
of P/v. [48, Proposition 2.4] Slightly ambiguously, any such polytope is called the vertex figure.

Let Φ[d]−i be the root system with simple roots α1, . . . , αi−1, αi+1, . . . , αd, which span the vector

space {x ∈ V : 〈x, λi〉 = 0}. Its fundamental weights are λ1, . . . , λi−1, λi+1, . . . , λd, where λj is the
image of λj in the dual space V/Rλi.

Lemma 6.6. The vertex figure of λi in the fundamental weight polytope PΦ(λi) is combinatorially
equivalent to the weight polytope

PΦ[d]−i
(λN(i)) =

∑
j∈N(i)

PΦ[d]−i
(λj) (17)

where λN(i) =
∑

j∈N(i) λj .

Proof. Consider the hyperplane

H = {x ∈ V : 〈x− λi, λi〉 = −1}.

Clearly the vertex λi is in the positive side of this hyperplane. Now we show that every neighboring
vertex is on H. Such a vertex can be written as usiλi for u ∈W[d]−i. Let u = sj1sj2 · · · sj` for some
j1, . . . , j` ∈ [d]− i, and let c1, . . . , cd ∈ R be the unique scalars such that

usiλi − λi = −uα∨i = −sj1sj2 · · · sj`α
∨
i =

d∑
k=1

ckα
∨
k ,

keeping Lemma 6.5.2 in mind. Notice that smα
∨
n = α∨n − Anm α

∨
m for 1 ≤ m,n ≤ d; so when

sjl , . . . , sj1 successively act on −α∨i , they never change the coefficient of α∨i . This means that
ci = −1, and hence usiλi ∈ H.
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Since all the neighbors of λi are on the hyperplane H, they are the vertices of the vertex figure
of v. Notice that they are precisely the W[d]−i orbit of siλi in V . When we identify H with V/Rλi
via x 7→ −x, they are sent to the W[d]−i orbit of −siλi = λi +

∑
j∈N(i)Ajiλj =

∑
j∈N(i)Ajiλj in

V/Rλi in light of (16). Since this point is in the cone C[d]−j−N(j) of the fundamental chamber of

Φ[d]−i, its weight polytope is normally equivalent to PΦ[d]−i
(
∑

j∈N(i) λj) as desired.

Let us now describe the 2-faces of the fundamental weight polytope.

Lemma 6.7. Every 2-dimensional face of PΦ(λi) is W -conjugate to a face containing the vertices
λi, siλi, sjsiλi for some j ∈ N(i). These faces are:

1. triangles when mij = 3, and

2. not triangles when mij > 3.

Proof. Lemma 6.5.1, and the fact that any u ∈W[d]−i stabilizes λi, imply that any edge of PΦ(λi)
is W -conjugate to the edge joining λi and siλi. By the proof of Lemma 6.6, a 2-face containing this
edge corresponds to an edge e of the vertex figure PΦ(λi)/λi ∼= PΦ[d]−i

(λN(i)) =
∑

j∈N(i) PΦ[d]−i
(λj)

containing λN(i).

We claim that this edge e connects λN(i) to vsjλN(i) for some j ∈ N(i) and v ∈W[d]−i−N(i). This
will mean that the corresponding 2-face of PΦ(λi) contains λi, siλi, and vsjsiλi. But v ∈ W[d]−i
and v ∈W[d]−i−N(i) respectively will imply that

vλi = λi and vsiλi = sivλi = siλi,

showing that this 2-face is conjugate by v to the 2-face containing λi, siλi, and sjsiλi, as desired.
Let us prove the claim about the edge e. Note that the edges of the jth Minkowski summand in

(17) are parallel to W -conjugates of the jth simple root αj , so each of the summands has different
edge directions. This has two consequences:
• The edge direction e must come from an edge of a unique summand – say the jth – that

connects λj to vsjλj for some v ∈W([d]−i)−j .

