5(a) To begin, we first establish a lemma that for any lattice L whose set of atoms is A, and any $x \in L$, we have that $\mu_{L}(x)$ is equal to the number $\mu^{\prime}(x)$ defined by

$$
\begin{equation*}
\mu^{\prime}(x)=\sum_{\substack{S \subseteq A \\ \bigvee S=x}}(-1)^{|S|}, \tag{3}
\end{equation*}
$$

where $\bigvee S$ denotes the join of all atoms of S. To check this we must verify that the sums defining μ_{L} hold of it. First, we have $\mu^{\prime}(\hat{0})=1$ since $\hat{0}$ is a join of a set of atoms in only one way, namely as the join of the empty set. Otherwise, let $x \geq \hat{0}$ and let B be the set of atoms a with $a \leq x$. Then, for a set S of atoms, we have $\bigvee S \leq x$ iff $S \subseteq B$; 'if' is true by the definition of the join, while 'only if' is true because if $a \not \leq x$ then no join involving a can be $\leq x$, by transitivity. Therefore we have

$$
\sum_{x^{\prime} \leq x} \mu^{\prime}(x)=\sum_{S \subseteq B}(-1)^{|S|}=0
$$

because B is nonempty. This proves the lemma.
Now, we'll prove that not $\chi_{M}(q)$ but $q \chi_{M}(q)$ is the number of q-colorings of G. We count the q-colorings of G using the inclusion-exclusion ${ }^{1}$ principle on the edges, which are the atoms of L_{M}. For any set S of edges of G, let $n(S)$ be the number of colorings of G such that each edge of S receives the same color at both ends. Then, by the inclusion-exclusion principle, the number n of colorings of G with q colors and no edge colored similarly at each end is

$$
n=\sum_{S \subseteq E(G)}(-1)^{|S|} n(S)
$$

[^0]Now, for some set of edges S, a coloring C of G has the property that each edge in S has the same color at each end iff each connected component of the subgraph H of G consisting of edges in S receives a single color; so $n(S)$ is q to the power of the number of components of H (including components with just one vertex and no edges). But the number of such components is precisely $|V(G)|-r(S)=r(M)+1-r(S)$, as we can see by a simple induction: the empty subgraph of G has $|V(G)|$ components, and adding each edge in some spanning forest of H removes one component. Therefore, by our lemma,

$$
n=\sum_{S \subseteq E(G)}(-1)^{S} q^{r(M)+1-r(S)}=\sum_{x \in L_{M}} q^{r(M)+1-r(X)}=q \chi_{M}(q) .
$$

(b) We begin by again using (3), by which

$$
\begin{aligned}
\chi_{M}(-1) & =\sum_{x \in L(M)} \mu_{M}(x)(-1)^{r(M)-r(x)} \\
& =(-1)^{r(M)} \sum_{x \in L(M)} \mu_{M}(x)(-1)^{r(x)} \\
& =(-1)^{r(M)} \sum_{x \in L(M)}(-1)^{r(x)} \sum_{\substack{H \subseteq G \\
c 1 H=x}}(-1)^{|H|} \\
& =(-1)^{r(M)} \sum_{H \subseteq G}(-1)^{|H|+r(H)} \\
& =(-1)^{r(M)} \sum_{H \subseteq G}(-1)^{|H|-r(H)} .
\end{aligned}
$$

Here, as everywhere in this problem, we demand that a subgraph of G (or of an arbitrary graph) contain all vertices of G, and identify subgraphs of G with their sets of edges. So our eventual aim will be to show that this sum $\sum_{H \subseteq G}(-1)^{|H|-r(H)}$ counts the acyclic orientations of G. Let N denote the number of such orientations.

Using inclusion-exclusion, we may count the acyclic orientations of G in terms of the orientations containing particular simple (i.e. non-self-intersecting) directed cycles of G. Let C be the set of all directed cycles that appear in any orientation of G; then

$$
\begin{equation*}
N=\sum_{S \subseteq G}(-1)^{|S|} N(S) \tag{4}
\end{equation*}
$$

where $N(S)$ is the number of orientations of G which contain every directed cycle in S.

