
where (−1)σ means the sign of σ, and where the equality just comes from
grouping the terms by cycle structure.

The sum on the left side of (2) is 0 if π "= 0̂, because in this case T
contains a transposition τ , and then (left-)multiplication by τ defines a sign-
reversing involution of T , so that each pair sums to 0. If π = 0̂ then the sum
on the left will be 1, since then T = {id}. But the sum on the right side
of (2), by our first observations, is

∑
π′≤π µ(π). Therefore (2) gives exactly

the equality we need to confirm to see that µ is the Möbius function of Πn.

5(a) To begin, we first establish a lemma that for any lattice L whose set of
atoms is A, and any x ∈ L, we have that µL(x) is equal to the number µ′(x)
defined by

µ′(x) =
∑

S⊆AW
S=x

(−1)|S|, (3)

where
∨

S denotes the join of all atoms of S. To check this we must verify
that the sums defining µL hold of it. First, we have µ′(0̂) = 1 since 0̂ is a
join of a set of atoms in only one way, namely as the join of the empty set.
Otherwise, let x ≥ 0̂ and let B be the set of atoms a with a ≤ x. Then, for
a set S of atoms, we have

∨
S ≤ x iff S ⊆ B; ‘if’ is true by the definition of

the join, while ‘only if’ is true because if a "≤ x then no join involving a can
be ≤ x, by transitivity. Therefore we have

∑

x′≤x

µ′(x) =
∑

S⊆B

(−1)|S| = 0

because B is nonempty. This proves the lemma.

Now, we’ll prove that not χM(q) but qχM(q) is the number of q-colorings
of G. We count the q-colorings of G using the inclusion-exclusion1 principle
on the edges, which are the atoms of LM . For any set S of edges of G,
let n(S) be the number of colorings of G such that each edge of S receives
the same color at both ends. Then, by the inclusion-exclusion principle, the
number n of colorings of G with q colors and no edge colored similarly at
each end is

n =
∑

S⊆E(G)

(−1)|S|n(S).

1Some, perhaps all, of my uses of inclusion-exclusion should be thought of as really
uses of Möbius inversion on lattices other than 2[n]. They’re the same thing anyway, by
my lemma.

6



Now, for some set of edges S, a coloring C of G has the property that each
edge in S has the same color at each end iff each connected component of
the subgraph H of G consisting of edges in S receives a single color; so n(S)
is q to the power of the number of components of H (including components
with just one vertex and no edges). But the number of such components
is precisely |V (G)| − r(S) = r(M) + 1 − r(S), as we can see by a simple
induction: the empty subgraph of G has |V (G)| components, and adding
each edge in some spanning forest of H removes one component. Therefore,
by our lemma,

n =
∑

S⊆E(G)

(−1)Sqr(M)+1−r(S) =
∑

x∈LM

qr(M)+1−r(X) = qχM(q).

(b) We begin by again using (3), by which

χM(−1) =
∑

x∈L(M)

µM(x)(−1)r(M)−r(x)

= (−1)r(M)
∑

x∈L(M)

µM(x)(−1)r(x)

= (−1)r(M)
∑

x∈L(M)

(−1)r(x)
∑

H⊆G
cl H=x

(−1)|H|

= (−1)r(M)
∑

H⊆G

(−1)|H|+r(H)

= (−1)r(M)
∑

H⊆G

(−1)|H|−r(H).

Here, as everywhere in this problem, we demand that a subgraph of G (or
of an arbitrary graph) contain all vertices of G, and identify subgraphs of G
with their sets of edges. So our eventual aim will be to show that this sum∑

H⊆G(−1)|H|−r(H) counts the acyclic orientations of G. Let N denote the
number of such orientations.

Using inclusion-exclusion, we may count the acyclic orientations of G in
terms of the orientations containing particular simple (i.e. non-self-intersecting)
directed cycles of G. Let C be the set of all directed cycles that appear in
any orientation of G; then

N =
∑

S⊆G

(−1)|S|N(S) (4)
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where N(S) is the number of orientations of G which contain every directed
cycle in S.

When S contains two cycles assigning opposite directions to a single edge,
then certainly N(S) = 0. If this is not the case we’ll call S compatible. In an
orientation of G containing a compatible set S of cycles, the direction of all
edges in

⋃
S are fixed while the other edges are unrestricted, so that writing

supp S for the subgraph of G containing just those edges which receive a
direction in S, we have N(S) = 2|E(G)\

S
S|. This also counts the subgraphs

of G that contain the undirected subgraph
⋃

S, so that we can rewrite the
sum (4) as

N =
∑

S⊆C compatible

∑

supp S⊆H⊆G

(−1)|S|

=
∑

H⊆G

∑

S⊆C compatible
supp S⊆H

(−1)|S|. (5)

Pick a subgraph H of G. The term of this last sum corresponding to H is
counting the compatible sets of directed cycles S whose union is supported on
H, weighted by (−1)|S|. We claim that we may reinterpret this as counting
the oriented subgraphs K of H which are a union of directed cycles in some
way, weighted by (−1)|K|−r(K). Equivalently, if we collect the sets S together
by the form of the graph K =

⋃
S, then our claim is that the number of S

that give rise to a given K, weighted by (−1)|S|, is (−1)|K|−r(K).

