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1. A tale of two polytopes 2. Hopf monoids 3. Generalized permutahedra 4. Valuations

What is combinatorics about? A personal view.

Is it about counting a set of objects?

We do count, but not

1, 2, 3, . . . .

Toy example: How many people are there in this Zoom room?

We usually:
1. Study the structure of the individual objects or the set.
2. (If we like to count), use this structure to count them.

Main objective:
Understanding the underlying structure of discrete objects.
(Often this structure is algebraic, geometric, topological.)
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What is alg + geom + top combinatorics about?

Understanding the underlying structure of discrete objects.
(Often this structure is algebraic, geometric, topological.)

algebra geometry

topology

combinatorics
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1.1. A tale of two polytopes: Permutations

{1, 2, . . . , n} has n! permutations. How are they structured?

n = 3: 123, 132, 213, 231, 312, 321

What does the “space of permutations” look like?

b

a c (3,1,2)

(3,2,1) (1,2,3)

(1,3,2)(2,3,1)

(2,1,3)

A convex polytope!
The permutahedron. Schoute 11, Bruhat/Verma 68, Stanley 80
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1.2. A tale of two polytopes: Associations

x1x2 · · · xn has 1
n+1

(2n
n

)
associations. How are they structured?

n = 4: a((bc)d), a(b(cd)),(ab)(cd), ((ab)c)d, (a(bc))d

What does the “space of associations” look like?

A convex polytope!
The associahedron. Stasheff 63, Haiman 84, Loday 04, Escobar 14
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2. Hopf monoids.

algebra geometry

topology

combinatorics
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2. Hopf monoids.

I won’t assume you know what a Hopf algebra or monoid is. I didn’t.

Hopf monoids refine Hopf algebras. Like categorification, they are
more abstract but better suited for many combinatorial purposes.

There is a Fock functor

Hopf monoids −→ Hopf algebras

so there are Hopf algebra analogs of all of our results.

6 / 36
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2.1. Hopf monoids: “Definition”.
(Joni-Rota, Coalgebras and bialgebras in combinatorics.)

(Aguiar-Mahajan, Monoidal functors, species, and Hopf algebras.)

Think:
• A family of combinatorial structures. (graphs, posets, matroids, ...)
• Rules for “merging” and “breaking” those structures.

A Hopf monoid (H, µ,∆) consists of:

• For each finite set I , a vector space H[I ].
• For each partition I = S t T , maps

product µS ,T : H[S ]⊗ H[T ] −→ H[I ]
and coproduct ∆S,T : H[I ] −→ H[S ]⊗ H[T ].

satisfying various axioms.

For us, H[I ] = span{combinatorial structures of type H on I}

product:
I

S
T S,T

coproduct:

S,TI
S
T

7 / 36
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2.1. Hopf monoids: Axioms.

For each finite set I , a vector space H[I ].
For each partition I = S t T ,

product
I

S
T S,T

coproduct

S,TI
S
T

Axioms:

µ is associative. ∆ is coassociative. µ and ∆ are compatible.

can merge several
structures into one

can break one
structure into several

merge, then break =
break, then merge

8 / 36
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Example 1: The Hopf monoid of posets.

P[I ] := span{posets on I}.

Product: p1 · p2 = p1 t p2 (disjoint union)

Coproduct: ∆S,T (p) =

{
p|S ⊗ p|T if S is a lower set of p

0 otherwise

a b c
d e

abcd,efg

f g

=
a b c

d e
f g

a b c
d e

abde,cfg

f g

= 0

9 / 36
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Example 2: The Hopf monoid of matroids.

M[I ] := span{matroids on I}.

Matroids are a combinatorial model of independence.

They capture the properties of (linear,algebraic,graph,matching,...) independence.

Product: m1 ·m2 = m1 ⊕m2 (direct sum)

Coproduct: ∆S,T (m) = m|S ⊗m/S where

m|S = restriction of m to S , (keep only S)

m/S = contraction of m w.r.t. S . (mod out by span(S))

10 / 36
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Other Hopf monoids.

There are many interesting Hopf monoids in combinatorics,
algebra, and representation theory.

A few of them:

• graphs G
• posets P
• matroids M

• set partitions Π (symmetric functions)
• paths A (Faá di Bruno)

• simplicial complexes SC
• hypergraphs HG
• building sets BS

11 / 36
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2.2. The antipode of a Hopf monoid.