• For every other summand k ∈ N(i)− j in (17) we must have λk = vsjλk, so vsj ∈W([d]−i)−k.
Therefore vsj is in the intersection of these subgroups; that is, vsj ∈W([d]−i−N(i))∪j .

The first observation gives us a reduced word v = si1 . . . sil with i1, . . . , il ∈ [d] − i − j, while
the second gives us a word v = sj1 . . . sjl−1

sj with j1, . . . , jl−1 ∈ ([d] − i −N(i)) ∪ j. But any two
reduced words for the same group element must use the same set of letters [6, Corollary 1.4.8(ii)],
so the second word can be reduced to one that does not use sj ; that is, v ∈ W[d]−i−N(i). This
completes the proof of the claim, and thus of the first statement of the lemma.

1. If mij = 3, the vertex sisjsiλi = sjsisjλi = sjsiλi is adjacent to λi by Lemma 6.5.1. Acting
on them by si gives the desired result.

2. Let mij > 3 and assume, contrariwise, that siλi, and sjsiλi are adjacent. Then, by the proof
of Lemma 6.5.1, we must have sisjsi ∈W[d]−isiW[d]−i, say sisjsi = tsit

′ for some t, t′ ∈W[d]\i. Since
the word sisjsi is reduced, [6, Corollary 1.4.8.(i) and (ii)] implies that there is a reduced subword
of tsit

′ consisting only of si and sj . The only possibility is that tsit
′ = sjsisj , which implies that

mij = 3, a contradiction.
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Recall that a Dynkin diagram is simply laced if it is of type ADE; that is, it has no edges with
label greater than 3.

Corollary 6.8. The fundamental weight polytope PΦ(λi) only has triangular 2-faces if and only if
the edges adjacent to i in the Dynkin diagram are unlabeled; that is, the Dynkin diagram Γ(ΦN(i)∪i)
is simply laced.

Proof. This follows directly from Lemma 6.7.

6.2 Symmetric Φ-submodular functions

Say a Φ-submodular function f is symmetric if it is invariant under the action of the Weyl group;
that is, if

f(wλi) = f(λi) for all w ∈W and 1 ≤ i ≤ d.

These functions correspond to the support functions of the weight polytopes of Section 6.1. They
form the symmetric Φ-submodular cone, a linear slice of Def(ΣΦ).

By identifying a Φ-submodular function with its values on the fundamental weights, we may
think of this cone as living in Rd. We now show that this cone has an elegant description: it is the
simplicial cone generated by the rows of the inverse of the Cartan matrix. This inverse matrix was
first described by Lusztig and Tits [29]; an explicit table for the irreducible root systems is given
in [23, 46].

A key role is played by the fundamental weight polytopes of the previous subsection. The
results are a bit more elegant if we rescale them and work with the coweight polytopes instead.

Lemma 6.9. The Φ-submodular function hk of the fundamental coweight polytope PΦ(λ∨k ) is

hk(wλi) = A−1
ki for w ∈W, 1 ≤ i ≤ d,

where A−1 is the inverse of the Cartan matrix.

Proof. Let x be in the interior of the fundamental domain D. Since λi ∈ D, the λi-maximal face
of PΦ(λ∨k ) must contain the x-maximal face of PΦ(λ∨k ), which is the vertex λk. It follows that the
λi-maximal value of PΦ(x) is hk(λi) = 〈λ∨k , λi〉 = A−1

ki by (9). By W -symmetry, this is also the
value of hk(wλi) for any w ∈W .

Theorem 6.10. The symmetric Φ-submodular cone is the simplicial cone generated by the rows
of the inverse Cartan matrix of Φ.

