Measuring polytopes through their algebraic structure

Federico Ardila San Francisco State University Universidad de Los Andes

Algebra, Geometry, and Combinatorics Colloquium December 15, 2020 F.A. and Marcelo Aguiar (Cornell) 2008-2020 Hopf monoids and generalized permutahedra arXiv:1709.07504

F.A. and Mario Sanchez (Berkeley) 2020 The indicator Hopf monoid of generalized permutahedra arXiv:2020.11178

4. Valuations

What is combinatorics about? A personal view.

Is it about counting a set of objects?

What is combinatorics about? A personal view.

Is it about counting a set of objects? We do count, but not

 $1,2,3,\ldots.$

Toy example: How many people are there in this Zoom room?

What is combinatorics about? A personal view.

Is it about counting a set of objects? We do count, but not

 $1,2,3,\ldots$

Toy example: How many people are there in this Zoom room?

We usually:

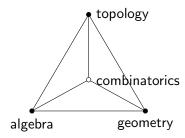
- 1. Study the structure of the individual objects or the set.
- 2. (If we like to count), use this structure to count them.

Main objective:

Understanding the underlying structure of discrete objects. **(Often this structure is algebraic, geometric, topological.)**

What is alg + geom + top combinatorics about?

Understanding the underlying structure of discrete objects. **(Often this structure is algebraic, geometric, topological.)**

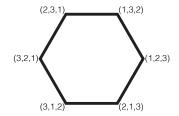


 $\{1, 2, \dots, n\}$ has n! permutations. How are they structured? n = 3: 123, 132, 213, 231, 312, 321

What does the "space of permutations" look like?

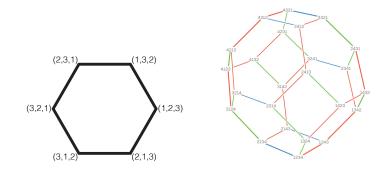
 $\{1, 2, ..., n\}$ has n! permutations. How are they structured? n = 3: 123, 132, 213, 231, 312, 321

What does the "space of permutations" look like?



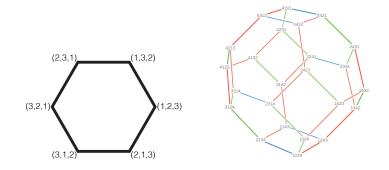
 $\{1, 2, ..., n\}$ has n! permutations. How are they structured? n = 3: 123, 132, 213, 231, 312, 321

What does the "space of permutations" look like?



 $\{1, 2, ..., n\}$ has n! permutations. How are they structured? n = 3: 123, 132, 213, 231, 312, 321

What does the "space of permutations" look like?



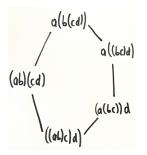
A convex polytope! The permutahedron. Schoute 11, Bruhat/Verma 68, Stanley 80

 $x_1 x_2 \cdots x_n$ has $\frac{1}{n+1} \binom{2n}{n}$ associations. How are they structured?

n = 4: a((bc)d), a(b(cd)), (ab)(cd), ((ab)c)d, (a(bc))d

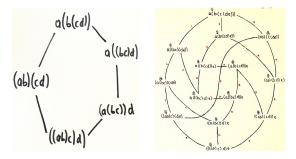
 $x_1 x_2 \cdots x_n$ has $\frac{1}{n+1} \binom{2n}{n}$ associations. How are they structured?

n = 4: a((bc)d), a(b(cd)), (ab)(cd), ((ab)c)d, (a(bc))d



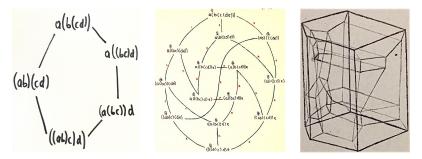
 $x_1x_2\cdots x_n$ has $\frac{1}{n+1}\binom{2n}{n}$ associations. How are they structured?

n = 4: a((bc)d), a(b(cd)),(ab)(cd), ((ab)c)d, (a(bc))d



 $x_1x_2\cdots x_n$ has $\frac{1}{n+1}\binom{2n}{n}$ associations. How are they structured?

