counting lattice points

ehrhart polynomials 00000 00000

counting lattice points in polytopes

federico ardila

san francisco state university university university

universidad de los andes bogotá colombia

sacnas national meeting san jose . oct 26 . 2011

counting lattice points

ehrhart polynomials 00000 00000

2-D: Polygons

Let's focus on convex polygons:

P is convex if:

If $p, q \in P$, then the whole line segment pq is in P.

counting lattice points

ehrhart polynomials 00000 00000

2-D: Polygons

Combinatorially, polygons are very simple:

- One "combinatorial" type of *n*-gon for each *n*.
- One "regular" n-gon for each n.

counting lattice points

ehrhart polynomials 00000 00000

3-D: Polyhedra

The combinatorial types in 3-D are much more complicated (and interesting)

Combinatorial type doesn't depend just on number of vertices. Keep track of numbers V, E, F of vertices, edges, and faces. counting lattice points 00 00000 0 ehrhart polynomials 00000 00000

3-D: Polyhedra

Keep track of numbers V, E, F of vertices, edges, and faces. But even that is not enough! Two combinatorially different polytopes can have the same numbers (V, E, F)

Also, not every combinatorial type has a "regular" polytope.

Only regular polytopes: tetrahedron, cube, octahedron, dodecahedron, icosahedron.

polytopes ○○ ○○●○ ○ counting lattice points

ehrhart polynomials 00000 00000

3-D: Polyhedra

Theorem. (Euler 1752) V - E + F = 2.

Klee: "first landmark in the theory of polytopes" Alexandroff-Hopf: "first important event in topology" **polytopes** ○○ ○○○○● ○○○○○○○○○○○ counting lattice points

ehrhart polynomials 00000 0 00000

3-D: Polyhedra

Question.

Given numbers V, E, F, can you construct a polytope with V vertices, E edges, and F faces?

Theorem. (Steinitz, 1906) There exists a polytope with V vertices, E edges, and F faces if and only if

V-E+F=2, $V\leq 2F-4,$ $F\leq 2V-4.$

counting lattice points

ehrhart polynomials 00000 00000

4-D: Polychora

In 4-D, things are even more complicated (and interesting).

Euler's theorem? V - E + F - S = 0.

Steinitz's theorem? Not yet. But Ziegler et. al. have made significant progress.

Regular polychora? simplex, cube, crosspolytope, 24-cell, 120-cell, 600-cell Discovered by Ludwig Schläfli and by Alicia Boole Stott. (She coined the term "polytope".)

But what are we even talking about? What is a polytope?

 counting lattice points

ehrhart polynomials 00000 00000

n-D: Polytopes

What is a polytope? (First answer.)

In 1-D: "polytope" = segment

$$\overline{\mathbf{xy}} = \text{"convex hull" of } \mathbf{x} \text{ and } \mathbf{y}$$
$$= \{\lambda \mathbf{x} + \mu \mathbf{y} : \lambda, \mu \ge \mathbf{0}, \lambda + \mu = \mathbf{1}\}$$

polytopes ○○ ○○○○ ○ ○●○○○○○○○○ counting lattice points

ehrhart polynomials 00000 00000

n-D: Polytopes What is a polytope? (First answer.)

In 2-D:

- $\triangle xyz =$ "convex hull" of x, y, and z
 - = conv(x, y, z)

$$= \{ \lambda \mathbf{X} + \mu \mathbf{y} + \nu \mathbf{Z} : \lambda, \mu, \nu \ge \mathbf{0}, \lambda + \mu + \nu = \mathbf{1} \}$$

counting lattice points

ehrhart polynomials 00000 00000

n-D: Polytopes

What is a polytope? (First answer.)

Definition. A polytope is the convex hull of *m* points in \mathbb{R}^d :

$$\boldsymbol{P} = \operatorname{conv}(\mathbf{v}_1, \dots, \mathbf{v}_m) := \left\{ \sum_{i=1}^m \lambda_i \mathbf{v}_i : \lambda_i \ge 0, \sum_{i=1}^m \lambda_i = 1 \right\}$$

Trouble: Hard to tell whether a point is in the polytope or not.

counting lattice points

ehrhart polynomials 00000 00000

n-D: Polytopes

What is a polytope? (Second answer.)

