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1. MULTIPLICATION




2 x 3 x 4 x 5 = ?

What answer did you get?

How did you do it? 

How did you feel doing it?


Talk to your neighbor.

Question: (For you!) (Please don’t scream out your answer yet.)



Talk to your neighbor.



2 x 3 x 4 x 5 = 120

Different processes give the same answer!!!

Why do we get the same answer?!?!  Today’s topic.

Who is suprised? Who is not surprised?



Two simple laws with

complicated names:

Commutative Law:   a x b = b x a

Associative Law:    (a x b) x c = a x (b x c)

“The order of operations doesn’t affect the result.”

(or: why we get the same answer)



2. ORDER DOESN’T MATTER



One illustration:Why?!?!

 2 x 3 3 x 2

Is this a proof?

Not to a mathematician. 

Is 202 x 117 = 117 x 202?

We need to think more slowly.

Order doesn’t matter:   a x b = b x a



Why?
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is 123.4444 . . . a real number, while . . . 444.321 is not? And why do we
have to carry of digits when adding or multiplying? Why is 0.999 . . . the
same number as 1? What is the smallest positive real number? Isn’t
it just 0.00 . . . 001? So to set aside these problems, we will not try to
assume any knowledge of the decimal system, though we will of course
still refer to numbers by their familiar names such as 1,2,3, etc. instead
of using other notation such as I,II,III or 0++, (0++)++, ((0++)++)++
(see below) so as not to be needlessly artificial. For completeness, we
review the decimal system in an Appendix (§B).

2.1 The Peano axioms

We now present one standard way to define the natural numbers, in
terms of the Peano axioms, which were first laid out by Guiseppe Peano
(1858–1932). This is not the only way to define the natural numbers.
For instance, another approach is to talk about the cardinality of finite
sets, for instance one could take a set of five elements and define 5 to be
the number of elements in that set. We shall discuss this alternate ap-
proach in Section 3.6. However, we shall stick with the Peano axiomatic
approach for now.

How are we to define what the natural numbers are? Informally, we
could say

Definition 2.1.1. (Informal) A natural number is any element of the
set

N := {0, 1, 2, 3, 4, . . .},
which is the set of all the numbers created by starting with 0 and then
counting forward indefinitely. We call N the set of natural numbers.

Remark 2.1.2. In some texts the natural numbers start at 1 instead of
0, but this is a matter of notational convention more than anything else.
In this text we shall refer to the set {1, 2, 3, . . .} as the positive integers
Z+ rather than the natural numbers. Natural numbers are sometimes
also known as whole numbers.

In a sense, this definition solves the problem of what the natural
numbers are: a natural number is any element of the set1 N. However,

1Strictly speaking, there is another problem with this informal definition: we have
not yet defined what a “set” is, or what “element of” is. Thus for the rest of this
chapter we shall avoid mention of sets and their elements as much as possible, except
in informal discussion.
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it is not really that satisfactory, because it begs the question of what
N is. This definition of “start at 0 and count indefinitely” seems like
an intuitive enough definition of N, but it is not entirely acceptable,
because it leaves many questions unanswered. For instance: how do
we know we can keep counting indefinitely, without cycling back to 0?
Also, how do you perform operations such as addition, multiplication,
or exponentiation?

We can answer the latter question first: we can define complicated
operations in terms of simpler operations. Exponentiation is nothing
more than repeated multiplication: 53 is nothing more than three fives
multiplied together. Multiplication is nothing more than repeated addi-
tion; 5×3 is nothing more than three fives added together. (Subtraction
and division will not be covered here, because they are not operations
which are well-suited to the natural numbers; they will have to wait for
the integers and rationals, respectively.) And addition? It is nothing
more than the repeated operation of counting forward, or incrementing.
If you add three to five, what you are doing is incrementing five three
times. On the other hand, incrementing seems to be a fundamental op-
eration, not reducible to any simpler operation; indeed, it is the first
operation one learns on numbers, even before learning to add.

Thus, to define the natural numbers, we will use two fundamental
concepts: the zero number 0, and the increment operation. In deference
to modern computer languages, we will use n++ to denote the increment
or successor of n, thus for instance 3++ = 4, (3++)++ = 5, etc. This
is a slightly different usage from that in computer languages such as C,
where n++ actually redefines the value of n to be its successor; however
in mathematics we try not to define a variable more than once in any
given setting, as it can often lead to confusion; many of the statements
which were true for the old value of the variable can now become false,
and vice versa.

So, it seems like we want to say that N consists of 0 and everything
which can be obtained from 0 by incrementing: N should consist of the
objects

0, 0++, (0++)++, ((0++)++)++, etc.

If we start writing down what this means about the natural numbers,
we thus see that we should have the following axioms concerning 0 and
the increment operation ++:

Axiom 2.1. 0 is a natural number.
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Axiom 2.2. If n is a natural number, then n++ is also a natural num-
ber.

