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2-D: Polygons

Let’s focus on convex polygons:

P is convex if:
If p,q ∈ P, then the whole line segment pq is in P.
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2-D: Polygons

Combinatorially, polygons are very simple:

- One “combinatorial" type of n-gon for each n.
- One “regular" n-gon for each n.
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3-D: Polyhedra

The combinatorial types in 3-D are much more complicated
(and interesting)

Combinatorial type doesn’t depend just on number of vertices.
Keep track of numbers V ,E ,F of vertices, edges, and faces.
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3-D: Polyhedra

Keep track of numbers V ,E ,F of vertices, edges, and faces.
But even that is not enough! Two combinatorially different
polytopes can have the same numbers (V ,E ,F )

Also, not every combinatorial type has a “regular" polytope.

Only regular polytopes:
tetrahedron, cube, octahedron, dodecahedron, icosahedron.
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3-D: Polyhedra

Theorem. (Euler 1752) V − E + F = 2.

Klee: “first landmark in the theory of polytopes"
Alexandroff-Hopf: “first important event in topology"
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3-D: Polyhedra

Question.
Given numbers V ,E ,F , can you construct a polytope with
V vertices, E edges, and F faces?

Theorem. (Steinitz, 1906)
There exists a polytope with V vertices, E edges, and F
faces if and only if

V − E + F = 2, V ≤ 2F − 4, F ≤ 2V − 4.
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4-D: Polychora

In 4-D, things are even more complicated (and interesting).

Euler’s theorem?
V − E + F − S = 0.

Steinitz’s theorem?
Not yet. But Ziegler et. al. have made significant progress.

Regular polychora?
simplex, cube, crosspolytope, 24-cell, 120-cell, 600-cell
Discovered by Ludwig Schläfli and by Alicia Boole Stott.
(She coined the term “polytope".)

But what are we even talking about? What is a polytope?
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n-D: Polytopes
What is a polytope? (First answer.)

In 1-D: “polytope" = segment

xy = “convex hull" of x and y
= {λx + µy : λ, µ ≥ 0, λ+ µ = 1}
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n-D: Polytopes
What is a polytope? (First answer.)

In 2-D:

4xyz = “convex hull" of x, y, and z
= conv(x,y, z)

= {λx + µy + νz : λ, µ, ν ≥ 0, λ+ µ+ ν = 1}
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n-D: Polytopes

What is a polytope? (First answer.)

Definition. A polytope is the convex hull of m points in Rd :

P = conv(v1, . . . ,vm) :=

{
m∑

i=1

λivi : λi ≥ 0,
m∑

i=1

λi = 1

}

Trouble: Hard to tell whether a
point is in the polytope or not.
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n-D: Polytopes

What is a polytope? (Second answer.)

Definition. A polytope is the solution to a system of linear
inequalities in Rd :

P =
{

x ∈ Rd : Ax ≤ b
}

(Trouble: Hard to tell
what are the vertices.)
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n-D: Polytopes

What is a polytope? (Both answers are the same.)

Theorem. A subset of Rd is the convex hull of a finite num-
ber of points if and only if it is the bounded set of solutions
to a system of linear inequalities.

Note.
It is tricky, but possible, to go from the V-description to the
H-description of a polytope. The software polymake does it.
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Examples of polytopes

1. Simplices

(point, segment, triangle, tetrahedron, . . . )

Let ei = (0, . . . ,0,1,0, . . . ,0) ∈ Rd . (1 in i th position)

The standard (d − 1)-simplex is

∆d−1 := conv(e1, . . . ,ed )

=

{
x ∈ Rd : xi ≥ 0,

d∑
i=1

xi = 1

}
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Examples of polytopes

2. Cubes

(point, segment, square, cube, . . . )

The standard d-cube is

�d := conv( b : all bi equal 0 or 1)

=
{

x ∈ Rd : 0 ≤ xi ≤ 1
}
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Examples of polytopes

3. Crosspolytopes

(point, segment, square, octahedron, . . . )

The d-crosspolytope is

♦d := conv(−e1,e1, . . . ,−ed ,ed )

=

{
x ∈ Rd :

d∑
i=1

aixi ≤ 1 whenever all ai are −1 or 1

}
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Two very nice facts about polytopes. (Schläfli, 1850)
• Euler’s theorem:

If fi is the number of i-dimensional faces, then

f1 − f2 + · · · ± fd−1 =

{
0 if d is even,
2 if d is odd.

(Roots of algebraic topology.)

• Classification of regular polytopes:
The only regular polytopes are:

• the d-simplices (all d),
• the d-cubes (all d),
• the d-crosspolytopes (all d),
• the icosahedron and dodecahedron (d = 3),
• the 24-cell, the 120-cell, and the 600-cell (d = 4).

