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1. MULTIPLICATION



Question: (For youl)
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Talk to your neighbor.
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Talk to your neighbor.



2x3x4x5=120

Ditterent processes give the same answer!!!
Who is suprised? Who is not surprised?

Why do we get the same answer?2!2! Today’s topic.



Two simple laws with
complicated names:

(or: why we get the same answer)

axb=bxa
(a xb) xc=ax (b xc)

The order of operations doesn’t affect the result.



2. ORDER DOESN'T MATTER



Order doesn’t matter: axb =b x a

Why?2l2l One illustration:

1
Al HEE
.. ... Not to a mathematician.

s 202 x 117 = 117 x 2022
2x3 3x2 We need to think more slowly.

s this a proof?




Order doesn’t matter

Why2 Terry Tao’s Analysis

Lemma 2.3.2 (Multiplication is commutative). Let n,m be natural

numbers. Thenn Xm=m Xn

Proof. See Exercise 2.3.1

We learn a lot from thinking slowly
about what we think we understand

— We build solid foundations

— We discover cool things we had m

ISS€E

d

axb
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i 123.4444 ... a real number, while ... 444,321 is not? And why do we
have to carry of digits when adding or multiplying? Why is 0.999 .. the
same number as 17 What is the smallest positive real number? sn't
it just 0.00....0017 So to set aside these problems, we will not try to

ume any knowledge of the decimal system, though we will of course
st refer to numbers by their familiar names such as 1.2,3, cic. insicad
of using other notation such as LILIIT or 0-++, (04+)++, ((04+)++)++
(see below) 50 as not to be needlessly artificial. For completeness, we
review the decimal system in an Appendix (§B)

2.1 The Peano axioms

We now present one standard way to define the natural mumbers, in
terms of the Peano arioms, which were first laid out by Guiseppe Peano
(1858-1932). This is not the only way to define the natural mumbers.
For instance, another approach is to talk about the cardinality of finite
ot forinstance one coud take et of e clmentsand deine 5 (o be
the mumber of elements in that. discuss this alternate ap-
proach in Section 3.6. However, w bl stk it he Do s
approach for now.

How are we to define what the natural numbers are? Tnformally, we
conld say

Definition 2.1.1. (Informal) A natural number is any clement of the

N={0.1,2.3.4,..}
which s the set of all the mumbers created by starting with 0 and then
counting forward indefinitely. We call N the set of natural nunibers.
Remark 2.1.2. In some texts the natural numbers start at 1 instead of
0, but this is & matter of notational convention more than anything else.
Tn this text we shall refer to the set {1,2,3,....} as the positive infegers
Z* rather than the natural numbers. Natural numbers are sometimes
also known as whole numbers.

In a sense, this definition solves the problem of what the natural
‘numbers are: a natural number is any clement of the set! N. However,

Stritly speaking, there fs another problem with this nformal definition: we have
ot et defned what & “set” s, or what “clement of” is. Ths for the rest of this

chapter we shall avoid mention of sets and their lements as much as possible, except
in informal discusson.
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Thus, for instance, we have
Proposition 2.1.8. 6 is not equal o 2

Proof. Suppose for sake of contradiction that 6 = 2. Then 5+ = 14+,
50 by Axiom 2.4 we have 5 = 1, 50 that 44++ = 0++. By Axiom 2.4 again
e then v 4 0, which contrdics on previous proposiion

As one can see from this proposition, it now looks like we can keep all
of the natural numbers distinct, from cach other. There is however still
one mors probles: whls the sdoms (actiealcly Axoss 21 snd 22)
allow us to confirm that 0,1,2.3,.... are distinct clements of N, there s
The bl . these ey b iher “rogue” elements in our number
system which are not of this form:

Example 2.1.9. (Informal) Suppose that our number system N con-
sisted of the following collection of integers and half-integers:
Ni={0,05,1,15,2,25,3,35,..)

(This example is marked “informal” since we ave using real mumbers,
which we're not supposed to use yet.) One can check that Axioms 2.1-
2.4 are still satisfied for this st

What we want is some axiom which says that the only mumbers in N
are those which can be obtained from 0 and the increment operation -
in order to exclude elements such as 0.5 But it is difficult to quantify
what we mean by “can be obtained from” without already using the
natural numbers, which we are trying to define. Fortunately, there is an
ingenious solution to try to capture this fact:

Axiom 2.5 (Principle of mathematical induction). Let P(n) be any
property pertaining to a natural number n. Suppose that P(0) is true,
and suppose that whenever P(n) is true, P(n-++) is also truc. Then
P(n) is true for every natural number n.

