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2-D: Polygons

Let’s focus on convex polygons:

P is convex if:
If p, g € P, then the whole line segment pq is in P.
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2-D: Polygons

Combinatorially, polygons are very simple:

- One “combinatorial” type of n-gon for each n.
- One “regular" n-gon for each n.
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3-D: Polyhedra

The combinatorial types in 3-D are much more complicated
(and interesting)

Combinatorial type doesn’t depend just on number of vertices.
Keep track of numbers V. E, F of vertices, edges, and faces.
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3-D: Polyhedra

Keep track of numbers V| E, F of vertices, edges, and faces.
But even that is not enough! Two combinatorially different
polytopes can have the same numbers (V. E, F)

Also, not every combinatorial type has a “regular" polytope.

Only regular polytopes:
tetrahedron, cube, octahedron, dodecahedron, icosahedron.
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3-D: Polyhedra

Theorem. (Euler 1752) V — E+ F =2.

Klee: “first landmark in the theory of polytopes"
Alexandroff-Hopf: “first important event in topology"
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3-D: Polyhedra

Question.
Given numbers V| E, F, can you construct a polytope with
V vertices, E edges, and F faces?

Theorem. (Steinitz, 1906)
There exists a polytope with V vertices, E edges, and F
faces if and only if

V_-E+F=2 V<2F_-4,  F<2V_a.
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4-D: Polychora

In 4-D, things are even more complicated (and interesting).

Euler’'s theorem?
V-E+F-S=0.

Steinitz’s theorem?
Not yet. But Ziegler et. al. have made significant progress.

Regular polychora?

simplex, cube, crosspolytope, 24-cell, 120-cell, 600-cell
Discovered by Ludwig Schlafli and by Alicia Boole Stott.
(She coined the term “polytope".)

But what are we even talking about? What is a polytope?
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n-D: Polytopes

What is a polytope? (First answer.)

In 1-D: “polytope" = segment

Xy = “convex hull"of xandy

X +py A p >0 A+p=1}
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n-D: Polytopes

What is a polytope? (First answer.)
In 2-D:

Axyz = “convex hull" of x,y, and z
conv(x,y,z)
= {MX+upy+vz: \puv>0 \+pu+v=1}
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n-D: Polytopes

What is a polytope? (First answer.)

Definition. A polytope is the convex hull of m points in R9:

m m
P =conv(vy,...,Vp) = {Z)\,-v,- DA > Ovz)\i = 1}
i—1 i—1

Trouble: Hard to tell whether a
point is in the polytope or not.
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n-D: Polytopes

What is a polytope? (Second answer.)

Definition. A polytope is the solution to a system of linear
inequalities in RY:

P:{xeRd:Axgb}

(Trouble: Hard to tell
what are the vertices.)
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n-D: Polytopes

What is a polytope? (Both answers are the same.)

Theorem. A subset of R? is the convex hull of a finite num-

ber of points if and only if it is the bounded set of solutions
to a system of linear inequalities.

Note.

It is tricky, but possible, to go from the V-description to the
H-description of a polytope. The software polymake does it.
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Examples of polytopes

1. Simplices

(point, segment, triangle, tetrahedron, ...)

Lete; =(0,...,0,1,0,...,0) e R9. (1 in ith position)
The standard (d — 1)-simplex is

Agy_1 = conv(eq,...,eq)

d
= {XGRd:X/ZO,ZX;:1}

i=1
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Examples of polytopes
2. Cubes

(point, segment, square, cube, ...)

The standard d-cube is
Og := conv(b : all bjequal0or1)
= {xeRd:0§X;§1}
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Examples of polytopes

3. Crosspolytopes

(point, segment, square, octahedron, ...)
The d-crosspolytope is

Og := conv(—eq,eq,.
d

x € R? : ) " a;x; < 1 whenever all a; are —1 or 1
i—1

.., —€yq, ed)
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Two very nice facts about polytopes. (Schlafli, 1850)

e Euler’'s theorem:
If f; is the number of i-dimensional faces, then

0 ifdiseven,

fi— ottty =
T a1 {2 if d is odd.

(Roots of algebraic topology.)

¢ Classification of regular polytopes:
The only regular polytopes are:
¢ the d-simplices (all d),
o the d-cubes (all d),
¢ the d-crosspolytopes (all d),
¢ the icosahedron and dodecahedron (d = 3),
o the 24-cell, the 120-cell, and the 600-cell (d = 4).

(Roots of Coxeter group theory.)
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Corte de comerciales.