Definition. A polytope is the solution to a system of linear inequalities in \mathbb{R}^d :

$$P = \left\{ \mathbf{x} \in \mathbb{R}^d : A\mathbf{x} \le \mathbf{b}
ight\}$$

(Trouble: Hard to tell what are the vertices.)

counting lattice points

ehrhart polynomials

n-D: Polytopes

What is a polytope? (Both answers are the same.)

Theorem. A subset of \mathbb{R}^d is the convex hull of a finite number of points if and only if it is the bounded set of solutions to a system of linear inequalities.

Note.

It is tricky, but possible, to go from the **V-description** to the **H-description** of a polytope. The software polymake does it.

counting lattice points 00 00000 0 ehrhart polynomials 00000 00000

Examples of polytopes

1. Simplices

(point, segment, triangle, tetrahedron, ...)

Let $\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{R}^d$. (1 in *i*th position)

The standard (d - 1)-simplex is

$$egin{array}{rcl} \Delta_{d-1} & \coloneqq & \mathsf{conv}(\mathbf{e}_1,\ldots,\mathbf{e}_d) \ & = & \left\{ \mathbf{x}\in\mathbb{R}^d \,:\, x_i\geq 0, \sum_{i=1}^d x_i=1
ight\} \end{array}$$

counting lattice points

ehrhart polynomials 00000 00000

Examples of polytopes

2. Cubes

(point, segment, square, cube, ...)

The standard d-cube is

$$\Box_d := \operatorname{conv}(\mathbf{b} : \operatorname{all} b_i \operatorname{equal} 0 \operatorname{or} 1) \\ = \left\{ \mathbf{x} \in \mathbb{R}^d : 0 \le x_i \le 1 \right\}$$

polytopes ○○ ○○○○ ○○○○○○●○○ counting lattice points

ehrhart polynomials 00000 00000

Examples of polytopes

3. Crosspolytopes

(point, segment, square, octahedron, ...)

The *d*-crosspolytope is

$$\begin{aligned} \Diamond_d &:= \quad \mathbf{Conv}(-\mathbf{e}_1, \mathbf{e}_1, \dots, -\mathbf{e}_d, \mathbf{e}_d) \\ &= \quad \left\{ \mathbf{x} \in \mathbb{R}^d \, : \, \sum_{i=1}^d a_i x_i \leq 1 \text{ whenever all } a_i \text{ are } -1 \text{ or } 1 \right\} \end{aligned}$$

counting lattice points

ehrhart polynomials 00000 00000

Two very nice facts about polytopes. (Schläfli, 1850)

• Euler's theorem:

If f_i is the number of *i*-dimensional faces, then

$$f_1 - f_2 + \dots \pm f_{d-1} = \begin{cases} 0 & \text{if } d \text{ is even,} \\ 2 & \text{if } d \text{ is odd.} \end{cases}$$

(Roots of algebraic topology.)

- Classification of regular polytopes: The only regular polytopes are:
 - the *d*-simplices (all *d*),
 - the *d*-cubes (all *d*),
 - the *d*-crosspolytopes (all *d*),
 - the icosahedron and dodecahedron (d = 3),
 - the 24-cell, the 120-cell, and the 600-cell (d = 4).

(Roots of Coxeter group theory.)

counting lattice points

ehrhart polynomials 00000 00000

Corte de comerciales.

For more information about

- polytopes
- Coxeter groups,
- matroids, and
- combinatorial commutative algebra,

please visit

http://math.sfsu.edu/federico/

where you will find links to the (150+) lecture videos and notes of my courses at San Francisco State University and the Universidad de Los Andes.

(Also exercises, discussion forum, research projects, etc.)

(San Francisco State University - Colombia Combinatorics Initiative)

eounting lattice points ●O ○○○○○ ehrhart polynomials 00000 00000

Polygons

Question. How does the combinatorialist measure a polytope? **Answer.** By counting! (Counting what?)

