Matroids Homework 4

1. The partition lattice. A partition of [n] is a collection $\pi=\left\{S_{1}, \ldots, S_{k}\right\}$ of pairwise disjoint subsets of $[n]$ (called the blocks of π) whose union is $[n]$. Consider the set of partitions of $[n]$, with the following partial order: If π_{1} and π_{2} are partitions of [n], say that $\pi_{1} \leq \pi_{2}$ if every block of π_{2} is a union of blocks of π_{1}.
(a) Prove that this defines a poset of Π_{n}.

Proof. Let $\pi_{i}, \pi_{j}, \pi_{k}$ be partitions of $[n]$. Note for all i, any block π_{i} is the union of itself. Thus $\pi_{i} \leq \pi_{i}$ for all $\pi_{i} \in \Pi_{n}$.

Suppose $\pi_{i} \leq \pi_{j}$ and $\pi_{j} \leq \pi_{i}$. Since $\pi_{i} \leq \pi_{j}$, every block in π_{j} is a union of blocks of π_{i}, which is a union of blocks of π_{j} (since $\pi_{j} \leq \pi_{i}$). So π_{i} and π_{j} have the same blocks, and thus $\pi_{i}=\pi_{j}$.

Suppose $\pi_{i} \leq \pi_{j}$ and $\pi_{j} \leq \pi_{k}$. Since $\pi_{j} \leq \pi_{k}$, every block in π_{k} is a union of blocks of π_{j}. But every block in π_{j} is a union of blocks of π_{i} (since $\pi_{i} \leq \pi_{j}$). So every block in π_{k} is a union of blocks of π_{i}, and thus $\pi_{i} \leq \pi_{k}$.
(b) Prove that Π_{n} is a lattice.

Proof. Let $\pi_{i}, \pi_{j} \in \Pi_{n}$, where $\pi_{i}=\left\{A_{1}, A_{2}, \ldots, A_{l}\right\}$ and $\pi_{j}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$, where A_{i} and B_{j} are blocks of π_{i} and π_{j} respectively.

Claim: $\pi_{m}=\left\{A_{i} \cap B_{j} \mid 1 \leq i \leq l, 1 \leq j \leq m, A_{i} \cap B_{j} \neq \emptyset\right\}$ is $\pi_{i} \wedge \pi_{j}$.
Proof. Note that for $i \neq i^{\prime}, A_{i} \cap A_{i^{\prime}}=\emptyset$ and for $j \neq j^{\prime}, B_{j} \cap B_{j^{\prime}}=\emptyset . \quad$ Also, $\cup_{i, j}\left(A_{i} \cap B_{j}\right)=\cup_{i} A_{i} \cap \cup_{j} B_{j}=[n] \cap[n]=[n]$. Thus $\pi_{m} \in \Pi_{n}$.

Note also that since each $A_{i} \cap B_{j} \subseteq$ and $A_{i} \cap B_{j} \subseteq B_{j}, \pi_{m} \leq \pi_{i}$ and $\pi_{m} \leq \pi_{j}$. So π_{m} is a lower bound of π_{i} and π_{j}. Now choose some other lower bound $\pi_{m}^{\prime} \in \Pi_{n}$ such that $\pi_{m}^{\prime} \leq \pi_{i}$ and $\pi_{m}^{\prime} \leq \pi_{j}$. Since $\pi_{m}^{\prime} \in \Pi_{n}$, it is of the form $\pi_{m}^{\prime}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$, where each C_{n} is a block of π_{m}^{\prime}. Then for each $C_{n}, 1 \leq n \leq k$, there exists some i such that $C_{n} \subseteq A_{i}$ and some j such that $C_{n} \subseteq B_{j}$. Thus for that choice of i and $j, C_{n} \subseteq A_{i} \cap B_{j}$, which means $\pi_{m}^{\prime} \leq \pi_{m}$. So π_{m} is the greatest lower bound, and thus $\pi_{m}=\pi_{i} \wedge \pi_{j}$.

Now consider the set of all upper bounds for π_{i} and π_{j} in Π_{n}. So for all upper bounds π_{u}, $\pi_{i} \leq \pi_{u}$ and $\pi_{j} \leq \pi_{u}$. By the above claim and proof, we know that the meet π_{M} of all the upper bounds exists and is in Π_{n}. Note also that for any two upper bounds π_{u} and π_{u}^{\prime}, $\pi_{i} \leq \pi_{u}$ and $\pi_{i} \leq \pi_{u}^{\prime}$. So $\pi_{i} \leq \pi_{u} \wedge \pi_{u}^{\prime}$. Similarly, $\pi_{j} \leq \pi_{u} \wedge \pi_{u}^{\prime}$. By the same reasoning, if we consider a third upper bound, $\pi_{u}^{\prime \prime}$, then $\pi_{i} \leq\left(\pi_{u} \wedge \pi_{u}^{\prime}\right) \wedge \pi_{u}^{\prime \prime}$ and $\pi_{j} \leq\left(\pi_{u} \wedge \pi_{u}^{\prime}\right) \wedge \pi_{u}^{\prime \prime}$. If we continue in this manner, we see that π_{i} and π_{j} are both less than or equal to π_{M}, the meet of all the upper bounds of Π_{n}. So π_{M} is an upper bound of π_{i} and π_{j}. And since π_{M} itself is less than or equal to all the upper bounds of π_{i} and π_{j}, it is the least upper bound. Thus $\pi_{M}=\pi_{i} \vee \pi_{j}$.

