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Ongoing joint work (08-18) with
Marcelo Aguiar (Cornell).

Part 1:
Hopf monoids and generalized permutahedra,
arXiv:1709.07504

This is closely related to work of:

Carolina Benedetti, Nantel Bergeron, Lou Billera, Eric Bucher, Harm Derksen,
Alex Fink, Rafael González D’León, Vladimir Grujić, Joshua Hallam, Brandon
Humpert, Ning Jia, Carly Klivans, John Machacek, Swapneel Mahajan, Jeremy
Martin, Vic Reiner, Bruce Sagan, Tanja Stojadinović, Jacob White...



1. A tale of two polytopes 2. Hopf monoids 3. Generalized permutahedra 4. Character groups 5. Reciprocity 6. Directions

What is combinatorics about? A personal view.

Is it about counting a set of objects?

We do count, but not

1, 2, 3, . . . .

(Toy example: How many chairs are there in this room?)

We usually:
1. Study the structure of the individual objects or the set.
2. Use this structure to count them.

Main objective:
Understanding the underlying structure of discrete objects.
(Often this structure is algebraic, geometric, topological.)
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1. A tale of two polytopes 2. Hopf monoids 3. Generalized permutahedra 4. Character groups 5. Reciprocity 6. Directions

What is alg + geom + top combinatorics about?

Understanding the underlying structure of discrete objects.
(Often this structure is algebraic, geometric, topological.)

algebra geometry

topology

combinatorics

2 / 42



1. A tale of two polytopes 2. Hopf monoids 3. Generalized permutahedra 4. Character groups 5. Reciprocity 6. Directions

1.1. A tale of two polytopes: Permutations

{1, 2, . . . , n} has n! permutations. How are they structured?

n = 3: 123, 132, 213, 231, 312, 321

What does the “space of permutations” look like?

b

a c (3,1,2)

(3,2,1) (1,2,3)

(1,3,2)(2,3,1)

(2,1,3)

A convex polytope!
The permutahedron. Schoute 11, Bruhat/Verma 68, Stanley 80
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1.2. A tale of two polytopes: Associations

x1x2 · · · xn has 1
n+1

(2n
n

)
associations. How are they structured?

n = 4: a((bc)d), a(b(cd)),(ab)(cd), ((ab)c)d, (a(bc))d

What does the “space of associations” look like?

A convex polytope!
The associahedron. Stasheff 63, Haiman 84, Loday 04, Escobar 14
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1.3. Motivating application: Inverting power series
A new take on an old question:

How do we invert a power series under multiplication?

Let A(x) =
∑

an
xn

n! and B(x) =
∑

bn
xn

n! be multiplicative inverses.
Assume a0 = b0 = 1. (Ex: sec x = 1/ cos x .)

Then B(x) = 1/A(x) is given by

b1 = −a1

b2 = −a2 + 2a2
1

b3 = −a3 + 6a2a1 − 6a3
1

b4 = −a4 + 8a3a1 + 6a2
2 − 36a2a

2
1 + 24a4

1

...

How to make sense of these numbers?
5 / 42
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Inverting power series: Multiplication.
Permutahedra:

π1: point, π2: segment, π3: hexagon, π4: truncated octahedron...

For exponential generating functions, B(x) = 1/A(x) is given by

b1 = −a1

b2 = −a2 + 2a2
1

b3 = −a3 + 6a2a1 − 6a3
1

b4 = −a4 + 8a3a1 + 6a2
2 − 36a2a

2
1 + 24a4

1

Faces of π4: • 1 truncated octahedron π4

• 8 hexagons π3 × π1 and 6 squares π2 × π2

• 36 segments π2 × π1 × π1

• 24 points π1 × π1 × π1 × π1
6 / 42
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Inverting power series: Composition.

A new take on an old question:

How do we invert a power series under composition?

A(x) =
∑

an−1x
n, B(x) =

∑
bn−1x

n: compositional inverses.
Assume a0 = b0 = 1. (Ex: arcsin x = 1/ sin x .)

Then B(x) = A(x)〈−1〉 is given by Lagrange inversion:

b1 = −a1

b2 = −a2 + 2a2
1

b3 = −a3 + 5a2a1 − 5a3
1

b4 = −a4 + 6a3a1 + 3a2
2 − 21a2a

2
1 + 14a4

1

...

How to make sense of these numbers?
7 / 42
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Inverting power series: Composition.
Associahedra:

a1: point, a2: segment, a3: pentagon, a4: 3-associahedron...