Remark 2.1.10. We are a little vague on what “property” means at
this point, but some possible examples of P(n) might be “n is even’

“n is equal to 3"; “n solves the equation (n +1)> = n? + 2 + 17 and
50 forth. OF course we haven't defined many of these concepts yet, but
when we do, Axiom 2.5 will apply to these properties. (A logical remark:
Because this axiom refers not just to variables, but also properties, it
indeed, Axiom 2.5

of a different nature than the other four axioms;
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The great discovery of the late nineteenth century was that numbers
can be understood abstractly via axioms, without necessarily needing

conerete model: of course a mathematician can use any of these models
when it is convenient, to aid his or her intuition and understanding, but
they can also be just as easily discarded when they begin o get in the

consequence of the axioms is that we can now define sequences
recursively. Suppose we want,to build a sequence ag, a1, as, .. of num-
bers by first defining ay to be some base value, e, ay := ¢ for some
mumber ¢, and then by letting a1 be some function of o, a1 = fo(an),
az be some function of ay, a; := fi(a1), and so forth. In general, we
St auy 1= fa(an) for some function f, from N to N. By using all
the axioms together we will now conclude that this procedure will give
a single value to the sequence element a, for each natural number n.
More precisely®

Proposition 2.1.16 (Recursive definitions). Suppose for cach natural
number n, we have some function fu : N = N from the natural numbers
to the natural numbers. Let ¢ be a natural number. Then we can assign
a unique natural number an (o cach natural mumber n, such that ay = ¢
and g5 = Ju(an) for cach naturad number n.

Proof. (Informal) We use induction. We first observe that this proce-
e gives o singl vale 10 ag, mamely . (Nowe of the other e
tions aney = fu(an) will redefine the value of ao, becanse of Axiom
2.3) Now suppose inductively that the procedure gives a single value
to an. Then it gives a single m!uv 0 Byt nAMELY @nis = fu(an).
(None of the other definitions a,, ) will redefine the value
o g b of Axiom 2. This comples the iducton, and
g i defined for each natural number n, with a single value assigned to
cach o o

Note how all of the axioms had to be used here. In a system which
had some sort of wrap-around, recursive definitions would not work

TStrictly speaking, this proposition requires ane to define the notion of » function,
which we shall do in the next chapter.  However, this will not be circular, as the
conoep f  funtion docs oo rouirs th Pean axems. Prposiion .1.10 can b
formalized more rigorously in the language of st theory: see
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we have (a+ b+ = (a+ c)+-+. By Axiom 2.4, we have a+b=a+c.
ce we already have the cancellation law for a, we thus have b = ¢ as
desired. This closes the induction.

We now diseuss how addition interacts with positivity.

Definition 2.2.7 (Positive natural numbers). A natural mumber n i
said o be positive iff it is not equal to 0. (“iff” is shorthand for *if and
only if” - see Section A1),

Proposition 2.2.8. Ifa is positive and b is a natural number, then a-+b
is positive (and hence b+a is also, by Proposition 2.2.4)

Proof. We use induction on b. 1 b= 0, then a +b = a+0 = a, which
is positive, o this proves the base case. Now suppose inductively that
a+bis positive. Then a -+ (b+-+) = (a+b)+-+, which cannot be zero by
Axiom 2.3, and is hence positive. This closes the induction. o

Corollary 2.2.9. If a and b are natural numbers such that a +b = 0,
thena =0 and b= 0.

Proof. Suppose for sake of contradiction that a # 0 or b # 0. 1fa # 0
then a is positive, and hence a+ positive by Proposition 2.2.8, a
contradiction. Similarly if b # 0 then b is positive, and again a-+b = 0 is
positive by Proposition 2.2.8, a contradiction. Thus a and b st both
be zero. o

Lemma 2.2.10. Let a be a positive number. Then there ezists ezactly
one natural number b such that b+

Proof. See Exercise 222 o

Once we have a notion of addition, we can begin defining a notion
of onder.

Definition 2.2.11 (Ordering of the natural numbers). Let n and m be
natural numbers, We say that #is greater than or equal to m, and write
> mor m < n, iff we have n = m +a for some natural mumber a.
We say that n is strictly greater than m, and write n > m or m < n, i
n>mandn#m.

Thus for instance 8 > 5, because § = 543 and 8 # 5. Also note that
4+ > n for any n: thus there is no largest natural number 7, because
the next number -+ is always larger stil.
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it is not really that satisfactory, hecause it begs the auestion of what
N is. This definition of “start at 0 and count indefinitely” scems like
an intuitive enough definition of N, but it is not entirely acceptable,
because it leaves many questions unanswered. For instance: how do

e Ko e ca ke connting idefinitly, without eyelng back 10 07
Also, how do you perform operations such as addition, multiplication,
o exponentiation”

We can answer the latter question first: we can define complicated
operations in terms of simpler operations. Exponentiation is nothing
more than repeated multiplication: 5° is nothing more than three fives
multiplied together. Multiplication is nothing more than repeated addi-
tion; 5 3 is nothing more than three fives added together. (Subtraction
and division will not be covered here, because they are not operations
which are well-suited 1o the natural .mmbm they will have to wait for
the integers and rationals, respecti addition? It is nothing
wmore than th sepented aperation of counting foruard, or incrementing
If you add three to five, what you are doing is incrementing five three
times. On the other hand, increment be a fundamental op-
eration, not reducible to any simpler operation; indeed, it s the first
operation one Iearns on numbers, even before learning to a

Thus, to define the natural mumbers, we will use two fundamental
concepts: the zero number 0, and the increment operation. In deference
to modern computer languages, we will use n-++ to denote the increment
or successor of n, thus for instance 3+ = 4, (3++)++ = 5, etc. This

aslightly different nsage from that in computer languages such as C.

here n-+ actually redefines the value of n to be its successor; however
in mathematics we try not to define a variable more than once in any
given setting, as it can often lead to confusion; many of the statements
which were true for the old value of the variable can now become false,
and vice versa.

