Problem 3. Minors and duals.

Let M be a matroid on E and let $A \subseteq E$. I will use these 3 formulas:
(1) $r_{M \backslash T}(X)=r_{M}(X)$
(2) $r_{M / T}(X)=r_{M}(X \cup T)-r_{M}(T)$
(3) $r_{M^{*}}=|X|+r_{M}(E-X)-r_{M}$

To show the following:
(a) $(M / A)^{*}=M^{*} \backslash A$
(proof.) Let $X \subseteq E-A$, then
$r_{(M / A)^{*}}(X)=|X|+r_{(M / A)}(E-A-X)-r_{M / A}(E-A)$
$=|X|+r_{M}((E-A-X) \cup A)-r_{M}(A)-\left(r_{M}((E-A) \cup A)-r_{M}(A)\right)$ (2)
$=|X|+r_{M}(E-X)-r_{M}(E)$
Also
$r_{M^{*} \backslash A}(X)=r_{M^{*}}(X)=$ (1)
$|X|+r_{M}(E-X)-r_{M}(E)$ (3)
So $r_{(M / A)^{*}}(X)=r_{M^{*} \backslash A}(X)$, thus $(M / A)^{*}=M^{*} \backslash A$
(b) $c l_{M / A}(X)=c l_{M}(X \cup A)-A$ for all $X \subseteq E-A$.
(proof.) \subseteq Let $y \notin A, y \in c l_{M / A}(X)$ so $r_{M / A}(X)=r_{M / A}(X \cup y)$ (a)
$r_{M / A}(X \cup y)=r_{M}(X \cup y \cup A)-r_{M}(A)$ ©
Also, $r_{M / A}(X)=r_{M}(X \cup A)-r_{M}(A)$ ©
By (a) (b) (c) $r_{M}(X \cup y \cup A)=r_{M}(X \cup A)=r_{M}(X \cup A \cup y)$, so $y \in c l_{M}(X \cup A)$
and since $y \notin A, y \in c l_{M}(X \cup A)-A$. Thus $c l_{M / A}(X) \subseteq c l_{M}(X \cup A)-A$
\supseteq I want to show $r_{M \backslash A}(X)=r_{M \backslash A}$
$r_{M}(X)-r_{M}(A)=r_{M}(X \cup y)-r_{M}(A)$

Let $y \in c l_{M}(X \cup A)-A$ so $y \notin A$
$r_{M}(X \cup A \cup y)=r_{M}(X \cup A)$
WLOG Suppose $X \cap A=\emptyset$ so $(X \cup A)-A=X$
$r_{M / A}(X \cup A)=r_{M}(X \cup A-A)-r_{M}(A)$ (2)
$=r_{M}(X)-r_{M}(A)(1)$
$r_{M / A}(X \cup A \cup y)=r_{M}(X \cup A \cup y-A)-r_{M}(A)$ (2)
$=r_{M}(X \cup y)-r_{M}(A)$ (ii)

By (i) and (ii) $r_{M}(X \cup A \cup y)-r_{M}(A)=r_{M}(X \cup A)-r_{M}(A)$

This is what I needed to show, so $y \in \operatorname{cl}_{M}(X \cup A)-A \Rightarrow y \in c l_{M / A}(X)$ Thus $c l_{M}(X \cup A)-A \subseteq c l_{M / A}(X)$

So $c l_{M / A}(X)=c l_{M}(X \cup A)-A$
(c) M / A has no loops if and only if A is a flat of M.
(proof.) M / A has no loops $\Rightarrow A$ is a flat in M.

Suppose A is not a flat in M, then $r_{M}(A \cup y)=r_{M}(A)$ so $r_{M}(A \cup y)-$ $r_{M}(A)=0$
$r_{M / A}(y)=r_{M}(A \cup y)-r_{M}(A)=0(2)$
$r_{M}(A \cup y)=r_{M}(A)$ So y is a loop in $M / A . \Rightarrow \Leftarrow$
M / A has no loops $\Leftarrow A$ is not a flat in M.

Suppose x is a loop of M / A.
Then $r_{M / A}(x)=0$
$r_{M / A}(x)=r_{M}(x \cup A)-r_{M}(A)=0$ (2)
$r_{M}(x \cup A)=r_{M}(A)$

So A is not a flat if M / A has loops. Thus, if A is a flat, then M / A has no loops.