When S contains two cycles assigning opposite directions to a single edge, then certainly $N(S)=0$. If this is not the case we'll call S compatible. In an orientation of G containing a compatible set S of cycles, the direction of all edges in $\bigcup S$ are fixed while the other edges are unrestricted, so that writing $\operatorname{supp} S$ for the subgraph of G containing just those edges which receive a direction in S, we have $N(S)=2^{|E(G) \backslash \cup S|}$. This also counts the subgraphs of G that contain the undirected subgraph $\bigcup S$, so that we can rewrite the sum (4) as

$$
\begin{align*}
N & =\sum_{S \subseteq C \text { compatible supp } S \subseteq H \subseteq G} \sum(-1)^{|S|} \\
& =\sum_{H \subseteq G} \sum_{\substack{S \subseteq C \text { compatible } \\
\text { supp } S \subseteq H}}(-1)^{|S|} . \tag{5}
\end{align*}
$$

Pick a subgraph H of G. The term of this last sum corresponding to H is counting the compatible sets of directed cycles S whose union is supported on H, weighted by $(-1)^{|S|}$. We claim that we may reinterpret this as counting the oriented subgraphs K of H which are a union of directed cycles in some way, weighted by $(-1)^{|K|-r(K)}$. Equivalently, if we collect the sets S together by the form of the graph $K=\bigcup S$, then our claim is that the number of S that give rise to a given K, weighted by $(-1)^{|S|}$, is $(-1)^{|K|-r(K)}$.

For this, we fix K and consider the subgraphs L of K that are unions of cycles. These form a partial order \mathcal{L} by inclusion, which indeed is a lattice: the union of two subgraphs L, L^{\prime} that are unions of cycles is itself a union of cycles, so it's the join $L \vee L^{\prime}$, and then since \mathcal{L} is finite and has a minimal element it also has meets (the meet of L and L^{\prime} is the join of all their mutual lower bounds). Furthermore, the atoms of \mathcal{L} are just the single directed cycles contained in K, so by definition \mathcal{L} is atomic. Therefore our lemma from (a) applies here, telling us that the number of S that give rise to K is simply $\mu_{\mathcal{L}}(K)$. So we want to show that

$$
\begin{equation*}
\mu \mathcal{L}(K)=(-1)^{|\operatorname{supp} K|-r(\operatorname{supp} K)} . \tag{6}
\end{equation*}
$$

This exponent $|\operatorname{supp} K|-r(\operatorname{supp} K)$ gives the size of the complement of any spanning forest of supp K.

We first argue that $|\operatorname{supp} K|-r(\operatorname{supp} K)$ is the rank of \mathcal{L}, and that \mathcal{L} is graded by the function $r_{\mathcal{L}}: L \mapsto|\operatorname{supp} L|-r(\operatorname{supp} L)$. Suppose L covers L^{\prime}. We claim that $L \backslash L^{\prime}$ is a set of k edges $\left(v_{i-1}, w_{i}\right)$, where $c_{0}, c_{1}, \ldots, c_{k-1}, c_{k}=c_{0}$ are distinct weakly (and therefore strongly) connected components of L^{\prime}, and $v_{i}, w_{i} \in c_{i}$. From this description one can check $r_{\mathcal{L}}(L)=r_{\mathcal{L}}\left(L^{\prime}\right)+1$: moving from L^{\prime} to L introduces k edges and the spanning forest requires expansion by $k-1$ edges.

To see this, take any edge e of $L \backslash L^{\prime}$. Then $L \backslash L^{\prime}$ contains every edge e^{\prime} such that every cycle containing e^{\prime} contains e as well, because L^{\prime} is a union of cycles. Removing only these edges e^{\prime} leaves a graph that is a union of cycles, so since L covers L^{\prime} the difference contains only these edges e^{\prime}. Now, L^{\prime} is partitioned into strongly connected components. Consider the graph obtained by contracting along every edge of L^{\prime}; its vertices corresponds to components of L^{\prime}, the only edges that remain are those of $L \backslash L^{\prime}$, and every cycle in L contracts to a cycle in L^{\prime}. Then this graph is nonempty, since it contains e; it contains a cycle, because e is contained in some cycle; and it cannot contain more than a single cycle, because if it did a single cycle within it would come from a proper subgraph of L containing L^{\prime} strictly, contradicting covering.

Now, having established the rank function on \mathcal{L}, we're ready to attack (6). We'll induce on the rank of \mathcal{L}. We'll take as base cases $\operatorname{rank} \mathcal{L}=0,1$; these are trivial to check. So suppose \mathcal{L} has rank ≥ 2. By the inductive hypothesis applied to every interval $[\hat{0}, x]$ of \mathcal{L}, the Möbius function of \mathcal{L} is $\mu_{\mathcal{L}}(x)=(-1)^{r_{\mathcal{L}}(x)}$ everywhere except possibly at $x=\hat{1}=L$. So we need to check that this holds there as well. In other words, if we define $\nu: \mathcal{L} \rightarrow \mathbb{Z}$ to agree with $\mu_{\mathcal{L}}$ away from L and to have $\nu(L)=(-1)^{r \mathcal{L}}(L)$, we want to check that $\sum_{x \in L} \nu(x)=0$.