Think: groups  inverses
Hopf monoids  antipodes

(often s2 = id)

Takeuchi: The antipode of a connected Hopf monoid H is :

sI (h) =
∑

I=S1t···tSk
k≥1

(−1)k µS1,...,Sk ◦∆S1,...,Sk (h),

the signed sum of all ways to (break apart then put back together).

General problem. Find the simplest possible formula
for the antipode of a Hopf monoid.

(Usually there is much cancellation in the definition above.)

12 / 36
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Examples: The antipode of a matroid, poset.

Ex. Takeuchi: sI =
∑

I=S1t···tSk

(−1)k µS1,...,Sk ◦∆S1,...,Sk .

For n = 4 this sum has 73 terms. However,

How do we explain (and predict) the simplification?

• In the past: clever combinatorics.
• Our approach: geometry + topology: Euler characteristics.
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Some antipodes of interest.

There are many other Hopf monoids of interest.
Very few of their (optimal) antipodes were known.

• graphs G: ?, Humpert–Martin 10
• posets P: ?
• matroids M: ?

• set partitions / symm fns. Π: Aguiar–Mahajan 10
• paths A: ?

• simplicial complexes SC : Benedetti–Hallam–Michalak 16
• hypergraphs HG : ?
• building sets BS : ?

Goal: a unified approach to compute these and other antipodes.
(We do this).

14 / 36
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3. Generalized permutahedra.

algebra geometry

topology

combinatorics
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3.1. Permutahedra.

The standard permutahedron is

πn := Convex Hull{permutations of {1, 2, . . . , n}} ⊆ Rn

r
r

r
rr

r
"
""

"
""b

bb

b
bb

(3, 2, 1)

(3, 1, 2)

(1, 3, 2)

(1, 2, 3)

(2, 3, 1)

(2, 1, 3)

π3 =

{x1 + x2 + x3 = 6}
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3.2. Generalized permutahedra.
Edmonds (70), Postnikov (05), Postnikov–Reiner–Williams (07),...
Equivalent formulations:
• Move the facets of the permutahedron without passing vertices.
• Move the vertices while preserving edge directions.

r
r

r
rr

r
"
""

"
""b

bb

b
bb

Generalized permutahedra:

r
r

rr

rr

"
""

""

b
b
bb

b
bb r

r
rr

r

r
"

""

b
b
b

b
b

b
bb

Gen. permutahedra = “polymatroids” = “submodular functions”.
Many natural gen. permutahedra! Especially in optimization.
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The permutahedron π4. A generalized permutahedron.

We allow unbounded ones:

Goal. A Hopf monoid of generalized permutahedra.

How do we merge gen. permutahedra? How do we split them?

18 / 36
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3.3. The Hopf monoid GP : Product.

Key Lemma 1. If P, Q are generalized permutahedra in RS and RT

and I = S t T , then

P × Q = {(p, q) : p ∈ RS , q ∈ RT}

is a generalized permutahedron in RStT = RI .

Example: hexagon × segment =

b

d

e

c

a

Hopf product of P and Q:

P · Q := P × Q.

19 / 36
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3.3. The Hopf monoid GP : Coproduct.
Given a polytope P ⊆ RI and I = S t T , let

PeS,T := face of P where
∑

s∈S xs is maximum.

Key Lemma 2. If P is a generalized permutahedron and I = S t T ,

PeS,T = P|S × P/S

for generalized permutahedra P|S ⊆ RS and P/S ⊆ RT .

abcd = abd t c

abcd = ad t bc

= X

= X

a

b

d

c

Hopf coproduct of P:

∆S ,T (P) := P|S ⊗ P/S

20 / 36
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3.3. The Hopf monoid of generalized permutahedra.

GP[I ] := span {generalized permutahedra in RI}.

Product: P1 · P2 = P1 × P2

Coproduct: ∆S,T (P) = P|S ⊗ P/S

Theorem. (Aguiar–A. 08, Derksen–Fink 10)
GP is a Hopf monoid.

Theorem. (Aguiar–A. 17)
GP is the universal Hopf monoid of polytopes with these operations.

algebra geometry

topology

combinatorics

21 / 36
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3.4. Generalized permutahedra: Posets, matroids.

There is a long tradition of modeling combinatorics geometrically.
There are polyhedral models:

P poset → poset cone CP (Geissinger 81)
CP : cone{ei − ej : i < j in P}.