S0, it seems like we want to say that N consists of 0 and everything
which can be obtained from 0 by inerementing: N should consist of the
objects

0,04+, (04+) . (0-4++)+)++ ete.

1f we start writing down what this means about the natural numbers,
we thus sec that we should have the following axioms concerning 0 and
the inerement operation ++

Axiom 2.1. 0is a natural number.

20 2. Starting at the beginning: the natural numbers

hould technically be called an aziom schema xather than an azior - it

a template for producing an (infinite) number of axioms, rather than
being a single axiom in its own right. To discuss this distinction further
is far beyond the scope of this text, though, and falls in the realm of
logic.)

‘The informal intuition behind this axiom is the following. Suppose
P(n) is such that P(0) is true, and such that whenever P(n) is true,
then P{n++) is true. Then since P(0) is true, P(0-++) = P(1) is true,
Since P(1) is true, P(1++) = P(2) is true. Repeating this indefinitely,
we see that P(0), P(1), P(2), P(3), etc. arc all truc - however this
line of reasoning will never let us conclude that P(0.5), for instance, is
true. Thus Axiom 2.5 should not hold for number systems which contain
imnecesary” lments sich s 05 (Indeed, one can give » proot” o
this fact. Apply 5 to the property P(n) = n “is not a halt-
teger”, 0.5, Then P(0) is true, and if P(n) is true,
Uhe Pl t) i e Thus Axiom 25 asert that P(n) s e for i
natural mumbers n, ural mumber can be In
particular, 0.5 cannot be a natural number. This * ool s ot e
genuine, because we have not defined such notions as “half-
integer”, and *0.5” yet, but it should give you some e a0 o the
principle of induction is supposed to prohibit any mumbers other than
the “truc” natural numbers from appearing in N.)
The principle of induction gives us a way to prove that a property
P(n) is true for every natural mumber n. Thus in the rest of this text
we will see many proofs which have a form like this

Proposition 2.1.11. A certain property P(n) is true for every natural
number n.

Proof. We use induction. We first verify the base case n = 0, i.e., we
prove P(0). (Insert proof of P(0) here). Now suppose inductively that 1
is a natural mmber, and P(n) has already been proven. We now prove
Plnt+). (Insert proof of P(n++), assuming that P(n) is true, here).
This closes the induction, and thus P(n) is true for all mumbers n. 0

OF course we will not necessarily use the exact template, wording,
or order in the above type of proof, but the proofs using induction will
generally be something like the above form. There are also some other
variants of induction which we shall encounter later, such as backwards
induction (Exercise 2.26), strong induction (Proposition 2.2.14), and
transfinite induction (Lemma 8.5.15).
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becase some clemnts ofthe seqence would constaly e e
e, in Example 2.1.5, in which 3 then there would
e o o) two (unlhctmg definitions for ag, cither ¢ or fy(az)). In
a system which had superfiuous clements such as 0.5, the element aos
would never be defined.

Recursive definitions are very powerful; for instance, we can use them
to define addition and multiplication, to which we now turn.

2.2 Addition

The natural mumber system is very bare right now: we have only one
operation - increment - and a handful of axioms. But now we can build
b more complex operations, such s additon.

The way it works is the following. To add three to five should be the
same as incrementing five three times - this is one increment more than
adding two to five, which is one increment more than adding one to five,
which is one increment more than adding 7ero to five, which should just
ive five. So we give a recursive definition for addition as follows,

Definition 2.2.1 (Addition of natural numbers). Let m be a natural
mumber. To add zero to m, we define 0+ m = m. Now suppose
inductively that we have defined how to add n to m. Then we can add
et to m by defining (n+) +m = (n+m)

Thus 0+ m is m, 14+m = (0-4+) +m is meb: 24m = (1) +
(me+)++; and so forth; for instance we have 2 +3 = (3
44+ = 5. From our discussion of recursion in the previous section
we see that we have defined 1+ m for every natural mumber n. Here
we are specializing the previous gencral discussion to the sciting where
= -t and f,(00) = 0+ Note that this definition is ssymmetric:
s incrementing 5 three times, while 5 + 3 is incrementing 3 five

{imen OFcourse they both yild 1h samo sau of 8. Moro gencraly, it
is a fact (which we shall prove shortly) that a-+ b = b +a for all natural
mumbers a. b, although this is not immediately clear from the definition.

Notice that we can prove casily, using Axioms 2.1, 2.2, and induction
(Axiom 2.5), that the sum of two natural numbers is again a natural
mumber (why?)

