# Tutte Polynomials of Hyperplane Arrangements

#### Federico Ardila M.

Massachusetts Institute of Technology Cambridge, MA, USA fardila@math.mit.edu

Formal Power Series and Algebraic Combinatorics July 8, 2002

## The Tutte polynomial

Let  $\mathbb{k}$  be a field. A **hyperplane arrangement**  $\mathcal{A}$  is a set of affine hyperplanes in  $\mathbb{k}^n$ .

- A subset  $\mathcal{B} \subseteq \mathcal{A}$  is **central** if  $\cap \mathcal{B} \neq \emptyset$ .
- The rank of a central subset  $\mathcal{B}$  is  $r(\mathcal{B}) = n \dim \cap \mathcal{B}$ .
- The rank of the arrangement A is the largest rank of a central subset of A, and it is denoted r.

The **Tutte polynomial** of A is

$$T_{\mathcal{A}}(q,t) = \sum_{\substack{\mathcal{B} \subseteq \mathcal{A} \\ \text{central}}} (q-1)^{r-r(\mathcal{B})} (t-1)^{|\mathcal{B}|-r(\mathcal{B})}.$$

#### Tutte Polynomials of Hyperplane Arrangements



| central subset     | rank | contribution     |
|--------------------|------|------------------|
| Ø                  | 0    | $(q-1)^2(t-1)^0$ |
| 1, 2, 3, 4         | 1    | $(q-1)^1(t-1)^0$ |
| 12, 13, 14, 23, 24 | 2    | $(q-1)^0(t-1)^0$ |
| 123                | 2    | $(q-1)^0(t-1)^1$ |

$$T(q,t) = (q-1)^2 + 4(q-1) + 5 + (t-1)$$
  
=  $q^2 + 2q + t + 1$ 

### Why is the Tutte polynomial interesting?

The Tutte polynomial has been defined for graphs [Tutte, 1947] and for matroids [Crapo, 1969].

### For graphs:

- T(1,1) = number of spanning trees.
- T(2,0) = number of acyclic orientations of the edges. [Stanley, 1973]
- T(0,2) = number of totally cyclic orientations of the edges. [Stanley, 1980]
- $(-1)^{v-c} q^c T(1-q,0)$  = number of proper q-colorings of the vertices. [Tutte, 1947]
- $(-1)^{e-v+c}T(0,1-t)$  = number of nowhere zero t-flows, under any orientation of the edges. [Crapo, 1969]

#### For matroids:

- T(1,1) = number of bases.
- T(2,1) = number of independent sets.
- T(1,2) = number of spanning sets.
- $(-1)^{r-k} [q^k] T(1-q,0) = \text{number of } k\text{-subsets with no broken circuits.}$  [Whitney, 1935]
- For a matroid represented by the columns of a matrix M over  $\mathbb{Q}$ , p and q large enough prime powers and a+b=1,

$$a^{r(M^*)}b^{r(M)}T_M\left(\frac{1+(p-1)a}{b}, \frac{1+(q-1)b}{a}\right) = \sum a^{|s(x)|}b^{|s(y)|}$$

where the sum is over all  $(x, y) \in \text{row}(M) \times \text{ker}(M) \subseteq \mathbb{F}_p^n \times \mathbb{F}_q^n$ such that  $s(x) \cap s(y) = \emptyset$ . [Reiner, 1997] The characteristic polynomial  $\chi_{\mathcal{A}}(q)$  of a hyperplane arrangement is also interesting.