Since Π_{n} is a poset (by 1a, above) and has a greatest lower bound and least upper bound, it is a lattice.
(c) Prove that Π_{n} is graded, and describe its rank function.

Proof. Note that Π_{n} is graded if and only if there exists a rank function r such that π_{i} is minimal in Π_{n} means $r\left(\pi_{i}\right)=0$ and that if π_{j} covers $\pi_{i}, r\left(\pi_{j}\right)=\pi_{i}+1$. Define $r\left(\pi_{i}\right)=n-\left\{\right.$ number of blocks in $\left.\pi_{i}\right\}$. Let π_{i} be minimal in Π_{n}. Since we have a lattice, π_{i} is unique, and by the way we've constructed Π_{n}, π_{i} contains n partitions of single elements. So $r\left(\pi_{i}\right)=n-n=0$.

Now suppose that π_{j} covers π_{i}. Then $\pi_{i}<\pi_{j}$, which means there is no $\pi_{k} \in \Pi_{n}$ such that $\pi_{i}<\pi_{k}<\pi_{j}$ and every block of π_{j} is a union of blocks of π_{i}. Note that if we union more than 2 blocks of π_{i}, there would be a $\pi_{k} \in \Pi_{n}$ that would have a block that contains the union of some (but not all) of these blocks of π_{i}. But this would mean that $\pi_{i}<\pi_{k}<\pi_{j}$, which isn't possible since π_{j} covers π_{i}. So the blocks of π_{j} are exactly the same as the blocks of π_{i}, except that exactly two blocks of π_{i} have been unioned together to create a single block in π_{j}. So we lost exactly one block in going up from π_{i} to π_{j}. Thus $r\left(\pi_{j}\right)=n-\left(\left\{\right.\right.$ number of blocks in $\left.\left.\pi_{i}\right\}-1\right)=r\left(\pi_{i}\right)+1$.

Since for our rank function r, π_{i} is minimal in $\Pi_{n} \Rightarrow r\left(\pi_{i}\right)=0$ and π_{j} covers $\pi_{i} \Rightarrow$ $r\left(\pi_{j}\right)=\pi_{i}+1, \Pi_{n}$ is graded.
(d) Prove that Π_{n} is semimodular.

Proof. Let $\pi_{i}, \pi_{j} \in \Pi_{n}$ both cover $\pi_{i} \wedge \pi_{j}$. Then $r\left(\pi_{i}\right)=r\left(\pi_{i} \wedge \pi_{j}\right)+1$ and $r\left(\pi_{j}\right)=$ $r\left(\pi_{i} \wedge \pi_{j}\right)+1$. So $r\left(\pi_{i}\right)=r\left(\pi_{j}\right)$. Let $\pi_{i} \wedge \pi_{j}=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$, where the $S_{i}(1 \leq i \leq k)$ are blocks. Now without loss of generality, suppose $\pi_{i}=\left\{S_{1} \cup S_{2}, S_{3}, \ldots, S_{k}\right\}$.

Case 1: Without loss of generality, suppose $\pi_{j}=\left\{S_{1} \cup S_{3}, S_{2}, S_{4}, \ldots, S_{k}\right\}$. Then $\pi_{i} \vee \pi_{j}=$ $\left\{S_{1} \cup S_{2} \cup S_{3}, S_{4}, \ldots, S_{k}\right\}$. Since there is one less block in $\pi_{i} \vee \pi_{j}$ than there is in π_{i} and $\pi_{j}, r\left(\pi_{i} \vee \pi_{j}\right)=r\left(\pi_{i}\right)+1=r\left(\pi_{j}\right)+1$.

Case 2: Without loss of generality, suppose $\pi_{j}=\left\{S_{1}, S_{2}, S_{3} \cup S_{4}, \ldots, S_{k}\right\}$. Then $\pi_{i} \vee \pi_{j}=$ $\left\{S_{1} \cup S_{2}, S_{3} \cup S_{4}, S_{5}, \ldots, S_{k}\right\}$, and once again we have one less block in $\pi_{i} \vee \pi_{j}$ than there in π_{i} and π_{j}. So $r\left(\pi_{i} \vee \pi_{j}\right)=r\left(\pi_{i}\right)+1=r\left(\pi_{j}\right)+1$.