For more information about

e polytopes

e Coxeter groups,

e matroids, and

e combinatorial commutative algebra,

please visit

http://math.sfsu.edu/federico/
where you will find links to the (150+) lecture videos and notes
of my courses at San Francisco State University and the
Universidad de Los Andes.
(Also exercises, discussion forum, research projects, etc.)

(San Francisco State University — Colombia Combinatorics Initiative)
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Polygons

Question. How does the combinatorialist measure a polytope?
Answer. By counting! (Counting what?)

Continuous measure: area
Discrete measure: number of lattice points

area: 3% lattice points: 8 total, 1 interior.
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Polygons
Continuous measure: area
Discrete measure: number of lattice points

From discrete to continuous:

Theorem. (Pick, 1899)

Let P be a polygon with integer vertices. If
I = number of interior points of P and
B = number of boundary points of P, then

Area(P) = I+ g —1

In the example,

Area(P) = ;, I=1, B=7.
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Polytopes

To extend to n dimensions, we need to count more things.

Continuous measure: volume = [, dV
Discrete measure: number of lattice points
A richer discrete measure:

Let Lp(n) = number of lattice points in nP.
Let Lpo(n) = number of interior lattice points in nP.

In example,

7 7 7 7
Lp(n):§n2+§n+1, Lpo(n):§n2—§n+1.



polytopes

counting lattice points ehrhart polynomials
[e]e] [e]e] 00000
0000 0e000 o]
(o] (o] 00000
0000000000
Examples
2. Cube

In3-D, Lo, (n)=(n+1)>

Leg(n)

(a cubical grid of size n+ 1)

(n—1)%  (acubical grid of size n — 1)



olytopes counting lattice points ehrhart polynomials
polytop

(e} (ele} 00000
0000 [e]e] lo]e} [e]
(o]

(o] 00000
0000000000

Examples

2. Cube
In dimension 3, Lr,(n) = (n+1)°,  Lo(n) = (n—1)°.
In dimension d, we need to count lattice points in

nDd:{xeRd:ng,Sn}.

Lattice points:

(V1,-..,¥q4) € Z9wWith0 < y; < n. (n+ 1 options for each ;)
Interior lattice points:

(V1,...,Y4) € Z9with0 < y; < n.  (n— 1 options for each ;)

Log(n) = (n+1)%, Log(n) = (n—1)%,
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Examples
1. Simplex

Count points in nAy_ :{

d
x e RY : X,->O,Zx,-:n}.

i=1

Interior points: (1, .. .,Yq) € Z9 with y; > 0, Z}; yi=n.

Lag(n) = <Z 1)

- Ya) € Z9with y; > 0,52,y = n.
zZi=yi+1< (Z,...,29) € Z9 with z,>O,Zf’:1 zi=n+d.

LAd(n):<n;i1_1>.

Lattice points:  (y1,.
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Examples
3. Crosspolytope: Skip.
4. The “coin polytope"

Let f(N) = number of ways to make change for N cents using
(an unlimited supply of) quarters, dimes, nickels, and pennies.

Notice: f(N) is the number of lattice points in the polytope

Coin(N) = {(q,d,n,p) e R*: q,d,n,p > 0, 259 + 10d + 5n+ p = N}

Now, Coin(N) = NCoin(1), so

LCoin(1)(N) = f(N), LCoin(1)0(N) = f(N —41).

Warning: Coin(1) does not have integer vertices.
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Ehrhart’s theorem
Theorem. (Ehrhart, 1962)

Let P be a d-polytope with integer vertices in R9. Then

Lp(n) = cdnd + Cq—1 nd*1 +---+C1N+Cg

is a polynomial in n of degree d. Also,

cq = Vol(P), cq—1 = “Surface Vol (P), co=1.

So (discrete) counting gives us the (continuous) volume of P.

This is called the Ehrhart polynomial of P.
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Ehrhart’s theorem
Theorem. (Ehrhart, 1962) For a d-polytope P,

Lp(n) = cdnd + Cq—1 nd_1 +---+Cc1n+Co

is the Ehrhart polynomial of P.