Right now we only have two facts about addition: that 0+ m =
and that (n++) +m = (n + m)-+. Remarkably, this tums ont to be
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Pmposmon 2.212 (Basic pmpmm of order for natural numbers).
a.b.c be naturel numbers.
(a) (Order is reflezive) a > a
() (Order is transitive) Ifa > b and b > ¢, thena > c.

() (Order is anti-symmetric) Ifa > b and b> a, then a =b.

(d) (Addition preserves order) a > b if and only if a+¢ > b+c.
(e) a<bif and only if a++ <D,
() a<bif and only if b= +d for some positive number d.

Proof. See Excrcisc 2.2.3. o

Proposition 2.2.13 (Trichotomy of order for natural numbers)

and b be natural umbers. Then ezactly one o the following statements
is true: a < by a=b, ora>b,

Proof. This s only a sketch of the proof; the gaps will be filled in Exer-
cise 224,

t we show that we cannot have more than one of the statements
@< b, a=b a>bholding at the same time. If a < b then a £ b b
definition, and if a > b then a # b by definition. 1f a > b and a < b then
by Proposition 2.2.12 we have @ = b, a contradiction. Thus no more
than one of the statements is tre.

Now we show that at least one of the statements is true. We keep b
fixed and induct on a. When a = 0 we have 0 < b for all b (why?), so
we have cither 0 = b or 0 < b, which proves the base case. Now suppose

have proven the proposition for a, and now we prove the proposition
for a++. From the trichotomy for a, there are three cases: @ < b, a = b,
anda > b 10 a > b, then at+ > b (why?). Ifa = b, then at+ > b
(why?). Now suppose that a < b. Then by Proposition 2.2.12, we have

-+ < b, Thus cither a-++ = b or a++ < b, and in cither case we are
done. This closes the induction. o

The properties of order allow one to obtain a stronger version of the
principle of induction:

Proposition 2.2.14 (Strong principle of induction). Let mo be a natu-
ral number, and let P(m) be a property pertaining to an arbitrary natural
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Axiom 2.2. If n is a natural number, then n-t-+ is also a natural num-
ber.

Thus for instance, from Axiom 2.1 and two applications of Axiom 2.2,
we see that (04++)++ is a natural number. Of course, this notation will
begin to get unwieldy, so we adopt & convention to write these mumbers
in more familiar notation:

m 2.1.3. We define 1 to be the number 04+, 2 to be the
mumber (04+)++, 3 to be the mumber ((04+)4+)+-+, cte. (In other
words, 1:= 04+, 2:= 1 -+, cte. In this text [ use “z i= 5
to denote the statement that = is defined to equal y.)

3

Thus for instance, we have

Proposition 2.1.4. 3 is a natural number.

Proof. By Axiom 2.1, 0 s a natural number. By Axiom 2.2, 0++ =
a natural number. By Axiom 2.2 again, 14+ = 2 is a natural m\mbcv
By Axiom 2.2 again, 2++ = 3 is a natural number

It may seem that this is enough to describe the natural numbers.
However, we have not pinned down completely the behavior of N:

‘Example 2.1.5. Consider a number system which consists of the num-
bers 0,1,2,3, in which the inerement operation s back from 3 to
0. Maore preciscly 04+ is equal to 1, 1++ is equal t equal
103, but 81+ i3 cqual 0.0 (and alo cqul 10 4, by defnition o 4)
This type of thing actually happens in real life, when
piter 6 1y 10 store 8 ol e 1 one starts o and pesorme
the increment operation repeatedly, eventually the computer will over-
flow its memory and the number will wrap around back to 0 (though
s may take quite @ lrge mumber of inerementation operations, for
instance a two-byte representation of an integer will wrap aronnd onl
e 6,535 imcremmnt) Noke hat. this type of msber sy obera
Axiom 2.1 and Axiom 2.2, even though it clearly does not correspond
to what we intuitively believe the natural numbers to be like,

To prevent this sort of “wrap-around issue” we will impose another

Axiom 2.3. 0 is not the successor of any natural number; i.c., we have
b+ # 0 for every natural number n.

2.1, The Peano azioms 21

Axioms 2.1-2.5 are known as the Peano avioms for the natural num-
bers. They are all very plausible, and so we shall make
Assumption 2.6. (Informal) There erists a number system N, whose

elements we will call natural mumbers, for which Azioms 2.1-2.5 are
true.

We will make this assumption a bit more precise once we have laid
down our notation for sets and functions in the next chapter.

