Suppose that $r: 2^E \to \mathbb{N}$ satisfies the standard axioms R1, R2, R3 for a rank function. Then R1' for r follows from R1 with $X = \emptyset$. The lower bound $r(A \cup \{a\} - r(A) \ge 0$ in R2' follows from R2 with $Y = A \cup \{a\}$, X = A; the upper bound $r(A \cup \{a\}) - r(A) \le 1$ is a consequence of R3 with X = A, $Y = \{a\}$, bounding the r(Y) and $r(\emptyset)$ that then appear by R1. Finally, R3' comes from R3 in the situation $X = A \cup \{a\}$, $Y = A \cup \{b\}$, where the bound from R3 is $r(A \cup \{a\} \cup \{b\}) \le r(A)$, which is equality by R2.

Conversely suppose that $r: 2^E \to \mathbb{N}$ satisfies our local axioms R1', R2', R3'. We'll show R1, R2, R3 using telescoping sum techniques. To show R1, the lower bound $0 \leq r(X)$ is a trivial consequence of the range we've defined rwith. For the upper bound, label the elements of X as x_1, \ldots, x_n , and write $X_k = \{x_1, \ldots, x_k\}$ for $0 \leq k \leq n$; then by R1' and R2', we have

$$r(X) = r(X_n) = r(X_0) + \sum_{k=1}^n r(X_k) - r(X_{k-1}) \le 0 + \sum_{k=1}^n 1 = n,$$

which is R1.

For R2 we do similarly. Given X and $Y \supseteq X$, write $Y = X \cap \{y_1, \ldots, y_n\}$, and put $Y_k = X \cap \{y_1, \ldots, y_k\}$. Then by R2',

$$r(Y) - r(X) = r(Y_k) - r(Y_0) = \sum_{k=1}^n r(Y_k) - r(Y_{k-1}) \ge \sum_{k=1}^n 0 = 0,$$

which is R2.

Finally, for R3, we first note that R3' can be restated, assuming R2', to assert that

$$r(A \cup \{a\}) + r(A \cup \{b\}) - r(A) - r(A \cup \{a, b\}) \ge 0.$$

For if either $r(A \cup \{a\}) - r(A)$ or $r(A \cup \{b\}) - r(A)$ is 1, then this condition is vacuous in light of R2'; but if $r(A \cup \{a\}) - r(A) = r(A \cup \{b\}) - r(A) = 0$, this condition is equivalent to R3'. Now given sets X and Y, put $X \setminus Y =$ $\{x_1, \ldots, x_n\}, Y \setminus X = \{y_1, \ldots, y_m\}$, and $Z_{k,l} := (X \cap Y) \cup \{x_1, \ldots, x_k\} \cup$

3

 $\{y_1, \ldots, y_l\}$. Then, using R3',

$$r(X) + r(Y) - r(X \cap Y) - r(X \cup Y)$$

= $r(Z_{n,0}) + r(Z_{0,m}) - r(Z_{0,0}) - r(Z_{n,m})$
= $\sum_{k=1}^{n} (r(Z_{k,0}) - r(Z_{k-1,0})) - (r(Z_{k,m}) - r(Z_{k-1,m}))$
= $\sum_{k=1}^{n} \sum_{l=1}^{m} r(Z_{k,l}) - r(Z_{k,l-1}) - r(Z_{k-1,l}) + r(Z_{k-1,l-1})$
 $\ge \sum_{k,l} 0 = 0,$

which is R3.