- $(-1)^n \chi(-1) = \text{number of regions of } \mathbb{R}^n \bigcup \mathcal{A}_{\mathbb{R}}.$  [Zaslavsky, 1975]
- $(-1)^n \chi(1) = \text{number of bounded regions of } \mathbb{R}^n \bigcup \mathcal{A}_{\mathbb{R}}.$  [Zaslavsky, 1975]
- $(-q)^n \chi(\frac{-1}{q})$  = Poincaré polynomial of  $\mathbb{C}^n \bigcup \mathcal{A}_{\mathbb{C}}$ . [Orlik and Solomon, 1980]
- $(-q)^n \chi(\frac{-1}{q})$  = Poincaré polynomial of the Orlik Solomon algebra of  $\mathcal{A}$ . [Orlik and Solomon, 1980]
- With our definition of T(q,t),  $\chi(q) = (-1)^r q^{n-r} T(1-q,0)$ . [Whitney, 1935] [Postnikov, 1997]

What can we say about  $T_A(q,t)$ ?

A central arrangement  $\mathcal{A}$  has a matroid  $M_{\mathcal{A}}$  associated to it.  $M_{\mathcal{A}}$  is determined by the vectors normal to the hyperplanes of  $\mathcal{A}$ .

Since  $T_{\mathcal{A}}(q,t) = T_{M_{\mathcal{A}}}(q,t)$ , central arrangements inherit all the Tutte polynomial properties of a matroid in this way.

For affine arrangements some of these properties extend easily, others extend with more difficulty, and others do not seem to extend.

#### <u>Deletion - contraction.</u>

If the hyperplane H is neither a loop nor a coloop, then

$$T_{\mathcal{A}}(q,t) = T_{\mathcal{A}-H}(q,t) + T_{\mathcal{A}/H}(q,t).$$



Furthermore, any function satisfying such a recurrence is an evaluation of the Tutte polynomial. These functions are called **Tutte - Grothendieck invariants**.

Examples: number of central subsets, number of regions.

T(q,t) has non-negative coefficients.

A set  $B \subseteq \mathcal{A}$  is a basis if it is central and r(B) = |B| = r.

Number the hyperplanes of A. For a basis B:

- Say that  $e \notin B$  is an **external activity element for** B if  $B \cup e$  is central and  $r(B_{>e} \cup e) = r(B_{>e})$ . E(B) is the set and e(B) is the number of external activity elements.
- Say that  $i \in B$  is an internal activity element for B if  $r((B-i) \cup A_{< i}) < r$ . I(B) is the set and i(B) is the number of internal activity elements.

#### Tutte Polynomials of Hyperplane Arrangements

Theorem.

$$T(q,t) = \sum_{B \text{ basis}} q^{i(B)} t^{e(B)}$$



| $oxed{B}$ | I(B) | E(B) | $B-I\cup E$        |
|-----------|------|------|--------------------|
| 12        | 12   | -    | $\emptyset,1,2,12$ |
| 13        | 1    | -    | 3,13               |
| 14        | 1    | -    | 4,14               |
| 23        | -    | 1    | 23, 123            |
| 24        | -    | -    | 24                 |

$$T(q,t) = q^2 + 2q + t + 1$$

## Key fact:

Each central subset  $\mathcal{B} \subseteq \mathcal{A}$  can be written uniquely as  $\mathcal{B} = B - I \cup E$  where B is a basis,  $I \subseteq I(B)$  and  $E \subseteq E(B)$ . Furthermore, its rank is  $r(\mathcal{B}) = r - |I|$ .

$$T_{\mathcal{A}}(q,t) = \sum_{\substack{B \subseteq \mathcal{A} \\ \text{central}}} (q-1)^{r-r(\mathcal{B})} (t-1)^{|\mathcal{B}|-r(\mathcal{B})}$$

$$= \sum_{B} \sum_{I \subseteq I(B)} \sum_{E \subseteq E(B)} (q-1)^{r-r(B-I \cup E)} (t-1)^{|B-I \cup E|-r(B-I \cup E)}$$

$$= \sum_{B} \sum_{I \subseteq I(B)} \sum_{E \subseteq E(B)} (q-1)^{|I|} (t-1)^{|E|}$$

$$= \sum_{B} (1+(q-1))^{|I(B)|} (1+(t-1))^{|E(B)|}$$

$$= \sum_{B} q^{i(B)} t^{e(B)}.$$

## A finite field method.

Let 
$$\overline{\chi}(q,t) = (t-1)^r T\left(\frac{q+t-1}{t-1},t\right)$$
.