Remark 2.1.12. We wil refer to this number system N as the natural
‘number system. One could of course consider the possibility that there
is more than one natural number system, e.g,, we could have the Hindu-
Arabic munber system {0,1,2,3,...} and the Roman number system
{O.1ILIILIV.V.VI,....}, and if we really wanted to be annoying we
conld view these mumber systems as different. But these mumber systems
are clearly equivalent (the technical term is isomorphic), because one
can create a one-to-one correspondence 0 ¢ O, 1 ¢ 1, 2 ¢+ I, etc,
i maps the et of he HindieArabic s wih the 110 of he
Roman system, and which s preserved by the increment operation (c.g.,
i corneaponds to 11, the n 2+ will comespond t0 L1-++). For a more
precise statement of this type of equivalence, see Exercise 35.13. Since
all versions of the natural munber system are equivalent, there is no
point in having distinct natural mmber systems, and we will just use a
single natural number system to do mathematics

We will not prove Assumption 2.6 (though we will eventually include
it in our axioms for set theory, sce Axiom 3.7), and it will be the only
mption we will ever make about our numbers. A remarkable ac-
Complibiment of moden nlysi b (hat Jut by starin from these i
very primitive axioms, and some additional axioms from set theory, we
o bl ) the otber ot stems,evate Funetions, and do Al he
algebra and caleulus that we are used to.

Remark 2.1.13. (Informal) One interesting feature about the natural
‘mumbers is that while cach individual natural mumber i finite, the set of
natural numbers is infinite; i.c., N is infinite but consists of individuall
ﬁmtv Lh‘xmnh (The whole is greater than any of its parts,
infnite natural mumbers one can oven prove this g Axion
25, pvo\'lrlcd one is comfortable with the notions of finite and infinite.
(Clearly 0 is finite. Also, if n is finite, then clearly n-t+ is also finie.
Hence b, Axiom 25, all natural mumbers are fite.) So the natural

2.2 Addition 2

enough to deduce rvclythmg else we know about addition. We begin
with some basic lenn

Lemma 2.2.2. For any natural number n, n+0 = n.

Note that we cannot deduce this |mmcdnlrly from 0+ m = m be-
canse we do not know yet that a + b=

Proof. We use induction. The base case 0+ 0 = 0 follows since we
Know that 0+ m = m for every natural mumber m, and 0 is a natural
mumber. Now suppose inductively that n +0 = n. We wish to show
that (n++)+0 = n-++. But by definition of addition, (n--+)-+0 is equal
to (n+0)++, which is equal to n++ since n+0 = n. This closes the
induction, o

Lemma 2.2.3. For any natural numbers 1 and m, n+ (m++) = (n +
m)-

Again, we camnot deduce his et fom (1) +m = (14 )+
because we do not know yet that a+b=b+a.

Proof. We induct on n (m»pmg n ﬁxcd) We first consider the base
case n = 0. Tn this case we have o prove 0+ (m-++) = (0 + m)++

it by deition of niton, 0 ¢ (Wﬁ) = e+ and 0 +m = m.
both sides are equal to m-++ and are thus equal to cach other. Now
we assume inductively that 1+ (m-+-+) = (1 + m)-++; we now have to
show that (n--+) + (m-++) = ((n-++) +m) ++. The left-hand side is (n-+
(m+))++ by definition of addition, which is equal to ((n +m) )+
by the inductive hypothesis. Similarly, we have (n+-+)+m = (n+m)++
by the definition of addition, and so the right-hand side is also cqual to
(7 -+ m)++)++. Thus both sides are equal to each other, and we have
closed the induction, o

“From o ol point of i, ter i o diffrencebcven oy proposion
theorem, or corollary - they are all claims waiting to be proved. However,
hes terme o sugses et el of mportance and difey. A lomun 3 o
casily provee claim which s helpful for proving other propositions and theorems, but
is usually ot particularly interesting in its own right. A proposition s a statement
whi

more effrt 10 prove than a propstion or lemma. A corollary is 4 qick conseqence.
af a proposition or theorem that was proven recently.

2.9 Multiplication 2

ramber m. Supposc tht forcach m 2 mo, we hve the Jlining im-
plication: if P(m') is true for all natural numbers mg < m' <

P(m) is also truc. (In particular, this means that P(mo) is true, since
in this case the hypothesis is vacuous.) Then we can conclude that P(m)
is true for all natural numbers m > mo.

Remark 2.2.15. Tn applications we usually use this principle with mg =
0ormy

Proof. See Exercise 2.25. o
Exercises

Erervise 2.21. Prove Proposition 2.2.5. (Hint: fix two of the variables and

et on the third )

Erervise 2.2.2. Prove Lemuma 2.2.10. (Hint: use induction.)

Brercise 223, Prove Proposition 2.2.12. (Hint: you will need many of the
proceding propositions, corollarics, and lemmas.)

B 234, Justity th tre stabemente marke () in he rootof
Propostion 2.1

Erercise 2.25. Prove Proposition 2:2.14. (Hin: defne Q(1n) o be the property
that P(m) is true for all mg < m < n; note that Q(n) is vacnonsly true when
Erervise 22.6. Lot n be a natural number, and let P(m) be a property per-
g o the natueal nmbers such that whenever P(n-++) i true, then P(m)
is true. Suppose that P(n) s also true. Prove that P(m) is teue fo all natural
mbers m < s this s known as the principle of backwards induction. (i
apply induction {0 the variable n.)

