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1. The partition lattice. A partition of [n] is a collection π = {S1, ..., Sk} of pairwise disjoint
subsets of [n] (called the blocks of π) whose union is [n]. Consider the set of partitions of [n],
with the following partial order: If π1 and π2 are partitions of [n], say that π1 ≤ π2 if every
block of π2 is a union of blocks of π1.

(a) Prove that this defines a poset of Πn.

Proof. Let πi,πj ,πk be partitions of [n]. Note for all i, any block πi is the union of itself.
Thus πi ≤ πi for all πi ∈ Πn.

Suppose πi ≤ πj and πj ≤ πi. Since πi ≤ πj , every block in πj is a union of blocks of πi,
which is a union of blocks of πj (since πj ≤ πi). So πi and πj have the same blocks, and
thus πi = πj .

Suppose πi ≤ πj and πj ≤ πk. Since πj ≤ πk, every block in πk is a union of blocks of
πj . But every block in πj is a union of blocks of πi (since πi ≤ πj). So every block in πk

is a union of blocks of πi, and thus πi ≤ πk.

(b) Prove that Πn is a lattice.

Proof. Let πi,πj ∈ Πn, where πi = {A1, A2, ..., Al} and πj = {B1, B2, ..., Bm}, where Ai

and Bj are blocks of πi and πj respectively.

Claim: πm = {Ai ∩Bj |1 ≤ i ≤ l, 1 ≤ j ≤ m,Ai ∩Bj $= ∅} is πi ∧ πj .

Proof. Note that for i $= i′, Ai ∩ Ai′ = ∅ and for j $= j′, Bj ∩ Bj′ = ∅. Also,
∪i,j(Ai ∩Bj) = ∪iAi ∩ ∪jBj = [n] ∩ [n] = [n]. Thus πm ∈ Πn.

Note also that since each Ai ∩ Bj ⊆ and Ai ∩ Bj ⊆ Bj , πm ≤ πi and πm ≤ πj . So πm

is a lower bound of πi and πj . Now choose some other lower bound π′m ∈ Πn such that
π′m ≤ πi and π′m ≤ πj . Since π′m ∈ Πn, it is of the form π′m = {C1, C2, ..., Ck}, where
each Cn is a block of π′m. Then for each Cn, 1 ≤ n ≤ k, there exists some i such that
Cn ⊆ Ai and some j such that Cn ⊆ Bj . Thus for that choice of i and j, Cn ⊆ Ai ∩Bj ,
which means π′m ≤ πm. So πm is the greatest lower bound, and thus πm = πi ∧ πj .

Now consider the set of all upper bounds for πi and πj in Πn. So for all upper bounds πu,
πi ≤ πu and πj ≤ πu. By the above claim and proof, we know that the meet πM of all the
upper bounds exists and is in Πn. Note also that for any two upper bounds πu and π′u,
πi ≤ πu and πi ≤ π′u. So πi ≤ πu ∧π′u. Similarly, πj ≤ πu ∧π′u. By the same reasoning, if
we consider a third upper bound, π′′u, then πi ≤ (πu ∧ π′u) ∧ π′′u and πj ≤ (πu ∧ π′u) ∧ π′′u.
If we continue in this manner, we see that πi and πj are both less than or equal to πM ,
the meet of all the upper bounds of Πn. So πM is an upper bound of πi and πj . And
since πM itself is less than or equal to all the upper bounds of πi and πj , it is the least
upper bound. Thus πM = πi ∨ πj .

Since Πn is a poset (by 1a, above) and has a greatest lower bound and least upper bound,
it is a lattice.
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(c) Prove that Πn is graded, and describe its rank function.

Proof. Note that Πn is graded if and only if there exists a rank function r such that
πi is minimal in Πn means r(πi) = 0 and that if πj covers πi, r(πj) = πi + 1. Define
r(πi) = n− {number of blocks in πi}. Let πi be minimal in Πn. Since we have a lattice,
πi is unique, and by the way we’ve constructed Πn, πi contains n partitions of single
elements. So r(πi) = n− n = 0.

Now suppose that πj covers πi. Then πi < πj , which means there is no πk ∈ Πn such
that πi < πk < πj and every block of πj is a union of blocks of πi. Note that if we
union more than 2 blocks of πi, there would be a πk ∈ Πn that would have a block that
contains the union of some (but not all) of these blocks of πi. But this would mean that
πi < πk < πj , which isn’t possible since πj covers πi. So the blocks of πj are exactly the
same as the blocks of πi, except that exactly two blocks of πi have been unioned together
to create a single block in πj . So we lost exactly one block in going up from πi to πj .
Thus r(πj) = n− ({number of blocks in πi}− 1) = r(πi) + 1.

Since for our rank function r, πi is minimal in Πn ⇒ r(πi) = 0 and πj covers πi ⇒
r(πj) = πi + 1, Πn is graded.

(d) Prove that Πn is semimodular.

Proof. Let πi,πj ∈ Πn both cover πi ∧ πj . Then r(πi) = r(πi ∧ πj) + 1 and r(πj) =
r(πi ∧ πj) + 1. So r(πi) = r(πj). Let πi ∧ πj = {S1, S2, ..., Sk}, where the Si (1 ≤ i ≤ k)
are blocks. Now without loss of generality, suppose πi = {S1 ∪ S2, S3, ..., Sk}.