Thus for instance, from Axiom 2.1 and two applications of Axiom 2.2,
we see that (0++)++ is a natural number. Of course, this notation will
begin to get unwieldy, so we adopt a convention to write these numbers
in more familiar notation:

Definition 2.1.3. We define 1 to be the number 0++, 2 to be the
number (0++)++, 3 to be the number ((0++)++)++, etc. (In other
words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use “x := y”
to denote the statement that x is defined to equal y.)

Thus for instance, we have

Proposition 2.1.4. 3 is a natural number.

Proof. By Axiom 2.1, 0 is a natural number. By Axiom 2.2, 0++ = 1 is
a natural number. By Axiom 2.2 again, 1++ = 2 is a natural number.
By Axiom 2.2 again, 2++ = 3 is a natural number.

It may seem that this is enough to describe the natural numbers.
However, we have not pinned down completely the behavior of N:

Example 2.1.5. Consider a number system which consists of the num-
bers 0, 1, 2, 3, in which the increment operation wraps back from 3 to
0. More precisely 0++ is equal to 1, 1++ is equal to 2, 2++ is equal
to 3, but 3++ is equal to 0 (and also equal to 4, by definition of 4).
This type of thing actually happens in real life, when one uses a com-
puter to try to store a natural number: if one starts at 0 and performs
the increment operation repeatedly, eventually the computer will over-
flow its memory and the number will wrap around back to 0 (though
this may take quite a large number of incrementation operations, for
instance a two-byte representation of an integer will wrap around only
after 65, 536 increments). Note that this type of number system obeys
Axiom 2.1 and Axiom 2.2, even though it clearly does not correspond
to what we intuitively believe the natural numbers to be like.

To prevent this sort of “wrap-around issue” we will impose another
axiom:

Axiom 2.3. 0 is not the successor of any natural number; i.e., we have
n++ "= 0 for every natural number n.
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Now we can show that certain types of wrap-around do not occur:
for instance we can now rule out the type of behavior in Example 2.1.5
using

Proposition 2.1.6. 4 is not equal to 0.

Don’t laugh! Because of the way we have defined 4 - it is the in-
crement of the increment of the increment of the increment of 0 - it is
not necessarily true a priori that this number is not the same as zero,
even if it is “obvious”. (“a priori” is Latin for “beforehand” - it refers to
what one already knows or assumes to be true before one begins a proof
or argument. The opposite is “a posteriori” - what one knows to be
true after the proof or argument is concluded.) Note for instance that
in Example 2.1.5, 4 was indeed equal to 0, and that in a standard two-
byte computer representation of a natural number, for instance, 65536
is equal to 0 (using our definition of 65536 as equal to 0 incremented
sixty-five thousand, five hundred and thirty-six times).

Proof. By definition, 4 = 3++. By Axioms 2.1 and 2.2, 3 is a natural
number. Thus by Axiom 2.3, 3++ "= 0, i.e., 4 "= 0.

However, even with our new axiom, it is still possible that our num-
ber system behaves in other pathological ways:

Example 2.1.7. Consider a number system consisting of five numbers
0,1,2,3,4, in which the increment operation hits a “ceiling” at 4. More
precisely, suppose that 0++ = 1, 1++ = 2, 2++ = 3, 3++ = 4, but
4++ = 4 (or in other words that 5 = 4, and hence 6 = 4, 7 = 4, etc.).
This does not contradict Axioms 2.1,2.2,2.3. Another number system
with a similar problem is one in which incrementation wraps around,
but not to zero, e.g. suppose that 4++ = 1 (so that 5 = 1, then 6 = 2,
etc.).

There are many ways to prohibit the above types of behavior from
happening, but one of the simplest is to assume the following axiom:

Axiom 2.4. Different natural numbers must have different successors;
i.e., if n, m are natural numbers and n "= m, then n++ "= m++. Equiv-
alently2, if n++ = m++, then we must have n = m.

2This is an example of reformulating an implication using its contrapositive; see
Section A.2 for more details. In the converse direction, if n = m, then n++ = m++;
this is the axiom of substitution (see Section A.7) applied to the operation ++.
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Thus, for instance, we have

Proposition 2.1.8. 6 is not equal to 2.

Proof. Suppose for sake of contradiction that 6 = 2. Then 5++ = 1++,
so by Axiom 2.4 we have 5 = 1, so that 4++ = 0++. By Axiom 2.4 again
we then have 4 = 0, which contradicts our previous proposition.

As one can see from this proposition, it now looks like we can keep all
of the natural numbers distinct from each other. There is however still
one more problem: while the axioms (particularly Axioms 2.1 and 2.2)
allow us to confirm that 0, 1, 2, 3, . . . are distinct elements of N, there is
the problem that there may be other “rogue” elements in our number
system which are not of this form:

Example 2.1.9. (Informal) Suppose that our number system N con-
sisted of the following collection of integers and half-integers:

N := {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, . . .}.

(This example is marked “informal” since we are using real numbers,
which we’re not supposed to use yet.) One can check that Axioms 2.1-
2.4 are still satisfied for this set.