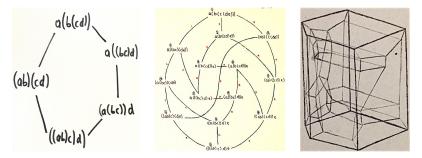
n = 4: a((bc)d), a(b(cd)),(ab)(cd), ((ab)c)d, (a(bc))d



 $x_1x_2\cdots x_n$ has $\frac{1}{n+1}\binom{2n}{n}$ associations. How are they structured?

n = 4: a((bc)d), a(b(cd)),(ab)(cd), ((ab)c)d, (a(bc))d

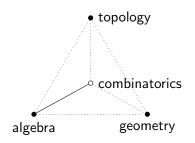
What does the "space of associations" look like?



A convex polytope! The associahedron. Stasheff 63, Haiman 84, Loday 04, Escobar 14

4. Valuations

2. Hopf monoids.



2. Hopf monoids.

I won't assume you know what a Hopf algebra or monoid is. I didn't.

Hopf monoids refine Hopf algebras. Like categorification, they are more abstract but better suited for many combinatorial purposes.

There is a Fock functor

Hopf monoids \longrightarrow Hopf algebras

so there are Hopf algebra analogs of all of our results.

2.1. Hopf monoids: "Definition".

(Joni-Rota, Coalgebras and bialgebras in combinatorics.) (Aguiar-Mahajan, Monoidal functors, species, and Hopf algebras.)

Think:

- A family of combinatorial structures. (graphs, posets, matroids, ...)
- Rules for "merging" and "breaking" those structures.

2.1. Hopf monoids: "Definition".

(Joni-Rota, Coalgebras and bialgebras in combinatorics.) (Aguiar-Mahajan, Monoidal functors, species, and Hopf algebras.)

Think:

- A family of combinatorial structures. (graphs, posets, matroids, ...)
- Rules for "merging" and "breaking" those structures.

A Hopf monoid (H, μ, Δ) consists of:

- For each finite set I, a vector space H[I].
- For each partition $I = S \sqcup T$, maps product $\mu_{S,T} : H[S] \otimes H[T] \to H[I]$ and coproduct $\Delta_{S,T} : H[I] \to H[S] \otimes H[T]$.

satisfying various axioms.

2.1. Hopf monoids: "Definition".

(Joni-Rota, Coalgebras and bialgebras in combinatorics.) (Aguiar-Mahajan, Monoidal functors, species, and Hopf algebras.)

Think:

- A family of combinatorial structures. (graphs, posets, matroids, ...)
- Rules for "merging" and "breaking" those structures.

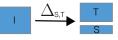
A Hopf monoid (H, μ, Δ) consists of:

- For each finite set I, a vector space H[I].
- For each partition $I = S \sqcup T$, maps product $\mu_{S,T} : H[S] \otimes H[T] \to H[I]$ and coproduct $\Delta_{S,T} : H[I] \to H[S] \otimes H[T]$.

satisfying various axioms.

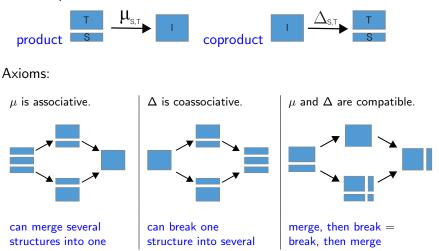
For us, $H[I] = \text{span}\{\text{combinatorial structures of type } H \text{ on } I\}$

coproduct:



2.1. Hopf monoids: Axioms.

For each finite set *I*, a vector space H[I]. For each partition $I = S \sqcup T$,



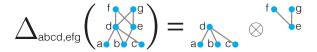
4. Valuations

Example 1: The Hopf monoid of posets.

 $\mathsf{P}[I] := \mathsf{span}\{\mathsf{posets} \text{ on } I\}.$

Product: $p_1 \cdot p_2 = p_1 \sqcup p_2$ (disjoint union)

Coproduct: $\Delta_{S,T}(p) = \begin{cases} p|_S \otimes p|_T & \text{if } S \text{ is a lower set of } p \\ 0 & \text{otherwise} \end{cases}$



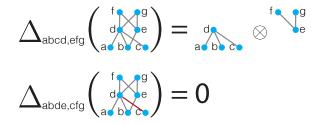
4. Valuations

Example 1: The Hopf monoid of posets.