For ordinary generating functions, B(x) = A(x)〈−1〉 is given by

b1 = −a1

b2 = −a2 + 2a2
1

b3 = −a3 + 5a2a1 − 5a3
1

b4 = −a4 + 6a3a1 + 3a2
2 − 21a2a

2
1 + 14a4

1

Faces of a4: • 1 3-associahedron a4

• 6 pentagons a3 × a1 and 3 squares a2 × a2

• 21 segments a2 × a1 × a1

• 14 points a1 × a1 × a1 × a1
8 / 42
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Inverting power series: Composition.

So
• permutahedra “know” how to compute multiplicative inverses
• associahedra “know” how to compute compositional inverses

Why?

We discovered this as a very unexpected consequence of our
Hopf monoid of generalized permutahedra.

Let’s
1. build a bit of abstract architecture, and
2. reap the(se and other) concrete benefits.

9 / 42
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2. Hopf monoids.

algebra geometry

topology

combinatorics

10 / 42
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2. Hopf monoids.

• Do you know what a Hopf algebra is?

• Do you know what a Hopf monoid is?
I didn’t know until I started on this project.

Hopf monoids refine Hopf algebras. They are a bit more abstract
but better suited for many combinatorial purposes.

There is a Fock functor

Hopf monoids −→ Hopf algebras

so there are Hopf algebra analogs of all of our results.

11 / 42
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1. A tale of two polytopes 2. Hopf monoids 3. Generalized permutahedra 4. Character groups 5. Reciprocity 6. Directions

2.1. Hopf monoids: Definition.
(Joni-Rota, Coalgebras and bialgebras in combinatorics.)

(Aguiar-Mahajan, Monoidal functors, species, and Hopf algebras.)

Think:
• A family of combinatorial structures. (graphs, posets, matroids, ...)
• Rules for “merging” and “breaking” those structures.

A Hopf monoid (H, µ,∆) consists of:

• For each finite set I , a vector space H[I ].
• For each partition I = S t T , maps

product µS,T : H[S ]⊗ H[T ] −→ H[I ]
coproduct ∆S ,T : H[I ] −→ H[S ]⊗ H[T ].

satisfying various axioms.

For us, H[I ] = span{combinatorial structures of type H on I}

product:
I

S
T S,T

coproduct:

S,TI
S
T

12 / 42
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1. A tale of two polytopes 2. Hopf monoids 3. Generalized permutahedra 4. Character groups 5. Reciprocity 6. Directions

2.1. Hopf monoids: Axioms.

For each finite set I , a vector space H[I ].
For each partition I = S t T ,

product
I

S
T S,T

coproduct

S,TI
S
T

Axioms:

µ is associative. ∆ is coassociative. µ and ∆ are compatible.

can merge several
structures into one

can break one
structure into several

merge, then break =
break, then merge

13 / 42



1. A tale of two polytopes 2. Hopf monoids 3. Generalized permutahedra 4. Character groups 5. Reciprocity 6. Directions

Example 1: The Hopf monoid of graphs.

G[I ] := span{graphs (with half edges) on vertex set I}.

Product: g1 · g2 = g1 t g2 (disjoint union)

Coproduct: ∆S,T (g) = g |S ⊗ g/S where

g |S = keep everything incident to S ,

g/S = remove everything incident to S .

a b c

d e

abc,de a b c

d e

14 / 42
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Example 2: The Hopf monoid of posets.

P[I ] := span{posets on I}.

Product: p1 · p2 = p1 t p2 (disjoint union)

Coproduct: ∆S,T (p) =

{
p|S ⊗ p|T if S is a lower set of p

0 otherwise

a b c
d e

abcd,efg

f g

=
a b c

d e
f g

a b c
d e

abde,cfg

f g

= 0

15 / 42
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Example 3: The Hopf monoid of matroids.

M[I ] := span{matroids on I}.

• Do you know what a matroid is?

Matroids are a combinatorial model of independence.

They capture the properties of (linear,algebraic,graph,matching,...) independence.

Product: m1 ·m2 = m1 ⊕m2 (direct sum)

Coproduct: ∆S,T (m) = m|S ⊗m/S where

m|S = restriction to S of m,

m/S = contraction of S from m.

16 / 42
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Other Hopf monoids.

There are many interesting Hopf monoids in combinatorics,
algebra, and representation theory.

A few of them:

• graphs G
• posets P
• matroids M

• set partitions Π (symmetric functions)
• paths A (Faá di Bruno)

• simplicial complexes SC
• hypergraphs HG
• building sets BS

17 / 42
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2.2. The antipode of a Hopf monoid.