M matroid → matroid polytope PM (Edmonds 70, GGMS 87)
PM = conv{ei1 + · · ·+ eik | {i1, . . . , ik} is a basis of M}.

Proposition. (Aguiar–A. 08)
These maps are inclusions of Hopf monoids!

M ↪→ GP, P ↪→ GP .

(Similarly for graphs, simplicial complexes, paths, building sets,...)

22 / 36
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3.5. The antipode of GP.
Theorem. (Aguiar–A.) Let P be a generalized permutahedron.

s(P) =
∑
Q≤P

(−1)codimQ Q.

The sum is over all faces Q of P.

Proof. Takeuchi:

s(P) =
∑

I=S1t···tSk

(−1)k µS1,...,Sk ⊗∆S1,...,Sk (P)

=
∑

I=S1t···tSk

(−1)k PS1,...,Sk

where PS1,...,Sk = face of P in direction S1| · · · |Sk .

Coeff. of a face Q: huge sum of 1s and −1s. How to simplify it?
It is the reduced Euler characteristic of a sphere!

This is the best possible formula. No cancellation or grouping.
(One advantage of working with Hopf monoids!)

23 / 36
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3.5. The antipode of GP.

Theorem. (Aguiar–A.) Let P be a generalized permutahedron.

s(P) =
∑
Q≤P

(−1)codimQ Q.

The sum is over all faces Q of P.

algebra geometry

topology

combinatorics
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The antipodes of matroids, posets.

For Hopf algebras:

Matroids:

( ( + 2 +  + 2 4 _s = _

Posets:

(( + 5 + 2 8 _s = + _ + 2 

What are these numbers??
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The antipodes of matroids, posets.

For Hopf monoids: (“Categorify”! )

Matroids:

((

+

+

_

s = + _
d

ba c

d
ba c d

ba c
+

c

ba d da

cb
+ a

b

d
c + b

a

d
c

d

c
a

b _
d

b
a

c _
c

b
a

d _
d

c
b

a _
d

a
b

c _
c

a
b

d _
b

a
c

d _
b

a
d

c

ba

dc
+

ca

db
+

da

cb
+

cb

da
+

db

ca

Posets:

( ( +

+  

+ 

_

s = _
ba

dc

ba

dc

ba

c
d + 

ba

d
c

dc

a

b +
dc

b

a

a

c
b d _

a

d
b c _

b

c
a d _

b

d
a c a b c d
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The antipodes of matroids, posets.

Matroids:

((

+

+

_

s = + _
d

ba c

d
ba c d

ba c
+

c

ba d da

cb
+ a

b

d
c + b

a

d
c

d

c
a

b _
d

b
a

c _
c

b
a

d _
d

c
b

a _
d

a
b

c _
c

a
b

d _
b

a
c

d _
b

a
d

c

ba

dc
+

ca

db
+

da

cb
+

cb

da
+

db

ca

Posets:

( ( +

+  

+ 

_

s = _
ba

dc

ba

dc

ba

c
d + 

ba

d
c

dc

a

b +
dc

b

a

a

c
b d _

a

d
b c _

b

c
a d _

b

d
a c a b c d

s(P) =
∑
Q≤P

(−1)codimQ Q.

a

b

d

c

a

b

d

c

a

b

d

c
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Many antipode formulas.

Theorem. (Aguiar–A.) Let P be a generalized permutahedron.

s(P) =
∑
Q≤P

(−1)codimQ Q.

objects polytopes Hopf algebra antipode

set partitions permutahedra Joni-Rota Joni-Rota
paths associahedra Joni-Rota, new Haiman-Schmitt, new
graphs graphic zonotopes Schmitt new, Humpert-Martin
matroids matroid polytopes Schmitt new
posets poset cones Schmitt new
submodular fns polymatroids Derksen-Fink, new new
hypergraphs hg-polytopes new new
simplicial cxes new: sc-polytopes Benedetti et al Benedetti et al
building sets nestohedra new, Grujić et al new
simple graphs graph associahedra new new

Lots of interesting algebra and combinatorics. Questions?
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4.1. Two intriguing observations: 1

If we could actually add and subtract polytopes, the antipode
would be the Euler involution of McMullen:

s(P) =
∑
Q≤P

(−1)codimQ Q

“ = ” (−1)codimP interior(P)

Example: s( ) =

=

To make this work, instead of P, can we use indicator function 1IP?