Continuous measure: area Discrete measure: number of lattice points

area: $3\frac{1}{2}$

lattice points: 8 total, 1 interior.

counting lattice points ○● ○○○○○ ehrhart polynomials 00000 00000

Polygons

Continuous measure: area

Discrete measure: number of lattice points

From discrete to continuous:

Theorem. (Pick, 1899) Let *P* be a polygon with integer vertices. If *I* = number of interior points of *P* and *B* = number of boundary points of *P*, then $Area(P) = I + \frac{B}{2} - 1$

In the example,

Area
$$(P) = \frac{7}{2}, \quad I = 1, \quad B = 7.$$

counting lattice points

ehrhart polynomials 00000 00000

Polytopes

To extend to *n* dimensions, we need to count more things.

Continuous measure: volume = $\int_P dV$ Discrete measure: number of lattice points A richer discrete measure:

Let $L_P(n)$ = number of lattice points in nP. Let $L_{P^o}(n)$ = number of interior lattice points in nP.

In example,

$$L_P(n) = \frac{7}{2}n^2 + \frac{7}{2}n + 1,$$

$$L_{P^o}(n) = \frac{7}{2}n^2 - \frac{7}{2}n + 1.$$

counting lattice points ○ ○ ● ○ ○ ○ ehrhart polynomials 00000 00000

Examples

2. Cube

In 3-D, $L_{\Box_3}(n) = (n+1)^3$ (a cubical grid of size n+1) $L_{\Box_3^o}(n) = (n-1)^3$ (a cubical grid of size n-1)

counting lattice points

ehrhart polynomials 00000 00000

Examples

2. Cube

In dimension 3, $L_{\Box_3}(n) = (n+1)^3$, $L_{\Box_3^o}(n) = (n-1)^3$.

In dimension d, we need to count lattice points in

$$n\square_d = \left\{ \mathbf{x} \in \mathbb{R}^d : 0 \le x_i \le n \right\}.$$

Lattice points:

 $(y_1, \ldots, y_d) \in \mathbb{Z}^d$ with $0 \le y_i \le n$. $(n + 1 \text{ options for each } y_i)$ Interior lattice points:

 $(y_1, \ldots, y_d) \in \mathbb{Z}^d$ with $0 < y_i < n$. $(n-1 \text{ options for each } y_i)$

$$L_{\Box_d}(n) = (n+1)^d, \qquad L_{\Box_d^o}(n) = (n-1)^d$$

counting lattice points ○○ ○○○●○ ehrhart polynomials

Examples

1. Simplex Count points in

$$\Delta_{d-1} = \bigg\{ \mathbf{x} \in \mathbb{R}^d : x_i \ge 0, \sum_{i=1}^d x_i = n \bigg\}.$$

Interior points: $(y_1, \ldots, y_d) \in \mathbb{Z}^d$ with $y_i > 0, \sum_{i=1}^d y_i = n$.

$$L_{\Delta_d^o}(n) = \binom{n-1}{d-1}.$$

Lattice points: $(y_1, \ldots, y_d) \in \mathbb{Z}^d$ with $y_i \ge 0, \sum_{i=1}^d y_i = n$. $z_i = y_i + 1 \leftrightarrow (z_1, \ldots, z_d) \in \mathbb{Z}^d$ with $z_i > 0, \sum_{i=1}^d z_i = n + d$. $L_{\Delta_d}(n) = \binom{n+d-1}{d-1}$.

counting lattice points ○○ ○○○○● ehrhart polynomials 00000 00000

Examples

3. Crosspolytope: Skip.

4. The "coin polytope"

Let f(N) = number of ways to make change for N cents using (an unlimited supply of) quarters, dimes, nickels, and pennies.

Notice: f(N) is the number of lattice points in the polytope

 $Coin(N) = \{(q, d, n, p) \in \mathbb{R}^4 : q, d, n, p \ge 0, 25q + 10d + 5n + p = N\}$

Now, $\operatorname{Coin}(N) = N\operatorname{Coin}(1)$, so

$$L_{\text{Coin}(1)}(N) = f(N), \qquad L_{\text{Coin}(1)^o}(N) = f(N-41).$$

Warning: Coin(1) does not have integer vertices.

counting lattice points

ehrhart polynomials 00000 00000

Ehrhart's theorem

So (discrete) counting gives us the (continuous) volume of P.