**Theorem.** Let  $\mathcal{A}$  be a  $\mathbb{Z}$ -arrangement in  $\mathbb{R}^n$ . Let q be a large enough prime power, and let  $\mathcal{A}_q$  be the induced arrangement in  $\mathbb{F}_q^n$ . Then

$$q^{n-r}\overline{\chi}_{\mathcal{A}}(q,t) = \sum_{p \in \mathbb{F}_q^n} t^{h(p)}$$

where h(p) denotes the number of hyperplanes of  $\mathcal{A}_q$  that p lies on.

The same result holds for subspace arrangements.

An example.

$$\mathcal{H}_n$$
:  $x_i = 0 \ (1 \le i \le n)$ .

$$\overline{\chi}_{\mathcal{H}_n}(q,t) = \sum_{p \in \mathbb{F}_q^n} t^{h(p)}$$

$$= \sum_{k=0}^n \left( \binom{n}{k} (q-1)^{n-k} \right) t^k$$

$$= (q+t-1)^n.$$

Applications and specializations.

- Summing over all  $x \leq y$  in the intersection poset  $L_{\mathcal{A}}$ ,  $\overline{\chi}_{\mathcal{A}}(q,t) = \sum \mu(x,y)q^{n-r(y)}t^{h(x)}$ .
- Pick a random subarrangement  $\mathcal{B} \subseteq \mathcal{A}$ , by independently deleting each hyperplane from  $\mathcal{A}$  with probability t. Then  $E[\chi_{\mathcal{B}}(q)] = q^{n-r}\overline{\chi}_{\mathcal{A}}(q,t)$ .
- [Greene, 1976] Let C be an r-dimensional subspace of  $\mathbb{F}_q^n$ . Let U be a matrix whose rows form a basis for C, and let M(U) be the matroid determined by the columns of U. For each  $v \in C$ , let w(v) be the number of nonzero coordinates of v. Then

$$\sum_{v \in C} t^{w(v)} = t^n \overline{\chi}_{M(U)} \left( q, \frac{1}{t} \right) .$$

Coboundary polynomials of specific arrangements.

$$\mathcal{A}_n \colon x_i = x_j \ (1 \le i < j \le n).$$

$$1 + q \sum_{n \ge 1} \overline{\chi}_{\mathcal{A}_n}(q, t) \frac{x^n}{n!} = \left( \sum_{n \ge 0} t^{\binom{n}{2}} \frac{x^n}{n!} \right)^q$$

$$\mathcal{B}_n$$
:  $x_i = x_j$ ,  $x_i + x_j = 0$   $(1 \le i < j \le n)$ ,  $x_i = 0$   $(1 \le i \le n)$ .

$$\sum_{n\geq 0} \overline{\chi}_{\mathcal{B}_n}(q,t) \frac{x^n}{n!} = \left( \sum_{n\geq 0} 2^n t^{\binom{n}{2}} \frac{x^n}{n!} \right)^{\frac{q-1}{2}} \left( \sum_{n\geq 0} t^{n^2} \frac{x^n}{n!} \right)^{\frac{n}{2}}$$

$$\mathcal{D}_n$$
:  $x_i = x_j$ ,  $x_i + x_j = 0 \ (1 \le i < j \le n)$ .

$$\sum_{n\geq 0} \overline{\chi}_{\mathcal{D}_n}(q,t) \frac{x^n}{n!} = \left(\sum_{n\geq 0} 2^n t^{\binom{n}{2}} \frac{x^n}{n!}\right)^{\frac{q-1}{2}} \left(\sum_{n\geq 0} t^{n(n-1)} \frac{x^n}{n!}\right)^q$$

 $\mathcal{A}_n^{\#}$ :  $x_i - x_j = a_{ij}$   $(1 \le i < j \le n)$ , where the  $a_{ij}$ 's are generic.

$$1 + q \sum_{n \ge 1} \overline{\chi}_{\mathcal{A}_n^{\#}}(q, t) \frac{x^n}{n!} = \left( \sum_{n \ge 0} f(n) \frac{x^n (q - 1)^n}{n!} \right)^{\frac{t}{q - 1}}$$

where f(n) denotes the number of forests on [n].