Think: groups  inverses
Hopf monoids  antipodes

(s2 = id)

Takeuchi: The antipode of a connected Hopf monoid H is :

sI (h) =
∑

I=S1t···tSk
k≥1

(−1)k µS1,...,Sk ◦∆S1,...,Sk (h).

summing over all ordered set partitions I = S1 t · · · t Sk . (Si 6= ∅)

General problem. Find the simplest possible formula
for the antipode of a Hopf monoid.

(Usually there is much cancellation in the definition above.)

18 / 42
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Examples: The antipode of a graph, matroid, poset.
Ex. Takeuchi: sI =

∑
I=S1t···tSk

(−1)k µS1,...,Sk ◦∆S1,...,Sk .

For n = 3, 4, 4 this sum has 13, 73, 73 terms. However,

How do we explain (and predict) the simplification?

• In the past: clever combinatorics.
• Our approach: geometry + topology: Euler characteristics.

19 / 42
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Some antipodes of interest.

There are many other Hopf monoids of interest.
Very few of their (optimal) antipodes were known.

• graphs G: ?, Humpert–Martin 10
• posets P: ?
• matroids M: ?

• set partitions / symm fns. Π: Aguiar–Mahajan 10
• paths A: ?

• simplicial complexes SC : Benedetti–Hallam–Michalak 16
• hypergraphs HG : ?
• building sets BS : ?

Goal 1. a unified approach to compute these and other antipodes.
(We do this).

20 / 42
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3. Generalized permutahedra.

algebra geometry

topology

combinatorics

21 / 42
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3.1. Permutahedra.

The standard permutahedron is

πn := Convex Hull{permutations of {1, 2, . . . , n}} ⊆ Rn

r
r

r
rr

r
"
""

"
""b

bb

b
bb

(3, 2, 1)

(3, 1, 2)

(1, 3, 2)

(1, 2, 3)

(2, 3, 1)

(2, 1, 3)

π3 =

{x1 + x2 + x3 = 6}

22 / 42
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3.2. Generalized permutahedra.
Edmonds (70), Postnikov (05), Postnikov–Reiner–Williams (07),...
Equivalent formulations:
• Move the facets of the permutahedron without passing vertices.
• Move the vertices while preserving edge directions.

r
r

r
rr

r
"
""

"
""b

bb

b
bb

Generalized permutahedra:

r
r

rr

rr

"
""

""

b
b
bb

b
bb r

r
rr

r

r
"

""

b
b
b

b
b

b
bb

Gen. permutahedra = “polymatroids” = “submodular functions”.
Many natural gen. permutahedra! Especially in optimization.

23 / 42
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Edmonds (70), Postnikov (05), Postnikov–Reiner–Williams (07),...
Equivalent formulations:
• Move the facets of the permutahedron without passing vertices.
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Generalized permutahedra in 3-D.
The permutahedron π4. A generalized permutahedron.

We allow unbounded ones:

Goal 0. A Hopf monoid of generalized permutahedra.

How do we merge gen. permutahedra? How do we split them?
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3.3. The Hopf monoid GP : Product.

Key Lemma. If P, Q are generalized permutahedra in RS and RT

and I = S t T , then

P × Q = {(p, q) : p ∈ RS , q ∈ RT}

is a generalized permutahedron in RStT = RI .

Example: hexagon × segment =

b

d

e

c

a

Hopf product of P and Q:

P · Q := P × Q.
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3.3. The Hopf monoid GP : Coproduct.
Given a polytope P ⊆ RI and I = S t T , let

PeS,T := face of P where
∑

s∈S xs is maximum.

Key Lemma. If P is a generalized permutahedron and I = S t T ,

PeS,T = P|S × P/S

for generalized permutahedra P|S ⊆ RS and P/S ⊆ RT .

abcd = abd t c

abcd = ad t bc

= X

= X

a

b

d

c

Hopf coproduct of P:

∆S ,T (P) := P|S ⊗ P/S
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3.3. The Hopf monoid of generalized permutahedra.

GP[I ] := span {generalized permutahedra in RI}.

Product: P1 · P2 = P1 × P2

Coproduct: ∆S,T (P) = P|S ⊗ P/S

Theorem. (Aguiar–A. 08, Derksen–Fink 10)
GP is a Hopf monoid.