Let $x \in \mathcal{L}$, and let M be the graph obtained from L by contracting every edge of x. Then unions of cycles in M correspond naturally via an orderpreserving bijection to unions of cycles in L that contain x. This establishes that the interval $[x, \hat{1}]$ of \mathcal{L} has the same form as \mathcal{L} (i.e. it's the lattice of a cycle arrangement), so that if $x \neq \hat{0}$ then the inductive hypothesis applies to it. In particular, its Möbius function is ν, up to a sign. Now, let L^{\prime} be a coatom of \mathcal{L}, so that we have $\sum_{0 \leq x \leq L^{\prime}} \nu_{(}(x)=0$ since ν is simply the Möbius function on $[\hat{0}, x]$. The poset $\mathcal{L} \backslash[\hat{0}, x]$ contains one minimal element corresponding to each atom (i.e. cycles) in L not less than L^{\prime}; let A be the
set of these atoms. By inclusion-exclusion, we have

$$
\begin{equation*}
\sum_{y \not 又 x} \nu(y)=\sum_{S \subseteq A}(-1)^{|S|} \sum_{y \geq \bigvee S} \nu(y)=\sum_{S \subseteq A}(-1)^{|S|} \sum_{y \geq \bigvee S} \mu_{[y, \hat{1}]}(y) \tag{7}
\end{equation*}
$$

in which each term of the outer sum on the right will be 0 so long as no join of elements of A is $\hat{1}$, and certainly if the join of all elements of A is not $\hat{1}$. For this we invoke the characterisation of coatoms we came to in our discussion of the rank function, giving $L \backslash L^{\prime}$ as a collection of edges of some particular form. The elements of A are all the (simple) cycles containing $L \backslash L^{\prime}$. But if any edge $e \in L \backslash L^{\prime}$ is incident to a vertex v to which another edge $e^{\prime} \notin L \backslash L^{\prime}$ is also incident in the same sense (either both are in-edges or both are out-edges), then e^{\prime} can be contained in no cycle containing e, so $\bigvee A$ doesn't contain e^{\prime}; whereas if this doesn't happen, then $L \backslash L^{\prime}$ is a cycle and a component of L unto itself, and this cycle is the only element of A, and then $\bigvee A \neq L$ since L^{\prime} is nonempty. So the value in (7) is 0 , proving our claim about $\mu_{\mathcal{L}}$ in (6).

Stepping back, what we've just justified gives us the equality

$$
\sum_{\substack{S \subseteq C \text { compatible } \\ \text { supp } \subseteq \subseteq H}}(-1)^{|S|}=\sum_{\substack{K \text { is a union of directed cycles } \\ \text { supp } K \subseteq H}}(-1)^{\mid \text {supp } K \mid-r(\text { supp } K)}
$$

which we were planning to use to get a handle on (??). We now claim that this sum is $(-1)^{|H|-r(H)}$. This, by our very first chain of equalities, will give us $\left|\chi_{M}(-1)\right|=N$, finishing the problem.

For this, we use induction on the number of vertices of H (over arbitrary $H ; H$ is no longer constrained to be a subgraph of any particular graph G). As a base case, suppose that all edges of H are loops; this is in particular necessarily true when H has just one vertex. Then each directed simple cycle on H consists of just one of these loops, given either direction, and every loop yields two directed simple cycles in this way. Therefore every partial orientation K of H, i.e. an assignment of directions to some of the edges of H, is a union of directed cycles. The support of such a partial orientation K simply contains all the loops which are directed in either sense, and the rank of this support is always 0 , so the weight with which K is counted is $(-1)^{|\operatorname{supp} K|}$. Therefore our sum

$$
\sum_{K: \operatorname{supp} K \subseteq H}(-1)^{H-r(H)}
$$

(over all K that are unions of directed cycles) factors into a product of one sum for each loop of H, of the form $1+(-1)+(-1)=-1$, the 1 arising from leaving this loop undirected and the two -1 s from giving it either of the two possible directions. The sum thus evaluates to $(-1)^{|H|}=(-1)^{|H|-r(H)}$, as desired.