What we want is some axiom which says that the only numbers in N
are those which can be obtained from 0 and the increment operation -
in order to exclude elements such as 0.5. But it is difficult to quantify
what we mean by “can be obtained from” without already using the
natural numbers, which we are trying to define. Fortunately, there is an
ingenious solution to try to capture this fact:

Axiom 2.5 (Principle of mathematical induction). Let P (n) be any
property pertaining to a natural number n. Suppose that P (0) is true,
and suppose that whenever P (n) is true, P (n++) is also true. Then
P (n) is true for every natural number n.

Remark 2.1.10. We are a little vague on what “property” means at
this point, but some possible examples of P (n) might be “n is even”;
“n is equal to 3”; “n solves the equation (n + 1)2 = n2 + 2n + 1”; and
so forth. Of course we haven’t defined many of these concepts yet, but
when we do, Axiom 2.5 will apply to these properties. (A logical remark:
Because this axiom refers not just to variables, but also properties, it is
of a different nature than the other four axioms; indeed, Axiom 2.5
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should technically be called an axiom schema rather than an axiom - it
is a template for producing an (infinite) number of axioms, rather than
being a single axiom in its own right. To discuss this distinction further
is far beyond the scope of this text, though, and falls in the realm of
logic.)

The informal intuition behind this axiom is the following. Suppose
P (n) is such that P (0) is true, and such that whenever P (n) is true,
then P (n++) is true. Then since P (0) is true, P (0++) = P (1) is true.
Since P (1) is true, P (1++) = P (2) is true. Repeating this indefinitely,
we see that P (0), P (1), P (2), P (3), etc. are all true - however this
line of reasoning will never let us conclude that P (0.5), for instance, is
true. Thus Axiom 2.5 should not hold for number systems which contain
“unnecessary” elements such as 0.5. (Indeed, one can give a “proof” of
this fact. Apply Axiom 2.5 to the property P (n) = n “is not a half-
integer”, i.e., an integer plus 0.5. Then P (0) is true, and if P (n) is true,
then P (n++) is true. Thus Axiom 2.5 asserts that P (n) is true for all
natural numbers n, i.e., no natural number can be a half-integer. In
particular, 0.5 cannot be a natural number. This “proof” is not quite
genuine, because we have not defined such notions as “integer”, “half-
integer”, and “0.5” yet, but it should give you some idea as to how the
principle of induction is supposed to prohibit any numbers other than
the “true” natural numbers from appearing in N.)

The principle of induction gives us a way to prove that a property
P (n) is true for every natural number n. Thus in the rest of this text
we will see many proofs which have a form like this:

Proposition 2.1.11. A certain property P (n) is true for every natural
number n.

Proof. We use induction. We first verify the base case n = 0, i.e., we
prove P (0). (Insert proof of P (0) here). Now suppose inductively that n
is a natural number, and P (n) has already been proven. We now prove
P (n++). (Insert proof of P (n++), assuming that P (n) is true, here).
This closes the induction, and thus P (n) is true for all numbers n.

Of course we will not necessarily use the exact template, wording,
or order in the above type of proof, but the proofs using induction will
generally be something like the above form. There are also some other
variants of induction which we shall encounter later, such as backwards
induction (Exercise 2.2.6), strong induction (Proposition 2.2.14), and
transfinite induction (Lemma 8.5.15).
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Axioms 2.1-2.5 are known as the Peano axioms for the natural num-
bers. They are all very plausible, and so we shall make

Assumption 2.6. (Informal) There exists a number system N, whose
elements we will call natural numbers, for which Axioms 2.1-2.5 are
true.

We will make this assumption a bit more precise once we have laid
down our notation for sets and functions in the next chapter.

Remark 2.1.12. We will refer to this number system N as the natural
number system. One could of course consider the possibility that there
is more than one natural number system, e.g., we could have the Hindu-
Arabic number system {0, 1, 2, 3, . . .} and the Roman number system
{O, I, II, III, IV, V, V I, . . .}, and if we really wanted to be annoying we
could view these number systems as different. But these number systems
are clearly equivalent (the technical term is isomorphic), because one
can create a one-to-one correspondence 0 ↔ O, 1 ↔ I, 2 ↔ II, etc.
which maps the zero of the Hindu-Arabic system with the zero of the
Roman system, and which is preserved by the increment operation (e.g.,
if 2 corresponds to II, then 2++ will correspond to II++). For a more
precise statement of this type of equivalence, see Exercise 3.5.13. Since
all versions of the natural number system are equivalent, there is no
point in having distinct natural number systems, and we will just use a
single natural number system to do mathematics.

We will not prove Assumption 2.6 (though we will eventually include
it in our axioms for set theory, see Axiom 3.7), and it will be the only
assumption we will ever make about our numbers. A remarkable ac-
complishment of modern analysis is that just by starting from these five
very primitive axioms, and some additional axioms from set theory, we
can build all the other number systems, create functions, and do all the
algebra and calculus that we are used to.