1I P(x) =

{
1 if x ∈ P

0 if x /∈ P
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4.1. Two intriguing observations: 2
Many combinatorial invariants are also polytopal “measures”!

Example: For posets, f (P) =
∑

A antichain

t |A| antichain: no < relations

34

14
13

12

23 24

+ 

_

= 3

1

2
1

43

1

4
2 3

4
2 4

321

+ 
4

31

2
+ 

4

21

3

21

4
3 _

31

4
2 _ _42

+ 
1

3
43

1

2

1 + 4t = (1 + 4t + 3t2 + t3) + (1 + 4t + 3t2 + t3) + (1 + 4t + 3t2) + (1 + 4t + 2t2)

−(1 + 4t + 4t2 + t3)− (1 + 4t + 4t2 + t3)− (1 + 4t + 4t2 + t3)− (1 + 4t + 4t2 + t3) + (1 + 4t + 5t2 + 2t3)

They are valuations: If P1, . . . ,Pk subdivide P, then

f (P) =
k∑

i=1

(−1)dimP−dimPi f (Pi ).

Note: f (P) = 1IP satisfies this!
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4.2. A Hopf theoretic explanation

The inclusion-exclusion subspaces:

ie := span

{
P −

∑
i

(−1)dimP−dimPiPi | {Pi} subdivides P

}
⊂ GP.

and the quotient

I(GP) := span{1IP |P is a generalized permutahedron in RI}
∼= GP/ie,

Theorem. (A.-Sanchez 20) The Hopf monoid GP descends to I(GP).

Analogs shown by Derksen-Fink 10 and Bastidas 20.

Corollary. (A.-Sanchez 20)
• The antipode of I(GP) is s(P) = (−1)codimP interior(P).
• Invariants that come from Hopf theory are valuations!
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4.3. Applications

We get a method to easily discover/prove that these are valuations:

For matroids:

Valuative invariant

Chow class in permutahedral variety (Fulton, Sturmfels)
Chern-Schwartz-MacPherson cycles (Lopez, Rincon, Shaw)
volume polynomial (Eur)
Kazhdan-Lusztig polynomial (Elias, Proudfoot, Wakefield)
motivic zeta function (Jensen, Kutler, Usatine)
universal invariant (Derksen-Fink)
Tutte polynomial (Speyer)

For posets:

Valuative invariant

order polynomial (Stanley)
Tutte polynomial (Gordon)
antichain polynomial
order ideal polynomial
Poincaré polynomial (Dorpalen-Barry, Kim, Reiner) Questions?
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4.4. Why care about valuations ↔ subdivisions?

Matroid subdivisions:
Ways of cutting a matroid polytope into smaller ones. Contexts:

compactifying moduli space of hyperplane arrs. Kapranov
compactying Schubert cells in the Grassmannian Lafforgue
“linear spaces” in tropical geometry Speyer, Ardila-Klivans

Use valuations to measure the complexity of matroid subdivisions!

Poset subdivisions:
Ways of cutting a (poset cone)/(root polytope) into smaller ones.

maximal minors of matrices Bernstein-Zelevinsky, Babson-Billera
quasi-classical Yang-Baxter algebra Kirillov, Mészáros
(xijxjk = xikxij + xjkxik + βxik , xijxkl = xklxij)

Use valuations to measure the complexity of poset subdivisions?

Building set subdivisions:

Theorem. (A.-Sanchez 20) There are no nestohedral subdivisions.

33 / 36
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4.5. Universality

Question:
Why do generalized permutahedra come up so much in this theory?

Character on a Hopf monoid H:
Multiplicative function ζ : H → R: ζ(h)ζ(h′) = ζ(h · h′)

Example: On GP, β(P) =

{
(−1)|I|tp if P is bounded, on hyperplane

∑
i∈I

xi = p in RI ,

0 if P is unbounded.

Theorem. (A.-Sanchez 20) (I(GP), β) is the terminal object in the
category of Hopf monoids with polynomial characters.

Any Hopf monoid H with character ζ : H → F[t] factors through I(GP):

There’s a (unique) Hopf morphism ζ̂ : H → I(GP) such that β ◦ ζ̂ = ζ.

So: Every polynomial character passes through gen. permutahedra!
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What is alg + geom + top combinatorics about?

Understanding the underlying structure of discrete objects.
(Often this structure is algebraic, geometric, topological.)

algebra geometry

topology

combinatorics
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