(Roots of Coxeter group theory.)
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Corte de comerciales.

For more information about

• polytopes
• Coxeter groups,
• matroids, and
• combinatorial commutative algebra,

please visit
http://math.sfsu.edu/federico/

where you will find links to the (150+) lecture videos and notes
of my courses at San Francisco State University and the
Universidad de Los Andes.
(Also exercises, discussion forum, research projects, etc.)

(San Francisco State University – Colombia Combinatorics Initiative)
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Polygons
Question. How does the combinatorialist measure a polytope?
Answer. By counting! (Counting what?)

Continuous measure: area
Discrete measure: number of lattice points

area: 31
2 lattice points: 8 total, 1 interior.
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Polygons
Continuous measure: area
Discrete measure: number of lattice points

From discrete to continuous:

Theorem. (Pick, 1899)
Let P be a polygon with integer vertices. If

I = number of interior points of P and
B = number of boundary points of P, then

Area(P) = I +
B
2
− 1

In the example,

Area(P) =
7
2
, I = 1, B = 7.
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Polytopes

To extend to n dimensions, we need to count more things.

Continuous measure: volume =
∫

P dV
Discrete measure: number of lattice points
A richer discrete measure:

Let LP(n) = number of lattice points in nP.
Let LPo (n) = number of interior lattice points in nP.

In example,

LP(n) =
7
2

n2 +
7
2

n + 1, LPo (n) =
7
2

n2 − 7
2

n + 1.
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Examples

2. Cube

In 3-D, L�3(n) = (n + 1)3 (a cubical grid of size n + 1)

L�o
3
(n) = (n − 1)3 (a cubical grid of size n − 1)
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Examples

2. Cube
In dimension 3, L�3(n) = (n + 1)3, L�o

3
(n) = (n − 1)3.

In dimension d , we need to count lattice points in

n�d =
{

x ∈ Rd : 0 ≤ xi ≤ n
}
.

Lattice points:
(y1, . . . , yd ) ∈ Zd with 0 ≤ yi ≤ n. (n + 1 options for each yi )
Interior lattice points:
(y1, . . . , yd ) ∈ Zd with 0 < yi < n. (n − 1 options for each yi )

L�d (n) = (n + 1)d , L�o
d
(n) = (n − 1)d .
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Examples
1. Simplex
Count points in n∆d−1 =

{
x ∈ Rd : xi ≥ 0,

d∑
i=1

xi = n

}
.

Interior points: (y1, . . . , yd ) ∈ Zd with yi > 0,
∑d

i=1 yi = n.

L∆o
d
(n) =

(
n − 1
d − 1

)
.

Lattice points: (y1, . . . , yd ) ∈ Zd with yi ≥ 0,
∑d

i=1 yi = n.
zi = yi + 1↔ (z1, . . . , zd ) ∈ Zd with zi > 0,

∑d
i=1 zi = n + d .

L∆d (n) =

(
n + d − 1

d − 1

)
.
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Examples
3. Crosspolytope: Skip.

4. The “coin polytope"

Let f (N) = number of ways to make change for N cents using
(an unlimited supply of) quarters, dimes, nickels, and pennies.

Notice: f (N) is the number of lattice points in the polytope

Coin(N) =
{

(q,d ,n,p) ∈ R4 : q,d ,n,p ≥ 0, 25q + 10d + 5n + p = N
}

Now, Coin(N) = NCoin(1), so

LCoin(1)(N) = f (N), LCoin(1)o (N) = f (N − 41).

Warning: Coin(1) does not have integer vertices.
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Ehrhart’s theorem

Theorem. (Ehrhart, 1962)

Let P be a d-polytope with integer vertices in Rd . Then

LP(n) = cdnd + cd−1nd−1 + · · ·+ c1n + c0

is a polynomial in n of degree d . Also,

cd = Vol(P), cd−1 = “Surface Vol”(P), c0 = 1.

So (discrete) counting gives us the (continuous) volume of P.

This is called the Ehrhart polynomial of P.
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Ehrhart’s theorem
Theorem. (Ehrhart, 1962) For a d-polytope P,

LP(n) = cdnd + cd−1nd−1 + · · ·+ c1n + c0

is the Ehrhart polynomial of P.

Define the Ehrhart series of P to be

EhrP(z) =
∑
n≥0

LP(n)zn = LP(0)z0 + LP(1)z1 + LP(2)z2 + · · ·

In our first example,

EhrP(z) =
∑
n≥0

(
7
2

n2 +
7
2

n + 1
)

zn = · · · =
1 + 5z + z2

(1− z)3

for |z| < 1.
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Examples
1. Simplex. We computed the Ehrhart polynomial:

L∆d (n) =
(n+d−1

d−1

)
=
(n+d−1

n

)
= (n+d−1)(n+d−2)...(d+1)d

d! .