Remark 2.1.13. (Informal) One interesting feature about the natural
numbers is that while each individual natural number is finite, the set of
natural numbers is infinite; i.e., N is infinite but consists of individually
finite elements. (The whole is greater than any of its parts.) There
are no infinite natural numbers; one can even prove this using Axiom
2.5, provided one is comfortable with the notions of finite and infinite.
(Clearly 0 is finite. Also, if n is finite, then clearly n++ is also finite.
Hence by Axiom 2.5, all natural numbers are finite.) So the natural
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numbers can approach infinity, but never actually reach it; infinity is
not one of the natural numbers. (There are other number systems which
admit “infinite” numbers, such as the cardinals, ordinals, and p-adics,
but they do not obey the principle of induction, and in any event are
beyond the scope of this text.)

Remark 2.1.14. Note that our definition of the natural numbers is ax-
iomatic rather than constructive. We have not told you what the natural
numbers are (so we do not address such questions as what the numbers
are made of, are they physical objects, what do they measure, etc.) -
we have only listed some things you can do with them (in fact, the only
operation we have defined on them right now is the increment one) and
some of the properties that they have. This is how mathematics works
- it treats its objects abstractly, caring only about what properties the
objects have, not what the objects are or what they mean. If one wants
to do mathematics, it does not matter whether a natural number means
a certain arrangement of beads on an abacus, or a certain organization
of bits in a computer’s memory, or some more abstract concept with no
physical substance; as long as you can increment them, see if two of them
are equal, and later on do other arithmetic operations such as add and
multiply, they qualify as numbers for mathematical purposes (provided
they obey the requisite axioms, of course). It is possible to construct
the natural numbers from other mathematical objects - from sets, for
instance - but there are multiple ways to construct a working model of
the natural numbers, and it is pointless, at least from a mathematician’s
standpoint, as to argue about which model is the “true” one - as long as
it obeys all the axioms and does all the right things, that’s good enough
to do maths.

Remark 2.1.15. Historically, the realization that numbers could be
treated axiomatically is very recent, not much more than a hundred
years old. Before then, numbers were generally understood to be in-
extricably connected to some external concept, such as counting the
cardinality of a set, measuring the length of a line segment, or the mass
of a physical object, etc. This worked reasonably well, until one was
forced to move from one number system to another; for instance, under-
standing numbers in terms of counting beads, for instance, is great for
conceptualizing the numbers 3 and 5, but doesn’t work so well for −3
or 1/3 or

√
2 or 3 + 4i; thus each great advance in the theory of num-

bers - negative numbers, irrational numbers, complex numbers, even
the number zero - led to a lot of unnecessary philosophical anguish.
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The great discovery of the late nineteenth century was that numbers
can be understood abstractly via axioms, without necessarily needing a
concrete model; of course a mathematician can use any of these models
when it is convenient, to aid his or her intuition and understanding, but
they can also be just as easily discarded when they begin to get in the
way.

One consequence of the axioms is that we can now define sequences
recursively. Suppose we want to build a sequence a0, a1, a2, . . . of num-
bers by first defining a0 to be some base value, e.g., a0 := c for some
number c, and then by letting a1 be some function of a0, a1 := f0(a0),
a2 be some function of a1, a2 := f1(a1), and so forth. In general, we
set an++ := fn(an) for some function fn from N to N. By using all
the axioms together we will now conclude that this procedure will give
a single value to the sequence element an for each natural number n.
More precisely3:

Proposition 2.1.16 (Recursive definitions). Suppose for each natural
number n, we have some function fn : N → N from the natural numbers
to the natural numbers. Let c be a natural number. Then we can assign
a unique natural number an to each natural number n, such that a0 = c
and an++ = fn(an) for each natural number n.

Proof. (Informal) We use induction. We first observe that this proce-
dure gives a single value to a0, namely c. (None of the other defini-
tions an++ := fn(an) will redefine the value of a0, because of Axiom
2.3.) Now suppose inductively that the procedure gives a single value
to an. Then it gives a single value to an++, namely an++ := fn(an).
(None of the other definitions am++ := fm(am) will redefine the value
of an++, because of Axiom 2.4.) This completes the induction, and so
an is defined for each natural number n, with a single value assigned to
each an.

Note how all of the axioms had to be used here. In a system which
had some sort of wrap-around, recursive definitions would not work

3Strictly speaking, this proposition requires one to define the notion of a function,
which we shall do in the next chapter. However, this will not be circular, as the
concept of a function does not require the Peano axioms. Proposition 2.1.16 can be
formalized more rigorously in the language of set theory; see Exercise 3.5.12.
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because some elements of the sequence would constantly be redefined.
For instance, in Example 2.1.5, in which 3++ = 0, then there would
be (at least) two conflicting definitions for a0, either c or f3(a3)). In
a system which had superfluous elements such as 0.5, the element a0.5
would never be defined.