For this, we fix K and consider the subgraphs L of K that are unions of
cycles. These form a partial order L by inclusion, which indeed is a lattice:
the union of two subgraphs L, L′ that are unions of cycles is itself a union
of cycles, so it’s the join L∨L′, and then since L is finite and has a minimal
element it also has meets (the meet of L and L′ is the join of all their mutual
lower bounds). Furthermore, the atoms of L are just the single directed
cycles contained in K, so by definition L is atomic. Therefore our lemma
from (a) applies here, telling us that the number of S that give rise to K is
simply µL(K). So we want to show that

µL(K) = (−1)| supp K|−r(supp K). (6)

This exponent | supp K|− r(supp K) gives the size of the complement of any
spanning forest of supp K.
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We first argue that | supp K|− r(supp K) is the rank of L, and that L is
graded by the function rL : L (→ | supp L|− r(supp L). Suppose L covers L′.
We claim that L\L′ is a set of k edges (vi−1, wi), where c0, c1, . . . , ck−1, ck = c0

are distinct weakly (and therefore strongly) connected components of L′, and
vi, wi ∈ ci. From this description one can check rL(L) = rL(L′) + 1: moving
from L′ to L introduces k edges and the spanning forest requires expansion
by k − 1 edges.

To see this, take any edge e of L \ L′. Then L \ L′ contains every edge e′

such that every cycle containing e′ contains e as well, because L′ is a union
of cycles. Removing only these edges e′ leaves a graph that is a union of
cycles, so since L covers L′ the difference contains only these edges e′. Now,
L′ is partitioned into strongly connected components. Consider the graph
obtained by contracting along every edge of L′; its vertices corresponds to
components of L′, the only edges that remain are those of L \ L′, and every
cycle in L contracts to a cycle in L′. Then this graph is nonempty, since
it contains e; it contains a cycle, because e is contained in some cycle; and
it cannot contain more than a single cycle, because if it did a single cycle
within it would come from a proper subgraph of L containing L′ strictly,
contradicting covering.

Now, having established the rank function on L, we’re ready to attack
(6). We’ll induce on the rank of L. We’ll take as base cases rankL = 0, 1;
these are trivial to check. So suppose L has rank ≥ 2. By the inductive
hypothesis applied to every interval [0̂, x] of L, the Möbius function of L is
µL(x) = (−1)rL(x) everywhere except possibly at x = 1̂ = L. So we need to
check that this holds there as well. In other words, if we define ν : L→ Z to
agree with µL away from L and to have ν(L) = (−1)rL(L), we want to check
that

∑
x∈L ν(x) = 0.

Let x ∈ L, and let M be the graph obtained from L by contracting every
edge of x. Then unions of cycles in M correspond naturally via an order-
preserving bijection to unions of cycles in L that contain x. This establishes
that the interval [x, 1̂] of L has the same form as L (i.e. it’s the lattice of a
cycle arrangement), so that if x "= 0̂ then the inductive hypothesis applies
to it. In particular, its Möbius function is ν, up to a sign. Now, let L′

be a coatom of L, so that we have
∑

0≤x≤L′ ν(x) = 0 since ν is simply the

Möbius function on [0̂, x]. The poset L \ [0̂, x] contains one minimal element
corresponding to each atom (i.e. cycles) in L not less than L′; let A be the
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set of these atoms. By inclusion-exclusion, we have
∑

y &≤x

ν(y) =
∑

S⊆A

(−1)|S|
∑

y≥
W

S

ν(y) =
∑

S⊆A

(−1)|S|
∑

y≥
W

S

µ[y,1̂](y) (7)

in which each term of the outer sum on the right will be 0 so long as no
join of elements of A is 1̂, and certainly if the join of all elements of A is
not 1̂. For this we invoke the characterisation of coatoms we came to in our
discussion of the rank function, giving L \L′ as a collection of edges of some
particular form. The elements of A are all the (simple) cycles containing
L \ L′. But if any edge e ∈ L \ L′ is incident to a vertex v to which another
edge e′ "∈ L \ L′ is also incident in the same sense (either both are in-edges
or both are out-edges), then e′ can be contained in no cycle containing e, so∨

A doesn’t contain e′; whereas if this doesn’t happen, then L \L′ is a cycle
and a component of L unto itself, and this cycle is the only element of A,
and then

∨
A "= L since L′ is nonempty. So the value in (7) is 0, proving our

claim about µL in (6).