 $\mathsf{P}[I] := \mathsf{span}\{\mathsf{posets} \text{ on } I\}.$

Product: $p_1 \cdot p_2 = p_1 \sqcup p_2$ (disjoint union)

Coproduct: $\Delta_{S,T}(p) = \begin{cases} p|_S \otimes p|_T & \text{if } S \text{ is a lower set of } p \\ 0 & \text{otherwise} \end{cases}$



Example 2: The Hopf monoid of matroids.

 $M[I] := span\{matroids on I\}.$

Matroids are a combinatorial model of independence.

They capture the properties of (linear, algebraic, graph, matching,...) independence.

Product:
$$m_1 \cdot m_2 = m_1 \oplus m_2$$
(direct sum)Coproduct: $\Delta_{S,T}(m) = m|_S \otimes m/_S$ where $m|_S =$ restriction of m to S ,(keep only S) $m/_S =$ contraction of m w.r.t. S .(mod out by span(S))

`

Other Hopf monoids.

There are many interesting Hopf monoids in combinatorics, algebra, and representation theory.

A few of them:

- graphs G
- posets P
- matroids M
- set partitions **Π** (symmetric functions)
- paths A (Faá di Bruno)
- simplicial complexes SC
- hypergraphs HG
- building sets **BS**

2.2. The antipode of a Hopf monoid.

Think:groups \rightsquigarrow inversesHopf monoids \rightsquigarrow antipodes

(often $s^2 = id$)

2.2. The antipode of a Hopf monoid.

Think: groups \rightsquigarrow inverses Hopf monoids \rightsquigarrow antipodes

$$(often s^2 = id)$$

Takeuchi: The antipode of a connected Hopf monoid H is :

$$\mathrm{S}_{I}(h) = \sum_{I=S_{1}\sqcup\cdots\sqcup S_{k}\atop k\geq 1} (-1)^{k} \mu_{S_{1},\ldots,S_{k}} \circ \Delta_{S_{1},\ldots,S_{k}}(h),$$

the signed sum of all ways to (break apart then put back together).

2.2. The antipode of a Hopf monoid.

Think: groups \rightsquigarrow inverses Hopf monoids \rightsquigarrow antipodes

$$(often s^2 = id)$$

Takeuchi: The antipode of a connected Hopf monoid H is :

$$\mathrm{S}_{I}(h) = \sum_{\substack{I=S_{1}\sqcup\cdots\sqcup S_{k}\\k\geq 1}} (-1)^{k} \mu_{S_{1},\ldots,S_{k}} \circ \Delta_{S_{1},\ldots,S_{k}}(h),$$

the signed sum of all ways to (break apart then put back together).

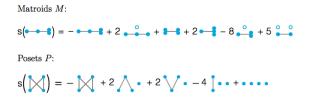
General problem. Find the simplest possible formula for the antipode of a Hopf monoid.

(Usually there is **much** cancellation in the definition above.)

Examples: The antipode of a matroid, poset.

Ex. Takeuchi:
$$S_I = \sum_{I=S_1 \sqcup \cdots \sqcup S_k} (-1)^k \mu_{S_1, \dots, S_k} \circ \Delta_{S_1, \dots, S_k}$$
.

For n = 4 this sum has 73 terms. However,

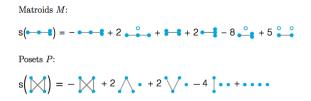


How do we explain (and predict) the simplification?

Examples: The antipode of a matroid, poset.

Ex. Takeuchi:
$$S_I = \sum_{I=S_1 \sqcup \cdots \sqcup S_k} (-1)^k \mu_{S_1, \dots, S_k} \circ \Delta_{S_1, \dots, S_k}$$
.

For n = 4 this sum has 73 terms. However,



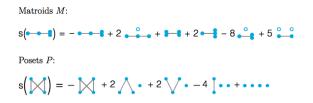
How do we explain (and predict) the simplification?