Recursive definitions are very powerful; for instance, we can use them
to define addition and multiplication, to which we now turn.

2.2 Addition

The natural number system is very bare right now: we have only one
operation - increment - and a handful of axioms. But now we can build
up more complex operations, such as addition.

The way it works is the following. To add three to five should be the
same as incrementing five three times - this is one increment more than
adding two to five, which is one increment more than adding one to five,
which is one increment more than adding zero to five, which should just
give five. So we give a recursive definition for addition as follows.

Definition 2.2.1 (Addition of natural numbers). Let m be a natural
number. To add zero to m, we define 0 + m := m. Now suppose
inductively that we have defined how to add n to m. Then we can add
n++ to m by defining (n++) +m := (n+m)++.

Thus 0+m is m, 1+m = (0++)+m is m++; 2+m = (1++)+m =
(m++)++; and so forth; for instance we have 2 + 3 = (3++)++ =
4++ = 5. From our discussion of recursion in the previous section
we see that we have defined n + m for every natural number n. Here
we are specializing the previous general discussion to the setting where
an = n+m and fn(an) = an++. Note that this definition is asymmetric:
3 + 5 is incrementing 5 three times, while 5 + 3 is incrementing 3 five
times. Of course, they both yield the same value of 8. More generally, it
is a fact (which we shall prove shortly) that a+ b = b+ a for all natural
numbers a, b, although this is not immediately clear from the definition.

Notice that we can prove easily, using Axioms 2.1, 2.2, and induction
(Axiom 2.5), that the sum of two natural numbers is again a natural
number (why?).

Right now we only have two facts about addition: that 0 +m = m,
and that (n++) + m = (n + m)++. Remarkably, this turns out to be
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enough to deduce everything else we know about addition. We begin
with some basic lemmas4.

Lemma 2.2.2. For any natural number n, n+ 0 = n.

Note that we cannot deduce this immediately from 0 +m = m be-
cause we do not know yet that a+ b = b+ a.

Proof. We use induction. The base case 0 + 0 = 0 follows since we
know that 0 + m = m for every natural number m, and 0 is a natural
number. Now suppose inductively that n + 0 = n. We wish to show
that (n++)+0 = n++. But by definition of addition, (n++)+0 is equal
to (n + 0)++, which is equal to n++ since n + 0 = n. This closes the
induction.

Lemma 2.2.3. For any natural numbers n and m, n+ (m++) = (n+
m)++.

Again, we cannot deduce this yet from (n++) + m = (n + m)++
because we do not know yet that a+ b = b+ a.

Proof. We induct on n (keeping m fixed). We first consider the base
case n = 0. In this case we have to prove 0 + (m++) = (0 + m)++.
But by definition of addition, 0 + (m++) = m++ and 0 + m = m, so
both sides are equal to m++ and are thus equal to each other. Now
we assume inductively that n + (m++) = (n +m)++; we now have to
show that (n++)+(m++) = ((n++)+m)++. The left-hand side is (n+
(m++))++ by definition of addition, which is equal to ((n+m)++)++
by the inductive hypothesis. Similarly, we have (n++)+m = (n+m)++
by the definition of addition, and so the right-hand side is also equal to
((n+m)++)++. Thus both sides are equal to each other, and we have
closed the induction.

4From a logical point of view, there is no difference between a lemma, proposition,
theorem, or corollary - they are all claims waiting to be proved. However, we use
these terms to suggest different levels of importance and difficulty. A lemma is an
easily proved claim which is helpful for proving other propositions and theorems, but
is usually not particularly interesting in its own right. A proposition is a statement
which is interesting in its own right, while a theorem is a more important statement
than a proposition which says something definitive on the subject, and often takes
more effort to prove than a proposition or lemma. A corollary is a quick consequence
of a proposition or theorem that was proven recently.
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As a particular corollary of Lemma 2.2.2 and Lemma 2.2.3 we see
that n++ = n+ 1 (why?).

As promised earlier, we can now prove that a+ b = b+ a.

Proposition 2.2.4 (Addition is commutative). For any natural num-
bers n and m, n+m = m+ n.

Proof. We shall use induction on n (keeping m fixed). First we do the
base case n = 0, i.e., we show 0 + m = m + 0. By the definition of
addition, 0 + m = m, while by Lemma 2.2.2, m + 0 = m. Thus the
base case is done. Now suppose inductively that n +m = m + n, now
we have to prove that (n++) +m = m+ (n++) to close the induction.
By the definition of addition, (n++) + m = (n + m)++. By Lemma
2.2.3, m+ (n++) = (m+ n)++, but this is equal to (n+m)++ by the
inductive hypothesis n + m = m + n. Thus (n++) + m = m + (n++)
and we have closed the induction.

Proposition 2.2.5 (Addition is associative). For any natural numbers
a, b, c, we have (a+ b) + c = a+ (b+ c).

Proof. See Exercise 2.2.1.