This is called the Ehrhart polynomial of *P*.

counting lattice points

ehrhart polynomials • 0000 0 0000

Ehrhart's theorem

Theorem. (Ehrhart, 1962) For a *d*-polytope *P*,

$$L_P(n) = c_d n^d + c_{d-1} n^{d-1} + \dots + c_1 n + c_0$$

is the Ehrhart polynomial of *P*.

Define the Ehrhart series of P to be

$$Ehr_{P}(z) = \sum_{n \ge 0} L_{P}(n) z^{n} = L_{P}(0) z^{0} + L_{P}(1) z^{1} + L_{P}(2) z^{2} + \cdots$$

In our first example,

$$Ehr_{P}(z) = \sum_{n \ge 0} \left(\frac{7}{2}n^{2} + \frac{7}{2}n + 1\right) z^{n} = \dots = \frac{1 + 5z + z^{2}}{(1 - z)^{3}}$$

for |z| < 1.

counting lattice points

ehrhart polynomials

Examples

1. Simplex. We computed the Ehrhart polynomial:

 $L_{\Delta_d}(n) = \binom{n+d-1}{d-1} = \binom{n+d-1}{n} = \frac{(n+d-1)(n+d-2)...(d+1)d}{d!}.$

Notice that:

$$\binom{-d}{n} = \frac{(-d)(-d-1)\cdots(-n-d+2)(-n-d+1)}{d!} = (-1)^n \binom{n+d-1}{d-1}$$

so

$$Ehr_{\Delta_d}(z) = \sum_{n \ge 0} L_{\Delta_d}(n) z^n = \sum_{n \ge 0} (-1)^n {\binom{-d}{n}} z^n = (1-z)^{-d}.$$

In conclusion,

$$\textit{Ehr}_{\Delta_d}(z) = \frac{1}{(1-z)^d}$$

counting lattice points 00 00000 0 ehrhart polynomials

Examples 2. Cube. We computed the Ehrhart polynomial: $L_{\Box_d}(n) = (n+1)^d$ so $Ehr_{\Box_d}(z) = \sum_{n \ge 0} (n+1)^d z^n$. $Ehr_{\Box_0}(z) = \frac{1}{1-z}, \qquad Ehr_{\Box_1}(z) = \frac{1}{(1-z)^2}, \qquad Ehr_{\Box_2}(z) = \frac{1+z}{(1-z)^3}$ $Ehr_{\Box_3}(z) = \frac{1+4z+z^2}{(1-z)^4}, \qquad Ehr_{\Box_4}(z) = \frac{1+11z+11z^2+z^3}{(1-z)^5}, \dots$

To compute these use $Ehr_{\Box_{d+1}}(z) = Ehr_{\Box_d}(z) + z \frac{d}{dz} Ehr_{\Box_d}(z)$

We are led to guess that

$$Ehr_{\Box_d}(z) = \frac{a_0 z^0 + a_1 z^1 + \dots + a_d z^d}{(1-z)^{d+1}}$$

where a_i is a positive integer. What does it count?

counting lattice points 00 00000 0 ehrhart polynomials

Examples

2. Cube. The Ehrhart series of the *d*-cube is:

$$Ehr_{\Box_d}(z) = \sum_{n \ge 0} (n+1)^d z^n = \frac{a_0 z^0 + a_1 z^1 + \dots + z_d z^d}{(1-z)^{d+1}}$$

Theorem. (Euler 1755 / Carlitz, 1953) The number a_i equals the number of permutations of [n] having exactly *i* descents.

Example: The permutations of $\{1, 2, 3\}$ and their descents:

123, 1<mark>3</mark>2, 213, 2<mark>3</mark>1, 312, 321

So

$$Ehr_{\Box_3}(z) = \frac{1+4z+1z^2}{(1-z)^3}.$$

counting lattice points

ehrhart polynomials

Examples

3. Crosspolytope The Ehrhart series of the *d*-crosspolytope is:

$${\it Ehr}_{\diamondsuit_d}(z)=rac{(1+z)^d}{(1-z)^{d+1}}.$$
skip.

