Gödel's completeness and matroid representability

Felipe Rincón feliper84@gmail.com

Here is a nice application of Gödel's completeness theorem to matroid representability.

Theorem. If a matroid M is representable over a field of characteristic p for arbitrarily large primes p, then it is representable over a field of characteristic zero.

Proof. We will work on the language of rings $\mathcal{L} = \{+, \cdot, 0, 1\}$. Denote by FT the theory consisting of all the field axioms. For $n \in \mathbb{N}$ let ϕ_n be the formula

$$\underbrace{1+1+\dots+1}_{n \text{ times}} = 0$$

The theory FT_0 of fields of characteristic 0 is just $FT \cup \{\neg \phi_1, \neg \phi_2, \neg \phi_3, \ldots\}$.

Let M be a matroid. Notice that there is a formula ψ_M such that for every field $F, F \models \psi_M$ if and only if M is representable over F (ψ_M could be the list of all the bases and circuits of M). For example, for the uniform matroid $U_{2,3}$ this formula would be

$$\exists a_1, a_2, b_1, b_2, c_1, c_2 \text{ such that } \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \text{ and } \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \text{ are linearly dependent,} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \text{ and } \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \text{ are linearly independent,} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \text{ and } \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \text{ are linearly independent} \\ \text{ and } \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \text{ and } \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \text{ are linearly independent}$$

(since $U_{2,3}$ has rank 2, we can assume that just 2 coordinates are needed for the representation).

Now assume by contradiction that M is not representable over any field of characteristic 0, that is, $FT_0 \models \neg \psi_M$. Then, by Gödel's completeness theorem, we have that $FT_0 \vdash \neg \psi_M$. Since deductions are finite, this deduction of $\neg \psi_M$ uses only finitely many of the axioms in FT_0 . Therefore, there exists an $N \in \mathbb{N}$ such that $FT \cup \{\neg \phi_1, \neg \phi_2, \neg \phi_3, \ldots, \neg \phi_N\} \vdash \neg \psi_M$. But then $FT \cup \{\neg \phi_1, \neg \phi_2, \neg \phi_3, \ldots, \neg \phi_N\} \models \neg \psi_M$, that is, M is not representable over any field of characteristic greater than N.