Theorem. (Aguiar–A. 17)
GP is the universal Hopf monoid of polytopes with these operations.

algebra geometry

topology

combinatorics
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3.4. Generalized permutahedra: Posets, graphs, matroids.

There is a long tradition of modeling combinatorics geometrically.
There are polyhedral models:

G graph → graphic zonotope Z (G ) (Stanley 73)
Z (G ) =

∑
ij∈G (ei − ej)

P poset → poset cone CP (Geissinger 81)
CP : cone{ei − ej : i < j in P}.

M matroid → matroid polytope PM (Edmonds 70, GGMS 87)
PM = conv{ei1 + · · ·+ eik | {i1, . . . , ik} is a basis of M}.

Proposition. (Aguiar–A. 08) These are inclusions of Hopf monoids:
G ↪→ GP, M ↪→ GP, P ↪→ GP .
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3.5. The antipode of GP.
Theorem. (Aguiar–A.) Let P be a generalized permutahedron.

s(P) =
∑
Q≤P

(−1)codimQ Q.

The sum is over all faces Q of P.

Proof. Takeuchi:

s(P) =
∑

I=S1t···tSk

(−1)k µS1,...,Sk ⊗∆S1,...,Sk (P)

=
∑

I=S1t···tSk

(−1)k PS1,...,Sk

where PS1,...,Sk = face of P minimizing xS1 + 2xS2 + · · ·+ kxSk .
Coeff. of a face Q: huge sum of 1s and −1s. How to simplify it?
It is the reduced Euler characteristic of a sphere!

This is the best possible formula. No cancellation or grouping.
(One advantage of working with Hopf monoids!)
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3.5. The antipode of GP.

Theorem. (Aguiar–A.) Let P be a generalized permutahedron.

s(P) =
∑
Q≤P

(−1)codimQ Q.

The sum is over all faces Q of P.

algebra geometry

topology

combinatorics
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The antipodes of graphs, matroids, posets.

a

b

d

c

a

b

d

c

s(P) =
∑
Q≤P

(−1)codimQ Q.
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Many antipode formulas.
Theorem. (Aguiar–A.) Let P be a generalized permutahedron.

s(P) =
∑
Q≤P

(−1)codimQ Q.

As a consequence, we get best possible formulas for:
objects polytopes Hopf algebra antipode

set partitions permutahedra Joni-Rota Joni-Rota
paths associahedra Joni-Rota, new Haiman-Schmitt, new
graphs graphic zonotopes Schmitt new, Humpert-Martin
matroids matroid polytopes Schmitt new
posets braid cones Schmitt new
submodular fns polymatroids Derksen-Fink, new new
hypergraphs hg-polytopes new new
simplicial cxes new: sc-polytopes Benedetti et al Benedetti et al
building sets nestohedra new, Grujić et al new
simple graphs graph associahedra new new

Lots of interesting algebra and combinatorics.
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4.1. Characters of Hopf monoids.

Think: character = multiplicative function on our objects

Let H be a Hopf monoid. A character ζ consists of maps

ζI : H[I ]→ k

which are multiplicative: for each I = S t T , s ∈ H[S ], t ∈ H[T ]:

ζ(s)ζ(t) = ζ(s · t).
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4.2. The group of characters.
The group of characters of a Hopf monoid H:

Identity:
u(h) =

{
1 if h = 1 ∈ H[∅]
0 otherwise.

Operation: Convolution across coproduct. For h ∈ H[I ]

ζ1 ∗ ζ2(h) =
∑

I=StT
ζ1(h|S)ζ2(h/S)

Inverse: Antipode.
ζ−1 = ζ ◦ s

• This group is hard to describe in general.
• To understand it, we must understand the antipode.

Let’s study two special cases: permutahedra and associahedra.

(Non-)Goal 2. a unified approach to inversion of power series.
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4.3. The group of characters for permutahedra.

Theorem. The group of characters of Π is the group of exponential
generating functions 1 + a1x + a2

x2

2! + · · · under multiplication.

inversion of egfs ←→ antipode of permutahedra

For exponential generating functions, B(x) = 1/A(x) is given by
b1 = −a1

b2 = −a2 + 2a2
1

b3 = −a3 + 6a2a1 − 6a3
1

b4 = −a4 + 8a3a1 + 6a2
2 − 36a2a

2
1 + 24a4

1
...

These numbers come from the
antipode of the permutahedron:
s(π4) = −π4 + 8π3π1 + 6π2

2 − 36π2π
2
1 + 24π4

1

(1 perm., 8 hexagons and 6 squares, 36 segments, 24 points.)
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4.4. The group of characters of associahedra.