• In the past: clever combinatorics.

Examples: The antipode of a matroid, poset.

Ex. Takeuchi:
$$S_I = \sum_{I=S_1 \sqcup \cdots \sqcup S_k} (-1)^k \mu_{S_1, \dots, S_k} \circ \Delta_{S_1, \dots, S_k}$$
.

For n = 4 this sum has 73 terms. However,



How do we explain (and predict) the simplification?

- In the past: clever combinatorics.
- Our approach: geometry + topology: Euler characteristics.

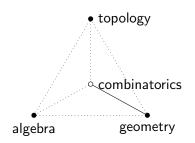
Some antipodes of interest.

There are many other Hopf monoids of interest. Very few of their (optimal) antipodes were known.

- graphs G: ?, Humpert–Martin 10
- posets P: ?
- matroids M: ?
- set partitions / symm fns. Π : Aguiar-Mahajan 10
- paths A: ?
- simplicial complexes SC: Benedetti-Hallam-Michalak 16
- hypergraphs HG: ?
- building sets BS: ?

Goal: a unified approach to compute these and other antipodes. (We do this).

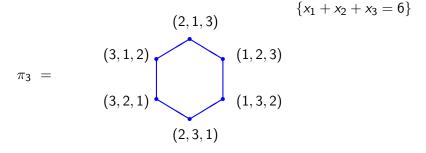
3. Generalized permutahedra.



3.1. Permutahedra.

The standard permutahedron is

 $\pi_n := \text{Convex Hull}\{\text{permutations of } \{1, 2, \dots, n\}\} \subseteq \mathbb{R}^n$

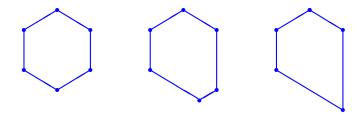


3.2. Generalized permutahedra.

Edmonds (70), Postnikov (05), Postnikov–Reiner–Williams (07),... Equivalent formulations:

- Move the facets of the permutahedron without passing vertices.
- Move the vertices while preserving edge directions.

Generalized permutahedra:

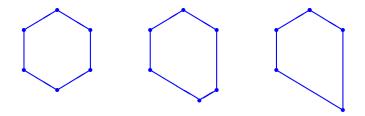


3.2. Generalized permutahedra.

Edmonds (70), Postnikov (05), Postnikov–Reiner–Williams (07),... Equivalent formulations:

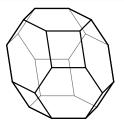
- Move the facets of the permutahedron without passing vertices.
- Move the vertices while preserving edge directions.

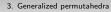
Generalized permutahedra:



Gen. permutahedra = "polymatroids" = "submodular functions". Many natural gen. permutahedra! Especially in optimization.

The permutahedron π_4 .





A generalized permutahedron.

We allow unbounded ones:

The permutahedron π_4 .

3. Generalized permutahedra

A generalized permutahedron.

We allow unbounded ones:

Goal. A Hopf monoid of generalized permutahedra.

How do we merge gen. permutahedra? How do we split them?

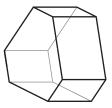
3.3. The Hopf monoid GP: Product.

Key Lemma 1. If P, Q are generalized permutahedra in \mathbb{R}^S and \mathbb{R}^T and $I = S \sqcup T$, then

 $P \times Q = \{(p,q) : p \in \mathbb{R}^{S}, q \in \mathbb{R}^{T}\}$

is a generalized permutahedron in $\mathbb{R}^{S \sqcup T} = \mathbb{R}^{I}$.

Example: hexagon \times segment =



Hopf product of *P* and *Q*:

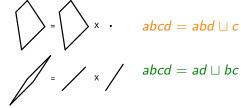
$$\mathbf{P}\cdot\mathbf{Q}:=\mathbf{P}\times\mathbf{Q}.$$

3.3. The Hopf monoid *GP*: Coproduct.

Given a polytope $P \subseteq \mathbb{R}^{I}$ and $I = S \sqcup T$, let $P_{e_{ST}}$:= face of P where $\sum_{s \in S} x_s$ is maximum.