Because of this associativity we can write sums such as a + b + c
without having to worry about which order the numbers are being added
together.

Now we develop a cancellation law.

Proposition 2.2.6 (Cancellation law). Let a, b, c be natural numbers
such that a+ b = a+ c. Then we have b = c.

Note that we cannot use subtraction or negative numbers yet to prove
this proposition, because we have not developed these concepts yet. In
fact, this cancellation law is crucial in letting us define subtraction (and
the integers) later on in this text, because it allows for a sort of “virtual
subtraction” even before subtraction is officially defined.

Proof. We prove this by induction on a. First consider the base case
a = 0. Then we have 0 + b = 0 + c, which by definition of addition
implies that b = c as desired. Now suppose inductively that we have the
cancellation law for a (so that a+ b = a+ c implies b = c); we now have
to prove the cancellation law for a++. In other words, we assume that
(a++) + b = (a++) + c and need to show that b = c. By the definition
of addition, (a++) + b = (a + b)++ and (a++) + c = (a + c)++ and so
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we have (a+ b)++ = (a+ c)++. By Axiom 2.4, we have a+ b = a+ c.
Since we already have the cancellation law for a, we thus have b = c as
desired. This closes the induction.

We now discuss how addition interacts with positivity.

Definition 2.2.7 (Positive natural numbers). A natural number n is
said to be positive iff it is not equal to 0. (“iff” is shorthand for “if and
only if” - see Section A.1).

Proposition 2.2.8. If a is positive and b is a natural number, then a+b
is positive (and hence b+ a is also, by Proposition 2.2.4).

Proof. We use induction on b. If b = 0, then a + b = a + 0 = a, which
is positive, so this proves the base case. Now suppose inductively that
a+ b is positive. Then a+ (b++) = (a+ b)++, which cannot be zero by
Axiom 2.3, and is hence positive. This closes the induction.

Corollary 2.2.9. If a and b are natural numbers such that a + b = 0,
then a = 0 and b = 0.

Proof. Suppose for sake of contradiction that a "= 0 or b "= 0. If a "= 0
then a is positive, and hence a+ b = 0 is positive by Proposition 2.2.8, a
contradiction. Similarly if b "= 0 then b is positive, and again a+b = 0 is
positive by Proposition 2.2.8, a contradiction. Thus a and b must both
be zero.

Lemma 2.2.10. Let a be a positive number. Then there exists exactly
one natural number b such that b++ = a.

Proof. See Exercise 2.2.2.

Once we have a notion of addition, we can begin defining a notion
of order.

Definition 2.2.11 (Ordering of the natural numbers). Let n and m be
natural numbers. We say that n is greater than or equal to m, and write
n ≥ m or m ≤ n, iff we have n = m + a for some natural number a.
We say that n is strictly greater than m, and write n > m or m < n, iff
n ≥ m and n "= m.

Thus for instance 8 > 5, because 8 = 5+3 and 8 "= 5. Also note that
n++ > n for any n; thus there is no largest natural number n, because
the next number n++ is always larger still.
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Proposition 2.2.12 (Basic properties of order for natural numbers).
Let a, b, c be natural numbers. Then

(a) (Order is reflexive) a ≥ a.

(b) (Order is transitive) If a ≥ b and b ≥ c, then a ≥ c.

(c) (Order is anti-symmetric) If a ≥ b and b ≥ a, then a = b.

(d) (Addition preserves order) a ≥ b if and only if a+ c ≥ b+ c.

(e) a < b if and only if a++ ≤ b.

(f ) a < b if and only if b = a+ d for some positive number d.

Proof. See Exercise 2.2.3.

Proposition 2.2.13 (Trichotomy of order for natural numbers). Let a
and b be natural numbers. Then exactly one of the following statements
is true: a < b, a = b, or a > b.

Proof. This is only a sketch of the proof; the gaps will be filled in Exer-
cise 2.2.4.

First we show that we cannot have more than one of the statements
a < b, a = b, a > b holding at the same time. If a < b then a "= b by
definition, and if a > b then a "= b by definition. If a > b and a < b then
by Proposition 2.2.12 we have a = b, a contradiction. Thus no more
than one of the statements is true.

Now we show that at least one of the statements is true. We keep b
fixed and induct on a. When a = 0 we have 0 ≤ b for all b (why?), so
we have either 0 = b or 0 < b, which proves the base case. Now suppose
we have proven the proposition for a, and now we prove the proposition
for a++. From the trichotomy for a, there are three cases: a < b, a = b,
and a > b. If a > b, then a++ > b (why?). If a = b, then a++ > b
(why?). Now suppose that a < b. Then by Proposition 2.2.12, we have
a++ ≤ b. Thus either a++ = b or a++ < b, and in either case we are
done. This closes the induction.