Theorem. The group of characters of Π is the group of generating
functions x + a1x

2 + a2x
3 + · · · under composition.

compositional inversion of gfs ←→ antipode of associahedra

For ordinary generating functions, B(x) = A(x)〈−1〉 is given by
b1 = −a1

b2 = −a2 + 2a2
1

b3 = −a3 + 5a2a1 − 5a3
1

b4 = −a4 + 6a3a1 + 3a2
2 − 21a2a

2
1 + 14a4

1
...
These numbers come from the
antipode of the associahedron:
s(a4) = −a4 + 6a3a1 + 3a2

2 − 21a2a
2
1 + 14a4

1

(1 assoc., 6 pentagons and 3 squares, 21 segments, 14 points.)
36 / 42
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4.4. The group of characters of associahedra.

This reformulation of the Lagrange inversion formula for

B(x) = A(x)〈−1〉

answers Loday’s question:

“...it would be interesting to find [a proof of the Lagrange
inversion formula] which involves the topological
structure of the associahedron.” (Loday, 2005)

s(a4) = −a4 + 6a3a1 + 3a2
2 − 21a2a

2
1 + 14a4

1

Note. This only works for Loday’s a4! (A. – Escobar – Klivans)

Project.
(A. – Benedetti – González d’León – Supina.)
Compute the group of characters and reciprocity
rules for other interesting submonoids of GP.
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5. Polynomial invariants and reciprocity.

Each character ζ of a Hopf monoid H gives a polynomial χ.

Think. χh(n) = Split object h into n parts, apply ζ to each part.

Define, for each object h ∈ H[I ] and n ∈ N,

χh(n) :=
∑

S1t···tSn=I

(ζS1 ⊗ · · · ⊗ ζSn) ◦∆S1,...,Sn(h),

summing over all weak ordered set partitions I = S1 t · · · t Sn

Proposition.

1. χh(n) is a polynomial function of n.

2. χh(−n) = χs(h)(n). (antipode → reciprocity thms)
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Three reciprocity theorems.

1. Graphs: χg = chromatic polynomial of g .
For n ∈ N, it counts proper colorings of g with [n]. (Birkhoff, 12).
For −1, it counts acyclic orientations of g . (Stanley, 73).
For −n, it counts... (Stanley, 73).

2. Posets: χp = strict order polynomial of p.
For n ∈ N it counts order-preserving n-labelings of p. (Stanley, 70).
For −1 it equals ±1
For −n it counts weakly order-preserving n-labelings of p. (Stanley, 70).

3. Matroids: χm = Billera-Jia-Reiner polynomial of m.
For n ∈ N, it counts m-generic functions f : I → [n]. (BJR 06).
For −1 it counts bases of m (BJR 06).
For −n it counts... (BJR 06).

Goal 3. A unified approach to these and other reciprocity results.
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A GP polynomial for posets, graphs, matroids.

Theorem. (Aguiar–A., Billera–Jia–Reiner) The basic character of GP:

ζ(P) :=

{
1 if the polytope P is a point,

0 otherwise.

gives the basic polynomial

χP(n) := # of P-generic vectors in [n]I ⊂ RI .

Under the inclusions P,G,M ↪→ GP polynomial χP(n) specializes to:

χq(n) (posets), χg (n) (graphs), χm(n) (matroids)

Their reciprocity theorems are really the same theorem.
The Hopf monoid GP discovers and proves them directly.
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6.1. Current direction 1: the polytope algebra.
Theorem. (A.–Aguiar, Derksen–Fink) The Hopf structure GP de-
scends to GP in McMullen’s polytope algebra. There we have

s(P) =
∑
Q≤P

(−1)codimQ Q = (−1)codimP interior(P)

The Euler involution! (McMullen)

Example: s( ) =

=

Many interesting consequences (with M. Aguiar, M. Sanchez)
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6.2. Current direction 2: The Coxeter-Hopf monoid GPW .

Symmetric group Coxeter group

graphs sets of roots Zaslavsky
posets Coxeter cones Reiner
matroids Coxeter matroids Gelfand, Serganova

permutahedra weight polytopes Kostant
associahedra Coxeter associahedra Fomin, Zelevinsky
gen permutahedra gen Coxeter permhedra A., Castillo, Postnikov

Hopf monoid Coxeter–Hopf monoid? A., Aguiar, Bastidas,
GP GP? Mahajan, Rodŕıguez
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¡Muchas gracias!
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