3 Suppose that $r: 2^{E} \rightarrow \mathbb{N}$ satisfies the standard axioms R1, R2, R3 for a rank function. Then R1' for r follows from R1 with $X=\emptyset$. The lower bound $r(A \cup\{a\}-r(A) \geq 0$ in R2' follows from R2 with $Y=A \cup\{a\}, X=A$; the upper bound $r(A \cup\{a\})-r(A) \leq 1$ is a consequence of R 3 with $X=A$, $Y=\{a\}$, bounding the $r(Y)$ and $r(\emptyset)$ that then appear by R1. Finally, R3' comes from R3 in the situation $X=A \cup\{a\}, Y=A \cup\{b\}$, where the bound from R3 is $r(A \cup\{a\} \cup\{b\}) \leq r(A)$, which is equality by R 2 .

Conversely suppose that $r: 2^{E} \rightarrow \mathbb{N}$ satisfies our local axioms $\mathrm{R} 1^{\prime}, \mathrm{R} 2^{\prime}, \mathrm{R} 3^{\prime}$. We'll show R1, R2, R3 using telescoping sum techniques. To show R1, the lower bound $0 \leq r(X)$ is a trivial consequence of the range we've defined r with. For the upper bound, label the elements of X as x_{1}, \ldots, x_{n}, and write $X_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$ for $0 \leq k \leq n$; then by $\mathrm{R} 1^{\prime}$ and $\mathrm{R} 2^{\prime}$, we have

$$
r(X)=r\left(X_{n}\right)=r\left(X_{0}\right)+\sum_{k=1}^{n} r\left(X_{k}\right)-r\left(X_{k-1}\right) \leq 0+\sum_{k=1}^{n} 1=n
$$

which is R1.
For R2 we do similarly. Given X and $Y \supseteq X$, write $Y=X \cap\left\{y_{1}, \ldots, y_{n}\right\}$, and put $Y_{k}=X \cap\left\{y_{1}, \ldots, y_{k}\right\}$. Then by R2',

$$
r(Y)-r(X)=r\left(Y_{k}\right)-r\left(Y_{0}\right)=\sum_{k=1}^{n} r\left(Y_{k}\right)-r\left(Y_{k-1}\right) \geq \sum_{k=1}^{n} 0=0
$$

which is R2.
Finally, for R3, we first note that R3' can be restated, assuming R2', to assert that

$$
r(A \cup\{a\})+r(A \cup\{b\})-r(A)-r(A \cup\{a, b\}) \geq 0
$$

For if either $r(A \cup\{a\})-r(A)$ or $r(A \cup\{b\})-r(A)$ is 1 , then this condition is vacuous in light of $\mathrm{R} 2^{\prime}$; but if $r(A \cup\{a\})-r(A)=r(A \cup\{b\})-r(A)=0$, this condition is equivalent to R3'. Now given sets X and Y, put $X \backslash Y=$ $\left\{x_{1}, \ldots, x_{n}\right\}, Y \backslash X=\left\{y_{1}, \ldots, y_{m}\right\}$, and $Z_{k, l}:=(X \cap Y) \cup\left\{x_{1}, \ldots, x_{k}\right\} \cup$
$\left\{y_{1}, \ldots, y_{l}\right\}$. Then, using R3',

$$
\begin{aligned}
& r(X)+r(Y)-r(X \cap Y)-r(X \cup Y) \\
= & r\left(Z_{n, 0}\right)+r\left(Z_{0, m}\right)-r\left(Z_{0,0}\right)-r\left(Z_{n, m}\right) \\
= & \sum_{k=1}^{n}\left(r\left(Z_{k, 0}\right)-r\left(Z_{k-1,0}\right)\right)-\left(r\left(Z_{k, m}\right)-r\left(Z_{k-1, m}\right)\right) \\
= & \sum_{k=1}^{n} \sum_{l=1}^{m} r\left(Z_{k, l}\right)-r\left(Z_{k, l-1}\right)-r\left(Z_{k-1, l}\right)+r\left(Z_{k-1, l-1}\right) \\
\geq & \sum_{k, l} 0=0,
\end{aligned}
$$

which is R3.