4. Coin polytope The Ehrhart series of the coin polytope is: $Ehr_{Coin}(z) = (1 + z^{1} + z^{1\cdot2} + z^{1\cdot3} + \cdots)(1 + z^{5} + z^{5\cdot2} + z^{5\cdot3} + \cdots) \\ (1 + z^{10} + z^{10\cdot2} + z^{10\cdot3} + \cdots)(1 + z^{25} + z^{25\cdot2} + z^{25\cdot3} + \cdots)$ so

$$Ehr_{Coin}(z) = \frac{1}{(1-z)(1-z^5)(1-z^{10})(1-z^{25})}.$$

One of these is not like the others. Why?

counting lattice points

ehrhart polynomials

Stanley's theorem

Theorem. (Stanley 1980) For any *d*-polytope with integer vertices, the Ehrhart series is of the form

$$Ehr_{P}(z) = \frac{a_{0}z^{0} + a_{1}z^{1} + \dots + a_{d}z^{d}}{(1-z)^{d+1}}$$

where a_0, \ldots, a_d are non-negative integers.

• If the vertices are rational, then for some integers $n_1, \ldots, n_{d+1} > 0$:

$$Ehr_{P}(z) = \frac{a_{0}z^{0} + a_{1}z^{1} + \dots + a_{d}z^{d}}{(1 - z^{n_{1}}) \cdots (1 - z^{n_{d+1}})}$$

• If the vertices are irrational, nobody knows.

Strategy of proof: Prove it for simplices, then "triangulate".

counting lattice points

ehrhart polynomials

Ehrhart reciprocity If we plug $n \in \mathbb{N}$ into the Ehrhart polynomial, we get

 $L_P(n) =$ number of lattice points in nP

A strange idea: What if we plug in a negative integer -n?

$$L_P(-n) = ??$$

Something amazing happens:

Theorem. (Macdonald 1971) For any *d*-polytope with integer vertices,

$$L_P(-n) = (-1)^d L_{P^o}(n).$$

We get the number of interior points in nP!

counting lattice points 00 00000 0 ehrhart polynomials

Ehrhart reciprocity v2

Put differently,

Theorem. (Macdonald 1971) If the Ehrhart polynomial of *P* is $L_P(n) = c_d n^d + c_{d-1} n^{d-1} + \dots + c_1 n + c_0$ then the interior Ehrhart polynomial is $L_{P^o}(n) = c_d n^d - c_{d-1} n^{d-1} + \dots \pm c_1 n \mp c_0.$

For instance, recall that in our example:

$$L_P(n) = \frac{7}{2}n^2 + \frac{7}{2}n + 1,$$
 $L_{P^o}(n) = \frac{7}{2}n^2 - \frac{7}{2}n + 1.$

counting lattice points

ehrhart polynomials

Back to Pick's theorem

Theorem. (Pick, 1899) Let *P* be a polygon with integer vertices. If *I* = number of interior points of *P* and *B* = number of boundary points of *P*, then $Area(P) = I + \frac{B}{2} - 1$

Proof: We have

 $L_P(n) = an^2 + bn + c, \qquad \qquad L_{P^o}(n) = an^2 - bn + c.$

Therefore

I = a - b + c, B = 2b \longrightarrow $I + \frac{B}{2} - 1 = a + c - 1$.

But we saw that a = Area(P) and c = 1.

counting lattice points

ehrhart polynomials

Thank you very much. Muchas gracias.

counting lattice points

ehrhart polynomials ○ ○ ○ ○ ○

Corte de comerciales.

For more information about

- polytopes
- Coxeter groups,
- matroids, and
- combinatorial commutative algebra,

please visit

http://math.sfsu.edu/federico/

where you will find links to the (150+) lecture videos and notes of my courses at San Francisco State University and the Universidad de Los Andes.

(Also exercises, discussion forum, research projects, etc.)

(San Francisco State University - Colombia Combinatorics Initiative)