Proof. Proposition 6.4 shows that any weight polytope is a Minkowski sum of the fundamental
coweight polytopes PΦ(λ∨k ). Since the support function of a Minkowski sum aP + bQ is given by
haP+bQ = ahP + bhQ for a, b ≥ 0, this means that any symmetric Φ-submodular function is a
non-negative combination of the functions described in Lemma 6.9. Since A−1 is invertible, these
functions are linearly independent. The desired result follows.
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7 Facets of the Φ-submodular cone

In this section we describe and enumerate the facets of the Φ-submodular cone. We first prove that
all the wall crossing inequalities define facets; for an arbitrary polytope, this is rarely the case. This
claim is equivalent to saying that all the rays spanned by the Iτ s, as described in (4), are extremal
in the Mori cone NE(ΣΦ) = cone(Iτ : τ is a wall of ΣΦ) in (PL(ΣΦ))∨.

Theorem 7.1. Every local Φ-submodular inequality (12) is a facet of the Φ-submodular cone.

Proof. By Corollary 6.3.3 we can produce, for each 1 ≤ i ≤ d, a generalized Φ-permutahedron
Qi = PΦ(λi) whose normal fan is obtained from ΣΦ by removing the walls wHi separating chambers
wD and wsiD for all w ∈W . The support function of this polytope satisfies

Iτ (hQi) = 0, if τ = wHi for some w ∈W, and (18)

Iτ (hQi) > 0, otherwise. (19)

This means that the set of rays {IwHi : w ∈ W} form a face Fi of the Mori cone, so at least one
of them must be extremal. But these rays form an orbit of the action of W on the Mori cone, so if
one of them is extremal, all are extremal.

Theorem 7.2. The number of facets of the Φ-submodular cone is

d∑
i=1

|W |
|W[d]−N(i)|

,

where N(i) is the set of neighbors of i in the Dynkin diagram. They come in d symmetry classes
up to the action of W . For the classical root systems, these numbers are:

Ad−1 : d(d− 1)2d−3

BCd : 2d(d− 1)3d−2 + d2d−1

Dd : 2d(d− 1)3d−2 − d(d− 1)2d−2

Proof. We have one local Φ-submodular inequality for each pair of an element 1 ≤ i ≤ d and a
group element w ∈ W , but there are many repetitions. For each i we now show that the set of
elements w stabilizing the wall-crossing inequality (15) is W[d]−N(i).

If an element w stabilizes (15), it must stabilize the support of the right hand side, that is, the
set of fundamental weights {λj : j ∈ N(i)}. Therefore w stabilizes the sum of those weights, which
is in the interior of cone C[d]−N(i). By Proposition 3.11, w ∈W[d]−N(i).

Conversely, suppose w ∈W[d]−N(i). Then for each j ∈ N(i) we have w ∈W[d]−j , so w stabilizes
λj individually. Therefore w does stabilize the right hand side of (15). Now, each simple reflection
sk with k /∈ [d]−N(i)− i stabilizes λi because k 6= i, and hence it also stabilizes siλi since si and
sk commute. The remaining reflection si interchanges λi and siλi. It follows that each generator
of W[d]−N(i), and hence the whole parabolic subgroup, stabilizes the left-hand side of (15) as well.

We conclude that, for fixed i, each inequality in (15) is repeated |W[d]−N(i)| times, and hence
the number of different inequalities is |W |/|W[d]−N(i)|. Furthermore, there is one symmetry class
of inequalities for each i. The desired result follows.

One may then compute explicitly the number of facets for the classical root systems, using that
|WAr−1 | = r!, |WBr | = 2rr!, and |WDr | = 2r−1r!.
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Notice that if r and r′ are rays and C and C ′ are adjacent chambers of the Coxeter complex such
that r belongs to C−C ′ and r′ belongs to C ′−C, then the linear relation between the rays of C and
C ′ is determined entirely by the rays r and r′, independently of the choice of chambers C and C ′.
This offers an explanation for the repetition of the wall-crossing inequalities. This property, which
significantly simplifies the study of the deformation cone, holds for several interesting combinatorial
fans; for instance, g-vector fans of Coxeter associahedra and normal fans of graph associahedra.
[21, 30]

8 Some extremal rays of the Φ-submodular cone

On the opposite end of the facets, we now discuss the problem of describing the extremal rays of the
Φ-submodular cone Nef(ΣΦ). These rays correspond to indeformable generalized Φ-permutahedra.