Stepping back, what we’ve just justified gives us the equality
∑

S⊆C compatible
supp S⊆H

(−1)|S| =
∑

K is a union of directed cycles
supp K⊆H

(−1)| supp K|−r(supp K)

which we were planning to use to get a handle on (??). We now claim that
this sum is (−1)|H|−r(H). This, by our very first chain of equalities, will give
us |χM(−1)| = N , finishing the problem.

For this, we use induction on the number of vertices of H (over arbitrary
H; H is no longer constrained to be a subgraph of any particular graph G).
As a base case, suppose that all edges of H are loops; this is in particular
necessarily true when H has just one vertex. Then each directed simple cycle
on H consists of just one of these loops, given either direction, and every
loop yields two directed simple cycles in this way. Therefore every partial
orientation K of H, i.e. an assignment of directions to some of the edges of
H, is a union of directed cycles. The support of such a partial orientation
K simply contains all the loops which are directed in either sense, and the
rank of this support is always 0, so the weight with which K is counted is
(−1)| supp K|. Therefore our sum

∑

K:supp K⊆H

(−1)H−r(H)
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(over all K that are unions of directed cycles) factors into a product of one
sum for each loop of H, of the form 1+(−1)+(−1) = −1, the 1 arising from
leaving this loop undirected and the two −1s from giving it either of the two
possible directions. The sum thus evaluates to (−1)|H| = (−1)|H|−r(H), as
desired.

For the inductive step, we assume H contains a nonloop e. Let H ′ be
the contraction of H on e. Then |H ′| = |H| − 1 and r(H ′) = r(H) − 1,
so that (−1)|H

′|−r(H′) = (−1)|H|+r(H). We’ll then proceed by setting up a
correspondence between unions K of directed cycles on H and unions K ′ of
directed cycles on H ′. It won’t be a one-to-one correspondence; but it will
have the property that each K corresponds to just one K ′, and the sum of
the weights (−1)| supp K|−r(supp K) over all K corresponding to a given K ′ is
the same weight for K ′. This, together with the observation (−1)|H

′|−r(H′) =
(−1)|H|+r(H), will complete the induction.

So, let K be a union of directed cycles on H. Let K ′ be the natural corre-
sponding object on H ′, obtained by leaving all the edges other than e alone.
This is still a union of cycles. Conversely, given K ′, we wish to determine
which K it could have come from. There are at most three possibilities for
K: the new edge e can be undirected or directed in either of two senses, and
the remainder of the partial orientation is determined by K ′. Let v1 "= v2

be the endpoints of e in H, and let v be the vertex they merge to in H ′.
Then we have a number of cases to consider, according to what the in- and
out-degrees of v1, v2 are in K ′ (i.e. what these degrees become in K if e is
chosen to be undirected).

Since v is in a union of cycles, it has an in-edge if and only if it has an
out-edge. Thus we have the following possibilities for the in- and out-degrees
of v1 and v2:

Some vi has no incident directed edges. In this case e must be made
undirected in K (i.e. there is one possible K). Then | supp K| =
| supp K ′| and r(supp K) = r(supp K ′), so weight K = weight K ′.

Some vi has in-edges but no out-edges, or vice versa. First note that
if one of v1 or v2 fulfil this description then it’s with respect to opposite
directions, and also that this case and the last cannot both occur: this
is because v must have an in-edge iff it has an out-edge. Therefore,
in this case, e must be made directed in K in order that vi have both
an in- and an out-edge, and there is a unique valid choice of direction.
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We have | supp K| = | supp K ′| + 1 and r(supp K) = r(supp K ′) + 1 (a
spanning forest for supp K ′ needs to be supplemented with e to get one
for supp K), so again weight K = weight K ′.

Each vi has both in- and out-edges. In this case all three possibilities
for K can be checked to yield a union of cycles. Let K0, K1, K2 respec-
tively denote the partial orientations where e is undirected, directed
v1 → v2, and directed v2 → v1. Now, for K0 we have | supp K0| =
| supp K ′| but r(supp K0) = r(supp K) + 1 (pulling a vertex apart will
disconnect the spanning tree, and it needs another edge to be recon-
nected), so that weight K0 = −weight K. However, K1 and K2 have
weight(K1) = weight(K2) = weight(K) just as in the previous case, so
that

weight(K0)+weight(K1)+weight(K2) = (−1+1+1) weight(K) = weight(K).

Thus in every case we’ve confirmed the required properties of our correspon-
dence with respect to weight. As remarked above this completes our final
induction, and thereby completes the proof.
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