Key Lemma 2. If P is a generalized permutahedron and $I = S \sqcup T$, $P_{es \tau} = P|_S \times P/_S$

for generalized permutahedra $P|_S \subseteq \mathbb{R}^S$ and $P|_S \subseteq \mathbb{R}^T$.



Hopf coproduct of *P*:

 $\Delta_{ST}(P) := P|_{S} \otimes P/_{S}$

3.3. The Hopf monoid of generalized permutahedra.

 $GP[I] := span \{generalized permutahedra in \mathbb{R}^I\}.$

Product: $P_1 \cdot P_2 = P_1 \times P_2$

Coproduct: $\Delta_{S,T}(P) = P|_S \otimes P/_S$

Theorem. (Aguiar–A. 08, Derksen–Fink 10) GP is a Hopf monoid.

3.3. The Hopf monoid of generalized permutahedra.

 $GP[I] := span \{generalized permutahedra in \mathbb{R}^I\}.$

Product: $P_1 \cdot P_2 = P_1 \times P_2$

Coproduct: $\Delta_{S,T}(P) = P|_S \otimes P/_S$

Theorem. (Aguiar–A. 08, Derksen–Fink 10) GP is a Hopf monoid.

Theorem. (Aguiar-A. 17)

GP is the universal Hopf monoid of polytopes with these operations.

3.3. The Hopf monoid of generalized permutahedra.

 $GP[I] := span \{generalized permutahedra in \mathbb{R}^I\}.$

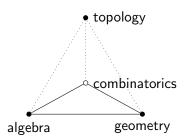
Product: $P_1 \cdot P_2 = P_1 \times P_2$

Coproduct: $\Delta_{S,T}(P) = P|_S \otimes P/_S$

Theorem. (Aguiar–A. 08, Derksen–Fink 10) GP is a Hopf monoid.

Theorem. (Aguiar-A. 17)

GP is the universal Hopf monoid of polytopes with these operations.



3.4. Generalized permutahedra: Posets, matroids.

There is a long tradition of modeling combinatorics geometrically. There are polyhedral models:

- $P \text{ poset } \rightarrow \text{ poset cone } C_P \qquad (Geissinger 81)$ $C_P : \operatorname{cone} \{e_i e_j : i < j \text{ in } P\}.$
- $M \text{ matroid } \rightarrow \text{ matroid polytope } P_M \quad (\text{Edmonds 70, GGMS 87}) \\ P_M = \text{conv}\{e_{i_1} + \dots + e_{i_k} \mid \{i_1, \dots, i_k\} \text{ is a basis of } M\}.$

 $\begin{array}{ll} \mbox{Proposition.} & (\mbox{Aguiar-A. 08}) \\ \mbox{These maps are inclusions of Hopf monoids!} \\ & \mbox{M} \hookrightarrow \mbox{GP}, \qquad \mbox{P} \hookrightarrow \mbox{GP} \,. \end{array}$

(Similarly for graphs, simplicial complexes, paths, building sets,...)

3.5. The antipode of GP.

Theorem. (Aguiar–A.) Let P be a generalized permutahedron.

 $s(P) = \sum_{Q \leq P} (-1)^{\operatorname{codim} Q} Q.$

The sum is over all faces Q of P.

3.5. The antipode of GP.

Theorem. (Aguiar–A.) Let P be a generalized permutahedron.

$$\mathrm{s}(P) = \sum_{Q \leq P} (-1)^{\operatorname{codim} Q} Q.$$

The sum is over all faces Q of P.

Proof. Takeuchi:

$$\begin{split} \mathbf{S}(P) &= \sum_{I=S_1\sqcup\cdots\sqcup S_k} (-1)^k \, \mu_{S_1,\ldots,S_k} \otimes \Delta_{S_1,\ldots,S_k}(P) \\ &= \sum_{I=S_1\sqcup\cdots\sqcup S_k} (-1)^k \, P_{S_1,\ldots,S_k} \end{split}$$

where $P_{S_1,...,S_k}$ = face of P in direction $S_1 | \cdots | S_k$. Coeff. of a face Q: huge sum of 1s and -1s. How to simplify it? It is the reduced **Euler characteristic** of a sphere!