Definition 8.1. We say a polytope P is indecomposable or indeformable if its only deformations,
in the sense of Definition 2.1, are its multiples (up to translation) [42]; that is, if its nef cone Nef(P )
is a single ray.

Describing all the extremal rays of Nef(ΣΦ) seems to be a very difficult task, even in the classical
case Φ = Ad. For example, the matroid polytope PM of any connected matroid M on [d] is a ray
of Nef(ΣΦ). [34, 45]. Therefore the number of rays of this nef cone is doubly exponential, because
the asymptotic proportion of matroids that are connected is at least 1/2 and conjecturally equal
to 1 [31] and the number md of matroids on [d] satisfies log logmd ≥ d − 3

2 log d − O(1). [25] The
cone Nef(ΣAd−1

) has been computed for d ≤ 6; for d = 6 it has only 80 facets in six S5 symmetry
classes, while it has 117978 rays in 1319 S5 symmetry classes. [32, 44]

We focus here on the more modest task of describing some interesting families of rays; i.e.,
indecomposable generalized Φ-permutahedra. Our main tools will be the following simple sufficiency
criterion.

Proposition 8.2. [42] If all 2-faces of a polytope P are triangles then P is indecomposable.

We will also use the following computational tool:

Remark 8.3. To check computationally whether a polytope P is indecomposable, one could in
principle “simply” compute the dimension of its deformation cone. Unfortunately, this is not easy
to do in practice. When P is a deformation of the Φ-permutahedron ΠΦ (or some other polytope
with a nice deformation cone) and we know its support function hP , there is a shortcut available to
us. Since Def(P ) is the intersection of Def(ΠΦ) with the facet-defining hyperplanes that contain hP ,
we can now determine which wall-crossing inequalities (12) hP satisfies with equality. If, after
modding out by globally linear functions, those wall-crossing equalities cut out a 1-dimensional
subspace, then Def(P ) is just a ray, and the polytope P is indecomposable.

The following is our main result about rays of the Φ-submodular cone. Recall that N(i) denotes
the set of nodes in the Dynkin diagram Γ(Φ) adjacent to the node i.

Theorem 8.4. A weight polytope P of a crystallographic root system Φ is indecomposable if and
only if P = kPΦ(λi) for k > 0 and a fundamental weight λi such that the edges adjacent to i in
the Dynkin diagram are unlabeled; that is, the Dynkin diagram Γ(ΦN(i)∪i) is simply laced.
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Proof. Proposition 6.4 shows that if a weight polytope is indecomposable, it must be a multi-
ple of PΦ(λi) for some fundamental weight λi. When the Dynkin diagram Γ(N(i) ∪ i) is simply
laced, we showed in Corollary 6.8 that all the 2-faces of PΦ(λi) are triangles, so this polytope is
indecomposable by Proposition 8.2.

To show that all other fundamental weight polytopes are decomposable, we do a case by case
analysis through the classification 3.3. The Dynkin diagrams that have nodes i such that N(i) ∪ i
has an edge with label greater than 3 are Bd, Cd, F4, and G2 Only the types Bd and Cd provide
infinite families of weight polytopes, so we prove our claim in these two cases. One checks the
remaining cases F4, G2 individually.

Φ = Bd or Cd and i = d: In this case λd equals 1
2(e1 + e2 + · · · + ed) and e1 + e2 + · · · + ed,

respectively. In both cases the orbit polytope is a hypercube of dimension d, which is the Minkowski
sum of d lines, and hence decomposable.

Φ = Bd or Cd and i = d−1: We have λd−1 = e1 + e2 + · · ·+ ed−1 and the weight polytope is the
same in types B and C. Now we claim that the orbit of e1 + · · ·+ ed−1 under the action of WCd

is
the same as its orbit under the action of WDd

. To see this, recall that WCd
acts by all permutations

and sign changes of the coordinates, while WDd
≤WCd

consists of those actions where the number
of sign changes is even. Therefore the WCd

-orbit of λd−1 = e1 + · · · + ed−1 consists of the vectors
v = wλd−1 with one coordinate equal to 0 and all other coordinates equal to 1 or −1. By adding
a sign change to w in the 0 coordinate if needed, we can arrange for it to be an element of Dd, as
desired.