Thus in both cases, $r\left(\pi_{i} \vee \pi_{j}\right)=r\left(\pi_{i}\right)+1=r\left(\pi_{j}\right)+1$, which means $\pi_{i} \vee \pi_{j}$ covers both π_{i} and π_{j}. Since $\pi_{i}, \pi_{j} \in \Pi_{n}$ both covering $\pi_{i} \wedge \pi_{j} \Rightarrow \pi_{i} \vee \pi_{j}$ covers both π_{i} and π_{j}, by Problem 2 on this assignment, Π_{n} is semimodular.
(e) Prove that Π_{n} is atomic.

Proof. Note that the atoms of Π_{n} are the lattice elements with rank 1. Since we defined the rank of an element in Π_{n} as $r\left(\pi_{i}\right)=n-\left\{\right.$ number of blocks in $\left.\pi_{i}\right\}$, any element with rank 1 has $n-1$ blocks. So every atom of Π_{n} has one block of two numbers (where these numbers are between 1 and n) and $n-2$ blocks of 1 number. In fact, since each element of Π_{n} (and thus each atom of Π_{n}) consists of disjoint partitions, our atoms are uniquely determined by its 2-block.

Then for all $\pi_{i} \in \Pi_{n}$, if π_{i} contains a block that contains some set of 2 numbers, say $i j$, where $i \neq j$ and $1 \leq i \leq n$ and $1 \leq j \leq n$, then one of the atoms we joined to get to π_{i} was the atom containing $i j$ as its 2-block. By our cover relation, every block of π_{i} is the union of blocks below it. So we can break every block in π_{i} that contains more than 1 element into the union of 2-blocks. (If a block of π_{i} contains an odd number of elements, we can break it into the union of 2 blocks and one 1 block.) And since there exists an atom containing each of these 2-blocks, we can join these atoms to build π_{i}. Thus every $\pi_{i} \in \Pi_{n}$ is a join of a unique set of atoms.
(f) Prove that Π_{n} is the lattice of flats of $M\left(K_{n}\right)$, the graphical matroid of the complete graph K_{n}.

Claim: Each $\pi_{i} \in \Pi_{n}$ corresponds to a flat of $M\left(K_{n}\right)$.
Proof. Choose some $\pi_{i} \in \Pi_{n}$ and randomly number the vertices of K_{n}. Let Φ be defined as the function that maps a block of π_{i} to the complete graph on the subsets of $[n]$ contained in each block. For example, if $S_{i}=\{1,3,5,6\}$ is a block of π_{i}, then $\Phi\left(S_{i}\right)$ would be the complete graph on the vertices $1,3,5,6$. For any block S_{j} of 2 elements, $\Phi\left(S_{j}\right)$ gives a single edge between those two vertices, and for any block S_{k} consisting of a single element, $\Phi\left(S_{k}\right)$ is just a single vertex in K_{n}. So for any $\pi_{i} \in \Pi_{n}, \Phi\left(\pi_{i}\right)$ (where we apply Φ to every block of π_{i}) is a subgraph of K_{5}.

Now let's add an edge to $\Phi\left(\pi_{i}\right)$. Since the blocks of π_{i} are disjoint, Φ of each block of π_{i} is not connected to the graphs of Φ of the other blocks of π_{i}. So if we add an edge to $\Phi\left(\pi_{i}\right)$, we won't complete a circuit, because the map of each block of π_{i} is already a complete graph and thus contains all its circuits. So adding an edge to $\Phi\left(\pi_{i}\right)$ will increase its rank, which means $\operatorname{cl}\left(\Phi\left(\pi_{i}\right)\right)=\Phi\left(\pi_{i}\right)$, and thus $\Phi\left(\pi_{i}\right)$ is a flat of $M\left(K_{n}\right)$. (Note that if $\pi_{i}=\hat{1}$, then $\Phi(\hat{1})=K_{n}$. There are no edges to add, and so trivially, $c l(\Phi(\hat{1}))=\Phi(\hat{1})$.)

Now consider the other direction. Let every flat of $M\left(K_{5}\right)$ correspond to a collection of complete subgraphs $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ of K_{5}. Then $\Phi^{-1}\left(\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}\right)=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$, where each S_{i} is the collection of vertices of the subgraphs of each G_{i}. So $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ is a partition of the n vertices of K_{5}.

Each $\pi_{i} \in \Pi_{n}$ corresponds to a flat of $M\left(K_{n}\right)$, and each flat of $M\left(K_{n}\right)$ corresponds to a partition of Π_{n}. Thus Φ is an isomorphism between Π_{n} and $M\left(K_{n}\right)$, which means Π_{n} is the lattice of flats of $M\left(K_{n}\right)$.