3.5. The antipode of GP.

Theorem. (Aguiar–A.) Let P be a generalized permutahedron.

$$\mathrm{s}(P) = \sum_{Q \leq P} (-1)^{\operatorname{codim} Q} Q.$$

The sum is over all faces Q of P.

Proof. Takeuchi:

$$\begin{split} \mathbf{S}(P) &= \sum_{I=S_1\sqcup\cdots\sqcup S_k} (-1)^k \, \mu_{S_1,\ldots,S_k} \otimes \Delta_{S_1,\ldots,S_k}(P) \\ &= \sum_{I=S_1\sqcup\cdots\sqcup S_k} (-1)^k \, P_{S_1,\ldots,S_k} \end{split}$$

where $P_{S_1,...,S_k}$ = face of P in direction $S_1 | \cdots | S_k$. Coeff. of a face Q: huge sum of 1s and -1s. How to simplify it? It is the reduced **Euler characteristic** of a sphere!

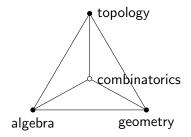
This is the best possible formula. No cancellation or grouping. (One advantage of working with Hopf monoids!)

3.5. The antipode of GP.

Theorem. (Aguiar–A.) Let *P* be a generalized permutahedron.

$$\mathrm{s}(P) = \sum_{Q \leq P} (-1)^{\operatorname{codim} Q} Q.$$

The sum is over all faces Q of P.



The antipodes of matroids, posets.

For Hopf algebras:

Matroids:

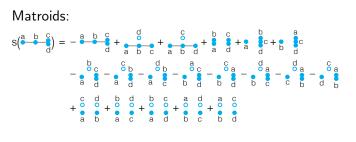
$$s(\swarrow) = - \Join + 2 \land \cdot + 2 \lor \cdot - 4 \lor \cdot + \cdots$$

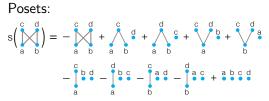
Posets:

What are these numbers??

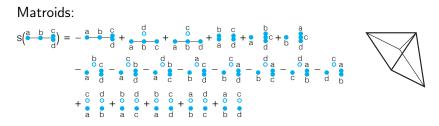
The antipodes of matroids, posets.

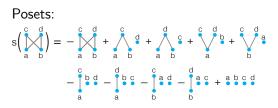
For Hopf monoids: ("Categorify"!)



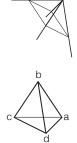


The antipodes of matroids, posets.





 $\mathrm{S}(P) = \sum_{Q \leq P} (-1)^{\operatorname{codim} Q} Q.$



27 / 36

Many antipode formulas.

Theorem. (Aguiar–A.) Let P be a generalized permutahedron.

$$\mathrm{s}(P) = \sum_{Q \leq P} (-1)^{\operatorname{codim} Q} Q.$$

objects	polytopes	Hopf algebra	antipode
set partitions	permutahedra	Joni-Rota	Joni-Rota
paths	associahedra	Joni-Rota, new	Haiman-Schmitt, new
graphs	graphic zonotopes	Schmitt	new, Humpert-Martin
matroids	matroid polytopes	Schmitt	new
posets	poset cones	Schmitt	new
submodular fns	polymatroids	Derksen-Fink, new	new
hypergraphs	hg-polytopes	new	new
simplicial cxes	new: sc-polytopes	Benedetti et al	Benedetti et al
building sets	nestohedra	new, Grujić et al	new
simple graphs	graph associahedra	new	new

Lots of interesting algebra and combinatorics.

Questions?

4.1. Two intriguing observations: 1

If we could actually add and subtract polytopes, the antipode would be the Euler involution of McMullen:

$$s(P) = \sum_{Q \le P} (-1)^{\operatorname{codim} Q} Q$$

"=" (-1)^{\operatorname{codim} P} interior(P)

4.1. Two intriguing observations: 1

If we could actually add and subtract polytopes, the antipode would be the Euler involution of McMullen:

$$S(P) = \sum_{Q \le P} (-1)^{\operatorname{codim} Q} Q$$

"=" $(-1)^{\operatorname{codim} P}$ interior(P)
Example: $s(\blacktriangle) =$

$$I_{P}(x) = \begin{cases} 1 & \text{if } x \in P \\ 0 & \text{if } x \notin P \end{cases}$$

To make this work, instead of P, can we use indicator function $\mathbf{1}_{P}$?

