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Tutte Polynomials of Hyperplane Arrangements

The Tutte polynomial

Let k be a field. A hyperplane arrangement A is a set of affine
hyperplanes in k".

e A subset B C A is central if NB # (.
e The rank of a central subset B is r7(B) = n — dim NB.

e The rank of the arrangement A is the largest rank of a

central subset of A, and it is denoted r.

The Tutte polynomial of A is

Talgt) = > (q— 1) " E) - 1)F—®,

BCA
central
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Why is the Tutte polynomial interesting?

The Tutte polynomial has been defined for graphs [Tutte, 1947]
and for matroids |[Crapo, 1969].

For graphs:

e 7'(1,1) = number of spanning trees.

e 7'(2,0) = number of acyclic orientations of the edges.
[Stanley, 1973]

T(0,2) = number of totally cyclic orientations of the edges.
[Stanley, 1980]

(—1)"=¢q°T(1 — q,0) = number of proper g-colorings of the
vertices. [Tutte, 1947

(=1)¢=v*¢T(0,1 —¢t) = number of nowhere zero t-flows, under
any orientation of the edges. [Crapo, 1969]
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For matroids:

T(1,1) = number of bases.
T(2,1) = number of independent sets.

T(1,2) = number of spanning sets.

(=1)"* [¢*] T(1 — ¢,0) = number of k-subsets with no broken
circuits. [Whitney, 1935

For a matroid represented by the columns of a matrix M over

Q, p and q large enough prime powers and a + b = 1,

I (D (1 + (p — 1)a7 1+ (q— l)b) = 3 als@lplstw)
b a

where the sum is over all (z,y) € row(M) x ker(M) C F) x Fy
such that s(z) Ns(y) = 0. [Reiner, 1997]
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The characteristic polynomial x 4(q) of a hyperplane

arrangement is also interesting.

e (—1)"x(—1) = number of regions of R” — | J Ag.
[Zaslavsky, 1975]

(—=1)"x(1) = number of bounded regions of R” — | J Ag.
[Zaslavsky, 1975]

(—q)”X(_Tl) = Poincaré polynomial of C* — | J Ac.
|Orlik and Solomon, 1980)]

(—q)nx(_?l) = Poincaré polynomial of the Orlik - Solomon

algebra of A. [Orlik and Solomon, 1980

With our definition of T'(q,t), x(q) = (—=1)"¢"~"T(1 — q,0).
|Whitney, 1935] [Postnikov, 1997]
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What can we say about T 4(q,t)?

A central arrangement A has a matroid M 4 associated to it. M 4 is

determined by the vectors normal to the hyperplanes of A.

Since T'4(q,t) = Th,(q,t) , central arrangements inherit all the

Tutte polynomial properties of a matroid in this way.

For affine arrangements some of these properties extend easily,
others extend with more difficulty, and others do not seem to

extend.
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Deletion - contraction.

If the hyperplane H is neither a loop nor a coloop, then

_|_

Furthermore, any function satisfying such a recurrence is an
evaluation of the Tutte polynomial. These functions are called
Tutte - Grothendieck invariants.

Examples: number of central subsets, number of regions.
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T(q,t) has non-negative coefficients.

A set B C A is a basis if it is central and r(B) = |B| = r.
Number the hyperplanes of A. For a basis B:

e Say that e ¢ B is an external activity element for B if
B Ue is central and r(Bs. Ue) =71(Bx.). E(B) is the set and
e(B) is the number of external activity elements.

e Say that ¢+ € B is an internal activity element for B if
r((B—1i)UA-;) <r. I(B) is the set and i(B) is the number of

internal activity elements.
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T(q,t)= > ¢ PP
B basis

B
12
13
14
23
24

T(q,t) =q¢* +2q+t+1
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Key fact:

Each central subset B C A can be written uniquely as
B=B—1UFE where B is a basis, I C I(B) and £ C E(B).
Furthermore, its rank is 7(B) = r — |I| .

Ta(g.t) = Y (¢— 1) "Bt —1)lBI=rB)

BCA
central

Z Z Z (q _ 1)r—r(B—I UE) (t _ 1)|B—I UE|—r(B—IUE)

B ICI(B) ECE(B)

Y'Y Y (@ pflg-)lF

B ICI(B) ECE(B)

Z(l + (q — 1))II(B)|(1 +(t— 1))|E(B)|

B
$ g,
B
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A finite field method.

_ B r +t—1
Let %(q,t) = (t — 1)" T (tht) .

Theorem. Let A be a Z-arrangement in R™. Let g be a large
enough prime power, and let A, be the induced arrangement in
Fy. Then

"Xalg,t)= Y "W
p ey

where h(p) denotes the number of hyperplanes of A, that p lies

O1l.

The same result holds for subspace arrangements.
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An example.
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Applications and specializations.

e Summing over all x < y in the intersecton poset L 4,
Xalg,t) =2 pla,y)g" "W).

Pick a random subarrangement B C A, by independently
deleting each hyperplane from A with probability ¢. Then

Elxs(q)] = ¢"7"X4(q,t) .

(Greene, 1976] Let C' be an r-dimensional subspace of Fy. Let
U be a matrix whose rows form a basis for C', and let M (U) be
the matroid determined by the columns of U. For each v € C,

let w(v) be the number of nonzero coordinates of v. Then

Yvect™ =" Xuw) (4 7) -
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Coboundary polynomials of specific arrangements.

At i =2 (1 <i<j<n).

144> Xa,(a:) x—, =[S )

n>1 n>0
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n>1 n>0

where f(n) denotes the number of forests on [n].
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The threshold arrangement.

Tt i +2; =0 (1 <1<3<n).
quc(G) e(G)

summing over all graphs G on [n|. Here be(G) is the number of
connected components of G which are bipartite, and e(G) is the
number of edges of GG. Also,

Y wnant = (SO0 ) (23 (4)re s

n>0 ' n>0 ' n>0 k=0
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The Linial arrangement.

Lozi—x;=1(1<i<j<n).
ZQC<P) 6(P)

summing over all naturally labeled graded posets P on [n|. Here
c(P) is the number of connected components of the Hasse diagram
of P, and e(P) is the number of edges.

2wl

Let Ap(z,t —1) =Y ¢idw)z Tl summing over all words w of letters

chosen from [k]. Here id(w) is the total number of times that some

letter 7 + 1 occurs before some letter 2 in w. Then
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The number [,, of regions of the Linial arrangement L£,, is equal to
the number of alternating trees on [n + 1]. These are trees such

that each vertex is either smaller or larger than all of its neighbors.
[Athanasiadis, 1996|[Postnikov, 1997]

We get a new formula for the number of alternating trees. Let

1 z(1+y)
+ ye Z L

_ x(1+
1 e( Y) o
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The Shi arrangement.

Sp:xi—x; =0,1(1<i<j<n).
The number of regions is (n + 1)"~ 1. [Shi, 1986]

n n—lxn_ . Zn(k_l_n)n%
2 (" 1) = lim S e

n>0 n!

The Catalan arrangement.

Crn: i —z; =—1,0,1 (1 <i<j<n).

The number of regions is n! C,,. [Stanley, 1996]

, (k:—71%—n
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