Define the Ehrhart series of P to be

Ehrp(z) =Y Lp(n)z" = Lp(0)2° + Lp(1)z' + Lp(2)2% + - -

n>0

In our first example,

7 7 14+565z+2°
EhfP(Z):Z <2n2+2n+1>2”—“'_ ZL12+)3
n>0

for |z| < 1.
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Examples

1. Simplex. We computed the Ehrhart polynomial:
La,(n) = <n+d71> _ <n+df1) _ (n+d—1)(n+g’!—2)...(d+1)d.

d—1 n

Notice that:

(—nd) _ (—d)(—d—1)-~~(—g!—d+2)(—n—d+1) _ (_1)n(n3$1)
SO

ERray(2) = Ynso Lag(mz" = Y pso(-1)" () 2" = (1 = 2) 7.

In conclusion,
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Examples
2. Cube. We computed the Ehrhart polynomial:

Loy(n) = (n+1)% 80 Ehry(2) = Xpsoln+1)92".

Ehrmy(2) = 715, Ehmy(2) = Glpp,  Ehm,(2) = {25
2 2 3
Ehri,(2) = 1(+14_z;)42 , Ehro,(z) = HHEEIEHE

To compute these use  Ehr, ,(2) = Ehro,(z) + zdi’z Ehr,(2)

We are led to guess that

0 1 d
aZ” +a1Z2 +---+ agZ
Ethd(Z): (1 _Z)O'-H

where g; is a positive integer. What does it count?
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Examples
2. Cube. The Ehrhart series of the d-cube is:

0 1 d
B d_n_ @Z +a&zZ +---+24Z
Ehro,(2) = ;(”‘*‘ 1)z (1 z)d+

Theorem. (Euler 1755 / Carlitz, 1953) The number a; equals
the number of permutations of [n] having exactly i descents.

Example: The permutations of {1,2,3} and their descents:

123,132,213,231, 312, 321
So

1+4z4122
Ehroy(2) = Td-z0
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Examples
3. Crosspolytope The Ehrhart series of the d-crosspolytope is:

1+ 2)9
Ehry,(z) = (1(—z)d)+1' Skip.

4. Coin polytope The Ehrhart series of the coin polytope is:

Ehrogn(z) = (1 +2' + 212 + 213 4. )1 + 25 + 252 + 253 1.

)
(142104 2102 4 7108 4 )(] 4 225 4 2252 4 7253 1 ..
SO

1
Efrcan(2) = 4= )@ = 25)(1 = 201 — 255"

One of these is not like the others. Why?
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Stanley’s theorem
Theorem. (Stanley 1980) For any d-polytope with integer ver-
tices, the Ehrhart series is of the form

@+ aiz' + -+ ag2?

Ehrp(Z)— (1 _Z)d+1

where ay, . .., ag are non-negative integers.

e If the vertices are rational, then for some integers
Ny,...,Ngy1 > 0:

@’ +az' + -+ agzd
EhrP(Z) - (1 —2”1)---(1 _an+1)

e If the vertices are irrational, nobody knows.

Strategy of proof: Prove it for simplices, then “triangulate".
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Ehrhart reciprocity

If we plug n € N into the Ehrhart polynomial, we get
Lp(n) = number of lattice points in nP
A strange idea: What if we plug in a negative integer —n?

Lp(—n) = 22

Something amazing happens:

Theorem. (Macdonald 1971) For any d-polytope with integer
vertices,

Lp(—n) = (—1)Lpo(n).

We get the number of interior points in nP!
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Ehrhart reciprocity v2
Put differently,

Theorem. (Macdonald 1971) If the Ehrhart polynomial of P is
Lp(n) = cdnd + Cq—_1 nd_1 +---4+ 1N+ Cy

then the interior Ehrhart polynomial is

Lpo(n) = cgn? — cq_1n® ' + ... £ cin T .

For instance, recall that in our example:

7 7
= —-n+1.

Lp(n):zn2+zn+1, Lpo(n) = 5 5

2 2
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Back to Pick’s theorem
Theorem. (Pick, 1899)

Let P be a polygon with integer vertices. If
I = number of interior points of P and
B = number of boundary points of P, then

Area(P) = I+ g —1

Proof: We have

Lp(n) = an® + bn +c, Lpo(n) = an® — bn + c.
Therefore
I=a-b+c, B=2b — [+8-1=a+c-1.

But we saw that a= Area(P)andc=1. O
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Thank you very much.

Muchas gracias.
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Corte de comerciales.

For more information about

e polytopes

e Coxeter groups,

e matroids, and

e combinatorial commutative algebra,

please visit

http://math.sfsu.edu/federico/
where you will find links to the (150+) lecture videos and notes
of my courses at San Francisco State University and the
Universidad de Los Andes.
(Also exercises, discussion forum, research projects, etc.)

(San Francisco State University — Colombia Combinatorics Initiative)
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