 $t^{|A|}$

4.1. Two intriguing observations: 2

A antichain

Many combinatorial invariants are also polytopal "measures"!

Example: For posets, $f(P) = \sum$

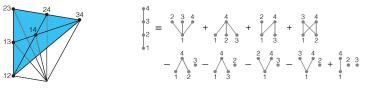
antichain: no < relations

4.1. Two intriguing observations: 2

Many combinatorial invariants are also polytopal "measures"!

Example: For posets, $f(P) = \sum t^{|A|}$ and

antichain: no < relations



A antichain

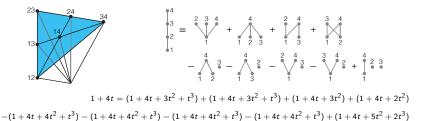
 $1 + 4t = (1 + 4t + 3t^{2} + t^{3}) + (1 + 4t + 3t^{2} + t^{3}) + (1 + 4t + 3t^{2}) + (1 + 4t + 2t^{2}) - (1 + 4t + 4t^{2} + t^{3}) + (1 + 4t + 5t^{2} + 2t^{3})$

4.1. Two intriguing observations: 2

Many combinatorial invariants are also polytopal "measures"!

Example: For posets, $f(P) = \sum_{\substack{A \text{ antichain}}} t^{|A|}$ ant

antichain: no < relations



They are valuations: If P_1, \ldots, P_k subdivide P, then

$$f(P) = \sum_{i=1}^{k} (-1)^{\dim P - \dim P_i} f(P_i).$$

Note: $f(P) = \mathbf{I}_{P}$ satisfies this!

30 / 36

4.2. A Hopf theoretic explanation

The inclusion-exclusion subspaces:

$$\mathbf{ie} := \operatorname{span}\left\{P - \sum_{i} (-1)^{\dim P - \dim P_i} P_i \,|\, \{P_i\} \text{ subdivides } P\right\} \subset \mathbf{GP}.$$

and the quotient

$$\begin{split} \mathbb{I}(\mathbf{GP}) &:= \text{ span}\{\mathbb{I}_{P} \mid P \text{ is a generalized permutahedron in } \mathbb{R}^{I}\}\\ &\cong \mathbf{GP}/\mathbf{ie}, \end{split}$$

Theorem. (A.-Sanchez 20) The Hopf monoid GP descends to $\mathbb{I}(GP)$.

Analogs shown by Derksen-Fink 10 and Bastidas 20.

Corollary. (A.-Sanchez 20)

- The antipode of $\mathbb{I}(GP)$ is $S(P) = (-1)^{\operatorname{codim} P}$ interior(P).
- Invariants that come from Hopf theory are valuations!

4.3. Applications

We get a method to easily discover/prove that these are valuations:

For matroids:

Valuative invariant	
Chow class in permutahedral variety	(Fulton, Sturmfels)
Chern-Schwartz-MacPherson cycles	(Lopez, Rincon, Shaw)
volume polynomial	(Eur)
Kazhdan-Lusztig polynomial	(Elias, Proudfoot, Wakefield)
motivic zeta function	(Jensen, Kutler, Usatine)
universal invariant	(Derksen-Fink)
Tutte polynomial	(Speyer)

For posets:

Valuative invariant	
order polynomial	(Stanley)
Tutte polynomial	(Gordon)
antichain polynomial	
order ideal polynomial	
Poincaré polynomial	(Dorpalen-Barry, Kim, Reiner)

Questions?

4.4. Why care about valuations \leftrightarrow subdivisions?

Matroid subdivisions:

Ways of cutting a matroid polytope into smaller ones. Contexts:

compactifying moduli space of hyperplane arrs.	Kapranov	
compactying Schubert cells in the Grassmannian	Lafforgue	
"linear spaces" in tropical geometry	Speyer, Ardila-Klivans	

Use valuations to measure the complexity of matroid subdivisions!