This observation, combined with Proposition 6.4, tells us that

PCd
(e1 + · · ·+ ed−1) = PDd

(e1 + · · ·+ ed−1)

= PDd

(
e1 + · · ·+ ed−1 − ed

2

)
+ PDd

(
e1 + · · ·+ ed−1 + ed

2

)
keeping in mind that 1

2(e1 + · · ·+ed−1−ed) and 1
2(e1 + · · ·+ed−1 +ed) are the last two fundamental

weights of type D. These two polytopes are deformations of the Dd-permutahedron, which is itself
a deformation of the Cd-permutahedron. Therefore the fundamental weight polytope PCd

(λd−1) is
decomposable in this case as well.

Remark 8.5. By Proposition 8.2, any face of the indecomposable weight polytopes is also inde-
composable. These are also rays of the nef cone by Corollary 2.6: in types An, BCn, Dn, we get
exponentially many such rays of the nef cone as a function of n.

Remark 8.6. Theorem 8.4 can fail for non-crystallographic root systems. More precisely, it fails
for the fundamental weight polytopes PH3(λ2) and PH4(λ3), which are indecomposable. We have
verified this by computer as outlined in Remark 8.3.2 By Corollary 6.3.3, the support function hk
for PΦ(λk) lies precisely on the facet hyperplanes given by local Φ-submodular conditions 12 with
i 6= k. In each of these two cases, those hyperplanes intersect in a line, making the nef cone of
PΦ(λk) one-dimensional.

2The supporting files are available at http://math.sfsu.edu/federico/Articles/deformations.zip.
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5 5 5

Figure 5: The icosahedron PH3(λ1) is indecomposable because its 2-faces are triangles. A computa-
tion shows that the icosidodecahedron PH3(λ2) is also indecomposable. The dodecahedron PH3(λ3)
is decomposable because we can push away one of its pentagonal faces.

Let us verify Theorem 8.4 for a few examples of interest.

1. (Type A) The fundamental weight polytope PAd
(λi) is the hypersimplex ∆(i, d+ 1) = conv(eS :

S ⊆ [d+ 1], |S| = i) which only has triangular 2-faces, and hence is indecomposable.

2. (Type BC) In type C2 the fundamental weight polytopes are the diamond and the square, which
are indeed decomposable. This is consistent with the fact that the Dynkin diagram has no node
satisfying the condition of Theorem 8.4. In type C3, they are shown in Figure 3. The octahedron is
indeed indecomposable, while the rhombic dodecahedron is the Minkowski sum of two tetrahedra
in opposite orientations, and the cube is the Minkowski sum of three segments.

9 Further questions and future directions.

1. In type A, generalized permutahedra have the algebraic structure of a Hopf monoid; in fact,
they are the universal family of polytopes that support such a structure. [2] This leads to
numerous interesting algebraic and combinatorial consequences. A crucial observation that
makes this work is that for any generalized permutahedron P in RE and any subset ∅ ( S ( E,
the maximal face of P in direction eS decomposes naturally as the product of two generalized
permutahedra in RS and RE−S , respectively.

One of the main motivations for this project was the expectation that, similarly, generalized
Φ-permutahedra should be an important example of a new kind of algebraic structure: a
Coxeter Hopf monoid. [40] It is still true that if P is a generalized Φ-permutahedron and
r = wλi is a ray, the maximal face of P in direction r is a generalized Φ[n]−i–permutahedron. It
decomposes as a product of one, two, or three generalized Coxeter permutahedra, depending
on the number of neighbors of i in the Dynkin diagram. A further development of this
algebraic structure will be the subject of an upcoming paper.