The properties of order allow one to obtain a stronger version of the
principle of induction:

Proposition 2.2.14 (Strong principle of induction). Let m0 be a natu-
ral number, and let P (m) be a property pertaining to an arbitrary natural

2.3. Multiplication 29

number m. Suppose that for each m ≥ m0, we have the following im-
plication: if P (m′) is true for all natural numbers m0 ≤ m′ < m, then
P (m) is also true. (In particular, this means that P (m0) is true, since
in this case the hypothesis is vacuous.) Then we can conclude that P (m)
is true for all natural numbers m ≥ m0.

Remark 2.2.15. In applications we usually use this principle withm0 =
0 or m0 = 1.

Proof. See Exercise 2.2.5.

— Exercises —

Exercise 2.2.1. Prove Proposition 2.2.5. (Hint: fix two of the variables and
induct on the third.)

Exercise 2.2.2. Prove Lemma 2.2.10. (Hint: use induction.)

Exercise 2.2.3. Prove Proposition 2.2.12. (Hint: you will need many of the
preceding propositions, corollaries, and lemmas.)

Exercise 2.2.4. Justify the three statements marked (why?) in the proof of
Proposition 2.2.13.

Exercise 2.2.5. Prove Proposition 2.2.14. (Hint: define Q(n) to be the property
that P (m) is true for all m0 ≤ m < n; note that Q(n) is vacuously true when
n < m0.)

Exercise 2.2.6. Let n be a natural number, and let P (m) be a property per-
taining to the natural numbers such that whenever P (m++) is true, then P (m)
is true. Suppose that P (n) is also true. Prove that P (m) is true for all natural
numbers m ≤ n; this is known as the principle of backwards induction. (Hint:
apply induction to the variable n.)

2.3 Multiplication

In the previous section we have proven all the basic facts that we know to
be true about addition and order. To save space and to avoid belaboring
the obvious, we will now allow ourselves to use all the rules of algebra
concerning addition and order that we are familiar with, without further
comment. Thus for instance we may write things like a + b + c = c +
b + a without supplying any further justification. Now we introduce
multiplication. Just as addition is the iterated increment operation,
multiplication is iterated addition:

Definition 2.3.1 (Multiplication of natural numbers). Let m be a nat-
ural number. To multiply zero to m, we define 0×m := 0. Now suppose
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inductively that we have defined how to multiply n to m. Then we can
multiply n++ to m by defining (n++)×m := (n×m) +m.

Thus for instance 0 ×m = 0, 1 ×m = 0 +m, 2 ×m = 0 +m +m,
etc. By induction one can easily verify that the product of two natural
numbers is a natural number.

Lemma 2.3.2 (Multiplication is commutative). Let n,m be natural
numbers. Then n×m = m× n.

Proof. See Exercise 2.3.1.

We will now abbreviate n×m as nm, and use the usual convention
that multiplication takes precedence over addition, thus for instance
ab + c means (a × b) + c, not a × (b + c). (We will also use the usual
notational conventions of precedence for the other arithmetic operations
when they are defined later, to save on using parentheses all the time.)

Lemma 2.3.3 (Positive natural numbers have no zero divisors). Let
n,m be natural numbers. Then n×m = 0 if and only if at least one of
n,m is equal to zero. In particular, if n and m are both positive, then
nm is also positive.

Proof. See Exercise 2.3.2.

Proposition 2.3.4 (Distributive law). For any natural numbers a, b, c,
we have a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

Proof. Since multiplication is commutative we only need to show the first
identity a(b + c) = ab + ac. We keep a and b fixed, and use induction
on c. Let’s prove the base case c = 0, i.e., a(b + 0) = ab + a0. The
left-hand side is ab, while the right-hand side is ab + 0 = ab, so we are
done with the base case. Now let us suppose inductively that a(b+ c) =
ab + ac, and let us prove that a(b + (c++)) = ab + a(c++). The left-
hand side is a((b + c)++) = a(b + c) + a, while the right-hand side is
ab + ac + a = a(b + c) + a by the induction hypothesis, and so we can
close the induction.

Proposition 2.3.5 (Multiplication is associative). For any natural
numbers a, b, c, we have (a× b)× c = a× (b× c).

Proof. See Exercise 2.3.3.

Terry Tao’s Analysis 1:

We learn a lot from thinking slowly

about what we think we understand. 

— We build solid foundations.

— We discover cool things we had missed.

Order doesn’t matter:   a x b = b x a



Order doesn’t matter:   a x b = b x a

Why is 2x3x4x5 = 5x2x4x3? 

Why is abcd = dacb?

abcd = abdc = adbc = dabc = dacb

The commutative law is about 2 factors, not 4. Go slow!

Ok cool! But what about all the other orders of a,b,c,d? 

Why do they all give the same answer?



Order doesn’t matter:   ab = ba

1. What are all the possible 

orders for multiplying a,b,c?

2. Why do they all give the 

same answer? Can you prove it?

Talk to your neighbor.

Questions: (For you!)



Talk to your neighbor. Youth Speaks

Life is Living


Oakland



abc bac

cab cba

bcaacb

Order doesn’t matter:   

abc, acb, bac, bca, cab, cba are equal:

The shape of 3-commutativity.