4.4. Why care about valuations \leftrightarrow subdivisions?

Matroid subdivisions:

Ways of cutting a matroid polytope into smaller ones. Contexts:

compactifying moduli space of hyperplane arrs.	Kapranov	
compactying Schubert cells in the Grassmannian	Lafforgue	
"linear spaces" in tropical geometry	Speyer, Ardila-Klivans	

Use valuations to measure the complexity of matroid subdivisions!

Poset subdivisions:

Ways of cutting a (poset cone)/(root polytope) into smaller ones.

maximal minors of matrices	Bernstein-Zelevinsky, Babson-Billera
quasi-classical Yang-Baxter algebra	Kirillov, Mészáros
$(x_{ij}x_{jk} = x_{ik}x_{ij} + x_{jk}x_{ik} + \beta x_{ik}, x_{ij}x_{kl} = x_{kl}x_{ij})$	

Use valuations to measure the complexity of poset subdivisions?

4.4. Why care about valuations \leftrightarrow subdivisions?

Matroid subdivisions:

Ways of cutting a matroid polytope into smaller ones. Contexts:

compactifying moduli space of hyperplane arrs.	Kapranov
compactying Schubert cells in the Grassmannian	Lafforgue
"linear spaces" in tropical geometry	Speyer, Ardila-Klivans

Use valuations to measure the complexity of matroid subdivisions!

Poset subdivisions:

Ways of cutting a (poset cone)/(root polytope) into smaller ones.

maximal minors of matrices	Bernstein-Zelevinsky, Babson-Billera
quasi-classical Yang-Baxter algebra	Kirillov, Mészáros
$(x_{ij}x_{jk} = x_{ik}x_{ij} + x_{jk}x_{ik} + \beta x_{ik}, x_{ij}x_{kl} = x_{kl}x_{ij})$	

Use valuations to measure the complexity of poset subdivisions?

Building set subdivisions:

Theorem. (A.-Sanchez 20) There are no nestohedral subdivisions.

4.5. Universality

Question:

Why do generalized permutahedra come up so much in this theory?

Character on a Hopf monoid H: Multiplicative function $\zeta : H \to R$: $\zeta(h)\zeta(h') = \zeta(h \cdot h')$

Example: On *GP*, $\beta(P) = \begin{cases} (-1)^{|I|} t^p & \text{if } P \text{ is bounded, on hyperplane} \sum_{i \in I} x_i = p \text{ in } \mathbb{R}^I, \\ 0 & \text{if } P \text{ is unbounded.} \end{cases}$

4.5. Universality

Question:

Why do generalized permutahedra come up so much in this theory?

Character on a Hopf monoid H: Multiplicative function $\zeta : H \to R$: $\zeta(h)\zeta(h') = \zeta(h \cdot h')$

Example: On *GP*, $\beta(P) = \begin{cases} (-1)^{|I|} t^p & \text{if } P \text{ is bounded, on hyperplane} \sum_{i \in I} x_i = p \text{ in } \mathbb{R}^I, \\ 0 & \text{if } P \text{ is unbounded.} \end{cases}$

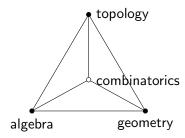
Theorem. (A.-Sanchez 20) ($\mathbb{I}(GP), \beta$) is the terminal object in the category of Hopf monoids with polynomial characters.

Any Hopf monoid H with character $\zeta : H \to \mathbb{F}[t]$ factors through $\mathbb{I}(GP)$: There's a (unique) Hopf morphism $\hat{\zeta} : H \to \mathbb{I}(GP)$ such that $\beta \circ \hat{\zeta} = \zeta$.

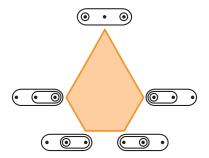
So: Every polynomial character passes through gen. permutahedra!

What is alg + geom + top combinatorics about?

Understanding the underlying structure of discrete objects. (Often this structure is algebraic, geometric, topological.)



¡Muchas gracias!



Federico Ardila and Marcelo Aguiar Hopf monoids and generalized permutahedra arXiv:1709.07504

Federico Ardila and Mario Sanchez The indicator Hopf monoid of generalized permutahedra arXiv:2020.11178