2. In the classical types An and BCn, the notions of Φ-submodular functions correspond to
submodular and bisubmodular functions, which are well studied in optimization. [15, 33,
41] We expect that Dn-submodular functions, which we call disubmodular, should play a
similar role in combinatorial optimization problems with an underlying symmetry of type D.
Similarly, it would be very interesting to find applications for the exceptional Φ-submodular
functions, for instance, to problems with an underlyting symmetry of type E6, E7, or E8.
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3. In type A, every generalized permutahedron in Rd is a signed Minkowski sum of the simplices
∆S = conv(es : s ∈ S) for S ⊆ [d]. Geometrically, this corresponds to the statement that the
2d − 1 polytopes ∆S , which are rays of the (2d − 1)-dimensional submodular cone, are also

a basis for R2d−1. Remarkably, one may compute the mixed volumes of these polytopes PS ,
and this gives combinatorial formulas for the volume of any generalized permutahedron. For
details, see [3, 36].

Is there a similarly nice choice of |RΦ| rays of the Φ-submodular cone that generate all others?
Can one compute their mixed volumes? If so, one would obtain a formula for the volume
of an arbitrary generalized Φ-permutahedron. In type A, the 2d − 1 non-empty faces of the
simplex PAd−1

(λ1) suffice, as explained above. Unfortunately (but still interestingly), the
3d− 1 non-empty faces of the cross-polytope PBd

(λ1), which are rays of Def(Bd), only span a

subspace of dimension 1
2(3d− (−1)d) of R3d−1. [14] Can one do better, either in type B or in

general? For some related work on the mixed volumes of the fundamental weight polytopes,
see [4, 12, 27, 36].

4. The framework presented here makes it very natural to define the rank function of a Coxeter
matroid M of type Φ to be the support function hQ(M) : R → R of its Coxeter matroid
polytope. It would be interesting and useful to give a characterization of these rank functions.

5. Is there a good characterization of the indecomposable Coxeter matroids? This has been
done beautifully in type A [34, 45]: a matroid polytope Q(M) is indecomposable if and only
if, upon deleting all loops and coloops, the matroid M is connected. Equivalently, for a rank
r matroid M on [d], the matroid polytope Q(M) is indecomposable if and only if it is a
full-dimensional subset of the hypersimplex ∆(d, r).

The analogous statement does not hold for Coxeter matroids, even when one accounts for
the fact that, unlike in type A, some fundamental weight polytopes can be decomposable.
For example, consider the polytope highlighted below; it is a full-dimensional subset of the
icosahedron – an indecomposable fundamental weight polytope of type H3. However, it is
decomposable, since one can deform it by shortening the four middle edges until the two short
ones disappear.
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Mathematics. Birkhäuser Boston Inc., Boston, MA, 2003.

[9] Raoul Bott and Clifford Taubes. On the self-linking of knots. Journal of Mathematical Physics,
35(10):5247–5287, 1994.

[10] Federico Castillo and Fu Liu. Deformation cones of nested braid fans. https://arxiv.org/abs/1710.01899.

[11] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2011.

[12] Dorian Dorian Eugen Croitoru. Mixed volumes of hypersimplices, root systems and shifted young
tableaux. PhD thesis, Massachusetts Institute of Technology, 2010.

[13] Jesus A. De Loera, Jorg Rambau, and Francisco Santos. Triangulations: Structures for Algorithms and
Applications. Springer Publishing Company, Incorporated, 1st edition, 2010.

[14] Jeffrey Samuel Doker. Geometry of generalized permutohedra. PhD thesis, University of California at
Berkeley, 2011.

[15] Satoru Fujishige. Submodular functions and optimization, volume 58. Elsevier, 2005.

[16] William Fulton and Joe Harris. Representation theory, volume 129 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.

[17] IM Gelfand and V Serganova. Combinatorial geometries and torus strata on compact homogeneous
spaces. Uspekhi Mat. Nauk, 42:107–134, 1987.
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