Notice that:(−d
n

)
= (−d)(−d−1)···(−n−d+2)(−n−d+1)

d! = (−1)n(n+d−1
d−1

)
so

Ehr∆d (z) =
∑

n≥0 L∆d (n)zn =
∑

n≥0(−1)n(−d
n

)
zn = (1− z)−d .

In conclusion,

Ehr∆d (z) =
1

(1− z)d
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Examples
2. Cube. We computed the Ehrhart polynomial:

L�d (n) = (n + 1)d so Ehr�d (z) =
∑

n≥0(n + 1)dzn.

Ehr�0(z) = 1
1−z , Ehr�1(z) = 1

(1−z)2 , Ehr�2(z) = 1+z
(1−z)3

Ehr�3(z) = 1+4z+z2

(1−z)4 , Ehr�4(z) = 1+11z+11z2+z3

(1−z)5 , . . .

To compute these use Ehr�d+1(z) = Ehr�d (z) + z d
dz Ehr�d (z)

We are led to guess that

Ehr�d (z) =
a0z0 + a1z1 + · · ·+ adzd

(1− z)d+1

where ai is a positive integer. What does it count?
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Examples

2. Cube. The Ehrhart series of the d-cube is:

Ehr�d (z) =
∑
n≥0

(n + 1)dzn =
a0z0 + a1z1 + · · ·+ zdzd

(1− z)d+1

Theorem. (Euler 1755 / Carlitz, 1953) The number ai equals
the number of permutations of [n] having exactly i descents.

Example: The permutations of {1,2,3} and their descents:
123,132,213,231,312,321

So

Ehr�3(z) =
1 + 4z + 1z2

(1− z)3 .
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Examples
3. Crosspolytope The Ehrhart series of the d-crosspolytope is:

Ehr♦d (z) =
(1 + z)d

(1− z)d+1 . Skip.

4. Coin polytope The Ehrhart series of the coin polytope is:

EhrCoin(z) = (1 + z1 + z1·2 + z1·3 + · · · )(1 + z5 + z5·2 + z5·3 + · · · )
(1 + z10 + z10·2 + z10·3 + · · · )(1 + z25 + z25·2 + z25·3 + · · · )

so

EhrCoin(z) =
1

(1− z)(1− z5)(1− z10)(1− z25)
.

One of these is not like the others. Why?
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Stanley’s theorem
Theorem. (Stanley 1980) For any d-polytope with integer ver-
tices, the Ehrhart series is of the form

EhrP(z) =
a0z0 + a1z1 + · · ·+ adzd

(1− z)d+1

where a0, . . . ,ad are non-negative integers.

• If the vertices are rational, then for some integers
n1, . . . ,nd+1 > 0:

EhrP(z) =
a0z0 + a1z1 + · · ·+ adzd

(1− zn1) · · · (1− znd+1)

• If the vertices are irrational, nobody knows.

Strategy of proof: Prove it for simplices, then “triangulate".
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Ehrhart reciprocity
If we plug n ∈ N into the Ehrhart polynomial, we get

LP(n) = number of lattice points in nP

A strange idea: What if we plug in a negative integer −n?

LP(−n) = ??

Something amazing happens:

Theorem. (Macdonald 1971) For any d-polytope with integer
vertices,

LP(−n) = (−1)dLPo (n).

We get the number of interior points in nP!
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Ehrhart reciprocity v2
Put differently,

Theorem. (Macdonald 1971) If the Ehrhart polynomial of P is

LP(n) = cdnd + cd−1nd−1 + · · ·+ c1n + c0

then the interior Ehrhart polynomial is

LPo (n) = cdnd − cd−1nd−1 + · · · ± c1n ∓ c0.

For instance, recall that in our example:

LP(n) =
7
2

n2 +
7
2

n + 1, LPo (n) =
7
2

n2 − 7
2

n + 1.
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Back to Pick’s theorem
Theorem. (Pick, 1899)
Let P be a polygon with integer vertices. If

I = number of interior points of P and
B = number of boundary points of P, then

Area(P) = I +
B
2
− 1

Proof: We have

LP(n) = an2 + bn + c, LPo (n) = an2 − bn + c.

Therefore
I = a− b + c, B = 2b −→ I + B

2 − 1 = a + c − 1.

But we saw that a = Area(P) and c = 1.
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Thank you very much.

Muchas gracias.
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Corte de comerciales.

For more information about

• polytopes
• Coxeter groups,
• matroids, and
• combinatorial commutative algebra,

please visit
http://math.sfsu.edu/federico/

where you will find links to the (150+) lecture videos and notes
of my courses at San Francisco State University and the
Universidad de Los Andes.
(Also exercises, discussion forum, research projects, etc.)

(San Francisco State University – Colombia Combinatorics Initiative)
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