Case 1: Without loss of generality, suppose πj = {S1∪S3, S2, S4, ..., Sk}. Then πi∨πj =
{S1 ∪ S2 ∪ S3, S4, ..., Sk}. Since there is one less block in πi ∨ πj than there is in πi and
πj , r(πi ∨ πj) = r(πi) + 1 = r(πj) + 1.

Case 2: Without loss of generality, suppose πj = {S1, S2, S3∪S4, ..., Sk}. Then πi∨πj =
{S1 ∪ S2, S3 ∪ S4, S5, ..., Sk}, and once again we have one less block in πi ∨ πj than there
in πi and πj . So r(πi ∨ πj) = r(πi) + 1 = r(πj) + 1.

Thus in both cases, r(πi ∨ πj) = r(πi) + 1 = r(πj) + 1, which means πi ∨ πj covers both
πi and πj . Since πi, πj ∈ Πn both covering πi ∧ πj ⇒ πi ∨ πj covers both πi and πj , by
Problem 2 on this assignment, Πn is semimodular.

(e) Prove that Πn is atomic.

Proof. Note that the atoms of Πn are the lattice elements with rank 1. Since we defined
the rank of an element in Πn as r(πi) = n− {number of blocks in πi}, any element with
rank 1 has n− 1 blocks. So every atom of Πn has one block of two numbers (where these
numbers are between 1 and n) and n− 2 blocks of 1 number. In fact, since each element
of Πn (and thus each atom of Πn) consists of disjoint partitions, our atoms are uniquely
determined by its 2-block.

Then for all πi ∈ Πn, if πi contains a block that contains some set of 2 numbers, say ij,
where i $= j and 1 ≤ i ≤ n and 1 ≤ j ≤ n, then one of the atoms we joined to get to πi

was the atom containing ij as its 2-block. By our cover relation, every block of πi is the
union of blocks below it. So we can break every block in πi that contains more than 1
element into the union of 2-blocks. (If a block of πi contains an odd number of elements,
we can break it into the union of 2 blocks and one 1 block.) And since there exists an
atom containing each of these 2-blocks, we can join these atoms to build πi. Thus every
πi ∈ Πn is a join of a unique set of atoms.
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(f) Prove that Πn is the lattice of flats of M(Kn), the graphical matroid of the complete
graph Kn.

Claim: Each πi ∈ Πn corresponds to a flat of M(Kn).

Proof. Choose some πi ∈ Πn and randomly number the vertices of Kn. Let Φ be defined
as the function that maps a block of πi to the complete graph on the subsets of [n] con-
tained in each block. For example, if Si = {1, 3, 5, 6} is a block of πi, then Φ(Si) would
be the complete graph on the vertices 1, 3, 5, 6. For any block Sj of 2 elements, Φ(Sj)
gives a single edge between those two vertices, and for any block Sk consisting of a single
element, Φ(Sk) is just a single vertex in Kn. So for any πi ∈ Πn, Φ(πi) (where we apply
Φ to every block of πi) is a subgraph of K5.

Now let’s add an edge to Φ(πi). Since the blocks of πi are disjoint, Φ of each block of
πi is not connected to the graphs of Φ of the other blocks of πi. So if we add an edge
to Φ(πi), we won’t complete a circuit, because the map of each block of πi is already a
complete graph and thus contains all its circuits. So adding an edge to Φ(πi) will increase
its rank, which means cl(Φ(πi)) = Φ(πi), and thus Φ(πi) is a flat of M(Kn). (Note that
if πi = 1̂, then Φ(1̂) = Kn. There are no edges to add, and so trivially, cl(Φ(1̂)) = Φ(1̂).)

Now consider the other direction. Let every flat of M(K5) correspond to a collection of
complete subgraphs {G1, G2, ..., Gn} of K5. Then Φ−1({G1, G2, ..., Gn}) = {S1, S2, ..., Sn},
where each Si is the collection of vertices of the subgraphs of each Gi. So {S1, S2, ..., Sn}
is a partition of the n vertices of K5.

Each πi ∈ Πn corresponds to a flat of M(Kn), and each flat of M(Kn) corresponds to a
partition of Πn. Thus Φ is an isomorphism between Πn and M(Kn), which means Πn is
the lattice of flats of M(Kn).

2. Semimodular lattices Prove that a finite lattice L is semimodular if and only if it satisfies
the following condition: If x, y ∈ L are such that x and y both cover x ∧ y, then x ∨ y covers
both x and y.

Proof. (⇒) Let L be a semimodular lattice, let r be its rank function, and suppose x, y ∈ L
are such that x and y both cover x ∧ y. Since r is the rank function of a lattice and x covers
x ∧ y, r(x) = r(x ∧ y) + 1. Then

r(x ∧ y) + r(x ∨ y) ≤ r(x) + r(y)
⇔ r(x ∧ y) + r(x ∨ y) ≤ r(x ∧ y) + 1 + r(y)
⇔ r(x ∨ y) ≤ 1 + r(y)

But (x ∨ y) > y ⇒ r(x ∨ y) > r(y). Thus r(x ∨ y) = r(y) + 1, which means x ∨ y covers y.

Similarly, since y covers x ∧ y, r(y) = r(x ∧ y) + 1. So

r(x ∧ y) + r(x ∨ y) ≤ r(x) + r(x ∧ y) + 1
⇒ r(x ∨ y) ≤ r(x) + 1

But x ∨ y > x ⇔ r(x ∨ y) > r(x). Thus r(x ∨ y) = r(x) + 1, which means x ∨ y covers x.
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