For the inductive step, we assume H contains a nonloop e. Let H^{\prime} be the contraction of H on e. Then $\left|H^{\prime}\right|=|H|-1$ and $r\left(H^{\prime}\right)=r(H)-1$, so that $(-1)^{\left|H^{\prime}\right|-r\left(H^{\prime}\right)}=(-1)^{|H|+r(H)}$. We'll then proceed by setting up a correspondence between unions K of directed cycles on H and unions K^{\prime} of directed cycles on H^{\prime}. It won't be a one-to-one correspondence; but it will have the property that each K corresponds to just one K^{\prime}, and the sum of the weights $(-1)^{|\operatorname{supp} K|-r(\operatorname{supp} K)}$ over all K corresponding to a given K^{\prime} is the same weight for K^{\prime}. This, together with the observation $(-1)^{\left|H^{\prime}\right|-r\left(H^{\prime}\right)}=$ $(-1)^{|H|+r(H)}$, will complete the induction.

So, let K be a union of directed cycles on H. Let K^{\prime} be the natural corresponding object on H^{\prime}, obtained by leaving all the edges other than e alone. This is still a union of cycles. Conversely, given K^{\prime}, we wish to determine which K it could have come from. There are at most three possibilities for K : the new edge e can be undirected or directed in either of two senses, and the remainder of the partial orientation is determined by K^{\prime}. Let $v_{1} \neq v_{2}$ be the endpoints of e in H, and let v be the vertex they merge to in H^{\prime}. Then we have a number of cases to consider, according to what the in- and out-degrees of v_{1}, v_{2} are in K^{\prime} (i.e. what these degrees become in K if e is chosen to be undirected).

Since v is in a union of cycles, it has an in-edge if and only if it has an out-edge. Thus we have the following possibilities for the in- and out-degrees of v_{1} and v_{2} :

Some v_{i} has no incident directed edges. In this case e must be made undirected in K (i.e. there is one possible K). Then $|\operatorname{supp} K|=$ $\left|\operatorname{supp} K^{\prime}\right|$ and $r(\operatorname{supp} K)=r\left(\operatorname{supp} K^{\prime}\right)$, so weight $K=$ weight K^{\prime}.

Some v_{i} has in-edges but no out-edges, or vice versa. First note that if one of v_{1} or v_{2} fulfil this description then it's with respect to opposite directions, and also that this case and the last cannot both occur: this is because v must have an in-edge iff it has an out-edge. Therefore, in this case, e must be made directed in K in order that v_{i} have both an in- and an out-edge, and there is a unique valid choice of direction.

We have $|\operatorname{supp} K|=\left|\operatorname{supp} K^{\prime}\right|+1$ and $r(\operatorname{supp} K)=r\left(\operatorname{supp} K^{\prime}\right)+1($ a spanning forest for supp K^{\prime} needs to be supplemented with e to get one for supp K), so again weight $K=$ weight K^{\prime}.

Each v_{i} has both in- and out-edges. In this case all three possibilities for K can be checked to yield a union of cycles. Let K_{0}, K_{1}, K_{2} respectively denote the partial orientations where e is undirected, directed $v_{1} \rightarrow v_{2}$, and directed $v_{2} \rightarrow v_{1}$. Now, for K_{0} we have $\left|\operatorname{supp} K_{0}\right|=$ $\left|\operatorname{supp} K^{\prime}\right|$ but $r\left(\operatorname{supp} K_{0}\right)=r(\operatorname{supp} K)+1$ (pulling a vertex apart will disconnect the spanning tree, and it needs another edge to be reconnected), so that weight $K_{0}=-$ weight K. However, K_{1} and K_{2} have weight $\left(K_{1}\right)=\operatorname{weight}\left(K_{2}\right)=\operatorname{weight}(K)$ just as in the previous case, so that
$\operatorname{weight}\left(K_{0}\right)+\operatorname{weight}\left(K_{1}\right)+\operatorname{weight}\left(K_{2}\right)=(-1+1+1) \operatorname{weight}(K)=\operatorname{weight}(K)$.

Thus in every case we've confirmed the required properties of our correspondence with respect to weight. As remarked above this completes our final induction, and thereby completes the proof.

[^0]: ${ }^{1}$ Some, perhaps all, of my uses of inclusion-exclusion should be thought of as really uses of Möbius inversion on lattices other than $2^{[n]}$. They're the same thing anyway, by my lemma.