The threshold arrangement.

$$\mathcal{T}_n$$
:  $x_i + x_j = 0 \ (1 \le i < j \le n)$ . 
$$\overline{\chi}_{\mathcal{T}_n}(q, t) = \sum_G q^{bc(G)}(t - 1)^{e(G)},$$

summing over all graphs G on [n]. Here bc(G) is the number of connected components of G which are bipartite, and e(G) is the number of edges of G. Also,

$$\sum_{n\geq 0} \overline{\chi}_{\mathcal{T}_n}(q,t) \frac{x^n}{n!} = \left(\sum_{n\geq 0} t^{\binom{n}{2}} \frac{x^n}{n!}\right) \left(\sum_{n\geq 0} \sum_{k=0}^n \binom{n}{k} t^{k(n-k)} \frac{x^n}{n!}\right)^{\frac{q-1}{2}}.$$

The Linial arrangement.

$$\mathcal{L}_n$$
:  $x_i - x_j = 1 \ (1 \le i < j \le n)$ . 
$$q \, \overline{\chi}_{\mathcal{L}_n}(q, t) = \sum_P q^{c(P)} (t - 1)^{e(P)}$$

summing over all naturally labeled graded posets P on [n]. Here c(P) is the number of connected components of the Hasse diagram of P, and e(P) is the number of edges.

Let  $A_k(x, t-1) = \sum t^{\operatorname{id}(w)} \frac{x^{|w|}}{|w|!}$ , summing over all words w of letters chosen from [k]. Here  $\operatorname{id}(w)$  is the total number of times that some letter i+1 occurs before some letter i in w. Then

$$1 + q \sum_{n \ge 1} \overline{\chi}_{\mathcal{L}_n}(q, t) \frac{x^n}{n!} = \left( \lim_{k \to \infty} \frac{A_k}{A_{k-1}} \right)^q.$$

The number  $l_n$  of regions of the Linial arrangement  $\mathcal{L}_n$  is equal to the number of **alternating trees** on [n+1]. These are trees such that each vertex is either smaller or larger than all of its neighbors. [Athanasiadis, 1996][Postnikov, 1997]

We get a new formula for the number of alternating trees. Let

$$\frac{1+ye^{x(1+y)}}{1-y^2e^{x(1+y)}} = \sum_{n\geq 0} L_n(x)y^n.$$

Then

$$\sum_{n\geq 0} (-1)^n l_n \frac{x^n}{n!} = \lim_{k\to\infty} \frac{L_{k-1}(x)}{L_k(x)}.$$

The Shi arrangement.

$$S_n$$
:  $x_i - x_j = 0, 1 \ (1 \le i < j \le n)$ .

The number of regions is  $(n+1)^{n-1}$ . [Shi, 1986]

$$\sum_{n>0} (-1)^n (n+1)^{n-1} \frac{x^n}{n!} = \lim_{k \to \infty} \frac{\sum_n (k-1-n)^n \frac{x^n}{n!}}{\sum_n (k-n)^n \frac{x^n}{n!}}.$$

The Catalan arrangement.

$$C_n$$
:  $x_i - x_j = -1, 0, 1 \ (1 \le i < j \le n)$ .

The number of regions is  $n! C_n$ . [Stanley, 1996]

$$\sum_{n\geq 0} (-1)^n C_n x^n = \lim_{k\to\infty} \frac{\sum_n {k-1-n \choose n} x^n}{\sum_n {k-n \choose n} x^n}.$$