
We’ve now ruled out all possibilities in either case; we conclude that
neither M(K5)∗ nor M(K3,3)∗ is graphic.

3 Suppose that r : 2E → N satisfies the standard axioms R1, R2, R3 for a
rank function. Then R1′ for r follows from R1 with X = ∅. The lower bound
r(A ∪ {a} − r(A) ≥ 0 in R2′ follows from R2 with Y = A ∪ {a}, X = A;
the upper bound r(A∪ {a})− r(A) ≤ 1 is a consequence of R3 with X = A,
Y = {a}, bounding the r(Y ) and r(∅) that then appear by R1. Finally, R3′

comes from R3 in the situation X = A∪ {a}, Y = A∪ {b}, where the bound
from R3 is r(A ∪ {a} ∪ {b}) ≤ r(A), which is equality by R2.

Conversely suppose that r : 2E → N satisfies our local axioms R1′ ,R2′ ,R3′.
We’ll show R1, R2, R3 using telescoping sum techniques. To show R1, the
lower bound 0 ≤ r(X) is a trivial consequence of the range we’ve defined r
with. For the upper bound, label the elements of X as x1, . . . , xn, and write
Xk = {x1, . . . , xk} for 0 ≤ k ≤ n; then by R1′ and R2′, we have

r(X) = r(Xn) = r(X0) +
n∑

k=1

r(Xk)− r(Xk−1) ≤ 0 +
n∑

k=1

1 = n,

which is R1.

For R2 we do similarly. Given X and Y ⊇ X, write Y = X∩{y1, . . . , yn},
and put Yk = X ∩ {y1, . . . , yk}. Then by R2′,

r(Y )− r(X) = r(Yk)− r(Y0) =
n∑

k=1

r(Yk)− r(Yk−1) ≥
n∑

k=1

0 = 0,

which is R2.

Finally, for R3, we first note that R3′ can be restated, assuming R2′, to
assert that

r(A ∪ {a}) + r(A ∪ {b})− r(A)− r(A ∪ {a, b}) ≥ 0.

For if either r(A∪ {a})− r(A) or r(A∪ {b})− r(A) is 1, then this condition
is vacuous in light of R2′; but if r(A∪ {a})− r(A) = r(A∪ {b})− r(A) = 0,
this condition is equivalent to R3′. Now given sets X and Y , put X \ Y =
{x1, . . . , xn}, Y \ X = {y1, . . . , ym}, and Zk,l := (X ∩ Y ) ∪ {x1, . . . , xk} ∪
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{y1, . . . , yl}. Then, using R3′,

r(X) + r(Y )− r(X ∩ Y )− r(X ∪ Y )

= r(Zn,0) + r(Z0,m)− r(Z0,0)− r(Zn,m)

=
n∑

k=1

(
r(Zk,0)− r(Zk−1,0)

)
−

(
r(Zk,m)− r(Zk−1,m)

)

=
n∑

k=1

m∑

l=1

r(Zk,l)− r(Zk,l−1)− r(Zk−1,l) + r(Zk−1,l−1)

≥
∑

k,l

0 = 0,

which is R3.

4 Suppose first that M1 and M2 are dual matroids. Let n = |E| − 1 =
|E \ {e}|, and let M ′

1 and M ′
2 be the respective restrictions of M1 and M2 to

E \{e}. Since M1 and M2 are dual, so are their restrictions to E ′ := E \{e},
because complementing commutes with restriction to a smaller ground set.
Let ri be the rank function on Mi, i = 1, 2. Then ri is also the rank function
on M ′

i , on subsets of E ′.

Now, E ′ can be partitioned as X, Y . We have that r1(X) is the size of
a maximal independent subset of X in R1. Any such subset has the form
B ∩X for some basis B of M1 (since it’s contained in a basis, and contains
every element of B ∩ X by maximality), so that r1(X) = maxB |X ∩ B| as
B ranges over bases of M1. Likewise, r2(Y ) = maxB∗ |Y ∩B∗|, as B∗ ranges
over bases of M2, i.e. complements of bases of M1, so that instead of B∗ we
could have used E ′ \ B as B ranges over bases of M1. But now note that

|X ∩B|− |Y ∩ (E ′ \B)| = (|X ∩B|+ |Y ∩B|)− (|Y ∩B|+ |Y ∩ (E ′ \B)|)
= |B|− |Y | = r1(E

′)− |Y |

which is constant as B varies. So the same basis B maximizes |X ∩ B| and
|Y ∩ (E ′ \ B)|, and we get

r1(X)− r2(Y ) = r1(E
′)− |Y |. (1)

Now, we can do the same for the matroids M1 and M2, and either of the
partitions ({e}∪X), Y and X, ({e}∪Y ). This gives us two analogues of (1),
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