2.3 Multiplication

In the previous section we have proven all the basic facts that we know to
be true about addition and order. To save space and to avoid belaboring
the obvious, we will now allow ourselves 1o use all the rules of algebra
concerning addition and order that we arc familiar with, without further
comment. Thus for instance we may write things like a+b+c = c +
b+ a without supplying any further justification. Now we introduce
ultiplication. Just as addition is the iterated inerement operation,
‘multiplication s iterated addition:

Definition 2.3.1 (Multiplication of natural mumbers). Let m be a nat-
ural number. To multiply 7ero to m, we define 0 x m := 0. Now suppose

b X a

is 2. Starting at the beginning: the natural numbers

Now we can show that certain types of wrap-around do not occur
for instance we can now rule out the type of behavior in Example 2.1.5
using

Proposition 2.1.6. 4 is not equal 10 0.

Don't laugh! Beeause of the way we have defined 4 - it is the in-
cremet ofthe et of the et o the octencnt of 0t i
not necessaril a priori that this mumber is ot the same as zero,
oo (¥ priori” is Latin for “beforchand” - it refers to
what one already knows or assumes to be true before one begins a proof
or argument. The opposite is “a posteriori” - what one knows to be
true after the proof or argument is concluded.) Note for instance it
in Example 2.1.5, 4 was indeed equal to 0, and that in a standard tw
te compute representation of & matural b for ietonce, 65535
s equal to 0 (using our definition of 65536 as equal to 0 incremented
sixty-five thousand, five hundred and thirty-six times).

even ifit

Proof. By definition, 4 = 3++. By Axioms 2.1 and 2.2, 3 is a natural
mumber. Thus by Axiom 2.3, 34+ £ 0, i.e.,

However, even with our new axiom, it is still possible that our num-
ber system behaves in other pathological ways:

Example 2.1.7. Consider a number system consisting of five numbers
31 in wlich the icrement operation hits cmln\g at

precisely, suppose that 04+ = 1, B+
-+ = 4 (or in other words that 5 — 4, and - etc).
This docs ot conteadin Axioms 22225 Another number Syatern
with a similar problem is one in which incrementation wraps around,
but ot 0 7er0, e.g. suppose that 4+ = 1 (so that 5= 1, then 6 =2,
etc.)

3t

There ate many ways to prohibit the above types of behavior from
happening, but one of the simplest is to assume the following axiom:

Axiom 2.4. Different natural numbers must have different successors;
e., if n, m are natural numbers and n # m, then n+-+ # m-++. Equiv-
alently?, if et = mt+, then we must have n = m.

TThin s an cxmploof eformintin,an implicton i (s eoérpostioes o
Socion A2 for e et T the convere diection, i 1 . chon 1+~
his 5 the aziom of substitution (sco Soction A.7) applied to the operation +.

22 2. Starting at the beginning: the natural numbers

mumbers can approach infinity, but never actually reach it; infinity is
not one of the natural mmbers. (There are other mumber systems whic
admit “infinite” numbers, such as the cardinals, ordinals, and p-adics,
but th not obey the principle of induction, and in any event are
beyond the scope of this text.)

2.1.14. Note that our definition of the natural mumbers is az-
iomatic rather than constructive. We have not told you what the natural
mumbers are (so we do not address such questions as what the numbers
axe made of, are they physical objects, what do they measure, etc.) -
we have only listed some things you can do with them (in fact, the only
operation we have defined on them right now is the increment one) and
some of the properties that they have. This is how mathematies works
- it treats its objects abstructly, caring only about what properties the
objects have, not what the objects are or what they mean. If one wants
to do mathematies, it does not matter whether a natural mumber means
a certain arrangement of beads on an abacus, or a certain organization
of bits in a computer’s memory, or some more abstract concept with no
physical substance: as long as you can increment them, see if two of them

re equal, and later on do other arithmetic operations such as add and
‘multiply, they qualify as numbers for mathematical purposes (provid
they obey the requisite axioms, of course). It s possible to construct
the natural mumbers from other mathematical objects - from scts, for
instance - but there are multiple ways to construct a working model of
the matural numbers, and it is pointless, at least from a mathematician's
standpoint, as to argue about which model is the “true” one - as long as
it obeys all the axioms and does all the right things, that's good enough
to do maths.

Remark 2.1.15. Historically, the realization that mumbers could be
treated axiomatically is very recent, not much more than a hundred
years old. Before then, munbers were gencrally understood to be in-
extricably connceted to some external concept, such as counting the
cardinality of a set, measuring the length of a line segment, or the mass
of a physical object, ctc. This worked reasonably well, until one was
forced to move from one mumber system to another; for instance, under-
standing mumbers in terms of counting beads, for instance, is great for
conceptualizing the mumbers 3 and 5, but doesn’t work so well for 3
or 1/3 or v/2 or 3+ 4i; thus each great advance in the theory of num-
bers - negative mumbers, irrational numbers, complex mumbers, even
the mumber zero - led to a lot of unnecessary philosophical anguish

26 2. Starting at the beginning: the natural numbers

A il coralln of Leumns 222 i L 223 v see
that n+
As proms

A carle, e can now prove that a4 = b+

Proposition 2.2.4 (Addition is commutative). For any natural num-
bers n and m, n+m=m+n

Proof. We shall use induction on n (keeping m fixed). First we do the

. i, we show 0+ m = m + 0. By the definition of

addition, 0+ m = m, while by Lemma 2.2.2, m +0 = m. Thus the

s is done. Now suppose inductively that n+m = m +n, now

we have to prove that (n+-+) +m = m + (n-++) to close the inductio

By the definition of addition, (n++) +m = (n +m)++. By Lemma

223, m+ )+, but this is equal to (1 + m)-++ by the

inductive hypothesis n -+ m = m +n. Thus (n4-+) +m = m + (n++)
and we have closed the induction.