=

=

=

=
=

=



Order doesn’t matter:   

All 24 products abcd, …, dcba are equal.

Let’s apply the same method!



Order doesn’t matter:   

All 24 products abcd, …, dcba are equal:

The shape of 4-commutativity.

dabc

dbac

dacb

dcba

dcab

dbca

adbc adcb

cdab

cdbabdca

bdac

acdb abdc 

cadb

cbdabcda

badc

abcd acbd

cabd

cbadbcad 

bacd 



3. THE PERMUTAHEDRON



The permutahedron

The shape of 4-commutativity.The shape of 3-commutativity.



The permutahedron

The shape of 3-commutativity.

One way to build it: (Schoute 1914)

Gift wrap these 6 points in 3-D space:

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

and you’ll get the 2-permutahedron.

x

y

z
(1,2,3)

(1,3,2)

(2,3,1)
(3,2,1)

(3,1,2)

(2,1,3)



The permutahedron
One way to build it: (Schoute 1914)

Gift wrap these 24 points in 4-D space:

  (1,2,3,4) (1,3,2,4) . . .  (4,3,2,1)

and you’ll get the 4-permutahedron.

The shape of n-commutativity.

In any number of variables/dimension:

The same construction works!

The order of factors doesn’t matter!



Permutahedra in unexpected places

The shape of 4-commutativity.Fluorite crystal.



Permutahedra in unexpected places

The shape of 4-commutativity.Goutte-d’Or, Paris



The shape of 4-commutativity.They tile space!

Permutahedra in unexpected places



Permutahedra in unexpected places

The shape of 4-commutativity.Tarragona, España



The shape of 4-commutativity.Zeolite sieve.

Permutahedra in unexpected places



Order doesn’t matter: more factors?   

The 120 products abcde, …, edcba are equal:

The shape of 5-commutativity.



The Permutahedron

The n! products of a  ,a  ,…, a   are equal:

The shape of n-commutativity.

1 2 n
The permutahedron of order n is

a beautiful polyhedron. It has:


  dimension: n-1


  vertices: n!


  walls: 2  - 2


  volume: n  

n

n-2

It tiles (n-1)-dimensional space.




4. GROUPING DOESN’T MATTER



Idea: No-one can multiply 3 numbers in their head. 

Multiply two at a time!


Example:  (a(bc))d

Non-example: a(bc)d


Grouping doesn’t matter:   (ab)c=a(bc)

This law says that grouping doesn’t matter for 3 numbers.

We want to know why grouping doesn’t matter for 4 numbers.




Grouping doesn’t matter:  (ab)c = a(bc)

1. What are all the ways of grouping the 
product abcd, two factors at a time?


    (Without changing order of factors.)

2. Why do they all give the same 

    answer? Can we prove it?

Let’s use the same procedure. Example:  (a(bc))d

Non-example: a(bc)d




Grouping doesn’t matter:   

All 5 groupings of abcd are equal:

The shape of 4-associativity.=

=

=
=

=
(ab)(cd)

a(b(cd)) ((ab)c)d

a((bc)d) (a(bc))d



Grouping doesn’t matter:   

The 14 groupings of abcde are equal:

The shape of 5-associativity.

1

2

4

3



5. THE ASSOCIAHEDRON



The associahedron

The shape of 4-associativity. The shape of 5-associativity.

1

2

4

3



The associahedron

The n! groupings of a a …a  are equal:

The shape of 6-associativity.

1 2 n

The associahedron of order n is

a beautiful polyhedron. It has:


  dimension: n-2


  vertices:    C  = (2n)!/n!(n+1)!


  walls:        n(n+1)/2  - 1


  volume:      ???  

n



The associahedron: history


The shape of n-associativity.

“The associahedron is a mythical 
polytope representing the 
parenthesizations of variables.”


Stasheff 1963: topology

Haiman 1984: geometry

Loday 2004: algebra

Ceballos et al 2015: combinatorics

Arkani-Hamed et al 2017: physics




Associahedra in unexpected places

The shape of 5-associativity.

1

2

4

3

Foundations of spacetime

and quantum mechanics

(Arkani-Hamed 2021)




Permutahedron and associahedron, 
together.

The shape of 5-associativity.

1

2

4

3

The shape of 4-commutativity.

You can knock down walls of P(n) to get A(n+1)! (Postnikov 2006)

(Schoute 1914)
 (Loday 2004)




6. RECAP



Mathematics is interconnected, and connected to 

other areas, in ways we can never predict.

It is always worth thinking very slowly and carefully

about what we think we understand!


2 x 3 x 4 x 5 = 120

Different processes give the same answer!!!

Why?!?!  This is the topic of today.

Who is suprised? Who is not surprised?
1

2

4

3



gracias:

42



¡¡¡ muchas gracias !!!


questions? comments? reactions?

More information:


www.fardila.com


twitter: @federicoardila


youtube.com/federicoelmatematico