Proposition 2.2.5 (Addition is associative). For any natural numbers
abye, we have (a+b) +c=a+

Proof. See Exercise 2.2.1 o

Because of this associativity we can write sums such as a + b+ ¢
withont having to worry about which order the mumbers are being added
together.

Now we develop a cancellation law.

Proposition 2.2.6 (Cancellation law). Let a,b,c be natural numbers
such that a+b=a -+ c. Then we have b=c.

Note that we cannot use subtraction or negative numbers yet to prove
this proposition, because we have not. developed these concepts yet. In
fact, this cancellation law is erucial in letting us define subtraction (and
the integers) later on in this text, because it allows for  sort of “virtual
subtraction” even before subtraction is offiially defined.

Proof. We prove this by induction on a. First consider the base case
@ = 0. Then we have 0 +b = 0 + ¢, which by definition of addition
implies that b = c as desired. Now suppose inductively that we have the
cancellation law for a (50 that a+b = a + ¢ implies b = c); we now have
to prove the cancellation law for a-++. In other words, we assume that
(a++) +b = (a++) + ¢ and need to show that b = c. By the definition
of addition, (a++) +b = (a-+b)++ and (a++) + ¢ = (a +¢)++ and s0

30 2. Starting at the beginning: the natural numbers

vl (at we ave dfned Box to il 1 9 1. Then e can
tiply nt++ to m by defining (n-++) x

Thus for instance 0 x m = 0, 1% m = 0+ m, 2x m =0+ m+m,
ete. By induction one can easily verify that the product of two natural
umbers is a natural number.

Lemma 2.3.2 (Multiplication is commutative). Let n,m be natural
numbers. Then n x m = m x n.

Proof. See Exercise 2.3.1 o

We will now abbreviate n x m as nm, and use the usual convention
that multiplication takes precedence over addition, thus for instance

means (a x b) + ¢, not a x (b+¢). (We will also use the usual
notational conventions of precedence for the other arithmetic operations
when they are defined later, to save on using parentheses all the time.)

Lemma 2.3.3 (Positive natural numbers have 1o zero divisors). Let
n.m be natural numbers. Then n x m =0 if and only if at least one of
nm is equal to zero. In particular, if n and m are both positive, then
s also positive

Proof. Sce Exercise 232 o

Proposition 2.3.4 (Distributive law). For any natural numbers a,b, ¢,
we have a(b +c) = ab-+ ac and (b + o)

Proof. Since mnluphu\uon s commutative we only need to show the first
identity a(b -+ ¢) = ab + ac. We keep a and b fixed, and use induction
on c. pm\'«rhrba.wrmr:ﬂlr‘ a(b+0) = ab+al. The
left-hand side is ab, while the right-hand side is ab+0 = ab, so we are
done with the base case. Now let us suppose inductively that a(b+c) =
ab+ ac, and let us prove that a(b + (c+-+)) afe++). The left-
hand side is a((b + ¢)-++) = a(b + ) +a, while the right-hand side is
ab+ac+a = a(b+c)+a by the induction hypothesis, and so we can
close the induction. o

Proposition 2.3.5 (Multiplication is associative). For any natural
numbers a,b,c, we have (a x b) X ¢ = a x

Proof. See Excrcise 2.3.3. o



Order doesn’t matter: axb=b x a

Why is 2x3x4x5 = 5x2x4x32
Why is abcd = dach?

The commutative law is about 2 factors, not 4. Go slow!

abcd = abdc = adbc = dabc = dacb

Ok cool! But what about all the other orders of a,b,c,d?
Why do they all give the same answer?



Order doesn’t matter: ab = ba
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Order doesn’t matter:
abc, acb, bac, bca, cab, cba are equal:

abc = bac
V/4 \!
acb bca
\! V/4

The shape of 3-commutativity.



Order doesn’t matter:
All 24 products abcd, ..., dcba are equal.

Let’s apply the same method!



Order doesn’t matter:

abcd, ..., dcba

abcd acbd
abdc acdb
adbc —— adcb
dabc —dacb
dcab
dbac S~ cadb —
cabd
QC / qub /
dbca —— dcba
bdca cdba
bcda cbda

_ew The shape of 4-commutativity.




3. THE PERMUTAHEDRON



The permutahedron

The shape of 3-commutativity. The shape of 4-commutativity.



The permutahedron

One way to build it: (Schoute 1914)

Gift wrap these 6 points in 3-D space:
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)
and you’ll get the 2-permutahedron.

Z
(1,2,3)
(2,1,3)

(1,3,2)

(3,1,2)

The shape of 3-commutativity. e = (2,3)



The permutahedron

One way to build it: (Schoute 1914)

In any number of variables/dimension:
The same construction works!
The order of factors doesn’t matter!

The shape of n-commutativity.



Permutahedra in unexpected places

Fluorite crystal. The shape of 4-commutativity.



Permutahedra in unexpected places

The shape of 4-commutativity.

Goutte-d’'Or, Paris
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Permutahedra in unexpected places

/ \
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T a, Espaia The shape of 4-commutativity.
arragona,



Permutahedra in unexpected places

Zeolite sieve. The shape of 4-commutativity.



Order doesn’t matter: more factors?
The 120 products abcede, ..., edcba are equal:

The shape of 5-commutativity.



The Permutahedron

The permutahedron of order n is
a beautiful polyhedron. It has:

Qlllm

~ ' 24220 4
S ‘ f" 2240

qvmn \ A :
s gaiaan P ~‘F

\‘,{,M;” Qunzm

Q.L-lllﬂ)

Bﬂl(lu .

1:10

aaszyn
Wrozad ufTu:zm
/‘z 1240 M

Y @nuzn {‘ faaan
\ W P
LT
oz .}‘_‘":‘ xiuq t‘

dimension: n-1

Iy l‘ P TRy ' aéiua fﬁumm
SN 1 “L;am bt
/ , ‘“ ﬁ:_ .:N’ 0.4 -_“_{,» . . R ) ‘.‘ ;
> . <A .:z? & T ?;ﬂ 20AN Jlgiiaazn
- w ) gl ;&’m :s:za . 4“‘
i SCT, AEARNADT 0 I\
.%’w fh AR T i ; ; }"lzuu
" ] ; Q0 L { W
) s PN R R\
\ L aaada '
AR o2 e, V
et fad 124am

NS
AT D

vertices: nl

walls: 2n- 2

“warzan

volume: n"

Farzam

It tiles (n-1)-dimensional space.  The shape of n-commutativity.



4. GROUPING DOESN’'T MATTER



Grouping doesn’t matter: (ab)c=a(bc)

ldea: No-one can multiply 3 numbers in their head.
Multiply two at a time!

Example: (a(bc))d
Non-example: a(bc)d

This law says that grouping doesn’t matter for 3 numbers.
We want to know why grouping doesn’t matter for 4 numbers.



Grouping doesn’t matter: (ab)c = a(bc)

Let’s use the same procedure. Fxample: lalbelic
Non-example: a(bc)d

1. What are all the ways of grouping the
product abed, two factors at a time?
(Without changing order of factors.)

2. Why do they all give the same
answer¢ Can we prove it¢



Grouping doesn’t matter:
All 5 groupings of abcd are equal:

(ab)(cd)

4 A\

a(b(cd)) ((ab)c)d
\ 4
a((bc)d) = (a(bc))d The shape of 4-associativity.



Grouping doesn’t matter:

abcde

a(b(c(de)\)

*\

)
alblled)e))

&
Q((bc\(deﬂ
"
@ ]
Q((b( dNe) (alb(cd))e
1
\ / D e &
(a Ebc))(de‘) 3 A ab) ((ccl) @
l 8 J 0
: C\(((b Yd) o) 2 (allbc)d)e "
@ n @
((ab)c) (de) (Cab)(ca) e

8
{(o(bc)Yd) e
(((abYc) dye

The shape of 5-associativity.



5. THE ASSOCIAHEDRON




The associahedron

The shape of 4-associativity. The shape of 5-associativity.



The associahedron
The n! groupings of a,a....a, are equal:

The associahedron of order n is
a beautiful polyhedron. It has:

dimension: n-2
vertices:  C_=(2n)!/nl(n+1)!

walls: n(n+t1)/2 -1

volume: 222
The shape of 6-associativity.



The associahedron: history

“The associahedron is a mythical
polytope representing the
parenthesizations of variables.”

Stasheft 1963: topology
Haiman 1984: geometry
Loday 2004: algebra

Ceballos et al 2015: combinatorics
Arkani-Hamed et al 2017: physics

The shape of n-associativity.



Associahedra in unexpected places

- Nima Arkani-Hamed

Special IAS High Energy Theory Seminar

Foundations of spacetime

and quantum mechanics The shape of 5-associativity.
(Arkani-Hamed 2021)



Permutahedron and associahedron,

together.
(Schoute 1914) (Loday 2004)
The shape of 4-commutativity. The shape of 5-associativity.

(Postnikov 2006)






2x3x4x5=120 ) <:>

Different processes give the same answerl!! >

Who is suprised? Who is not surprised? Q
Why?l2!l This is the topic of today. )

Mathematics is interconnected, and connected to
other areas, in ways we can never predict.

It is always worth thinking very slowly and carefully
about what we think we understand!
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iii muchas gracias !l

questions¢ comments? reactions?

More information:
www.fardila.com
twitter: @federicoardila

youtube.com/federicoelmatematico



