federico ardila

homework four

Note. You are encouraged to work together on the homework, but you must state who you worked with. You *must* write your solutions independently and in your own words.

- 1. The partition lattice. A partition of [n] is a collection $\pi = \{S_1, \ldots, S_k\}$ of pairwise disjoint subsets of [n] (called the *blocks* of π) whose union is [n]. Consider the set of partitions of [n], with the following partial order: If π_1 and π_2 are partitions of [n], say that $\pi_1 \leq \pi_2$ if every block of π_2 is a union of blocks of π_1 .
 - (a) Prove that this defines a poset Π_n .
 - (b) Prove that Π_n is a lattice.
 - (c) Prove that Π_n is graded, and describe its rank function.
 - (d) Prove that Π_n is semimodular.
 - (e) Prove that Π_n is atomic.
 - (f) Prove that Π_n is the lattice of flats of $M(K_n)$, the graphical matroid of the complete graph K_n .

Note. Solving part (f) would immediately solve the other ones, since the lattice of flats of a matroid is geometric. However, the purpose of this exercise is to get your hands dirty and really get acquainted with the partition lattice, so I want you to solve (a)-(e) directly from the definitions.

2. Semimodular lattices. Prove that a finite lattice \mathcal{L} is semimodular if and only if it satisfies the following condition:

If $x, y \in \mathcal{L}$ are such that x and y both cover $x \wedge y$, then $x \vee y$ covers both x and y.

- 3. Minors and duals. Let M be a matroid on E and let $A \subseteq E$. Show the following:
 - (a) $(M/A)^* = M^* \backslash A$
 - (b) $\operatorname{cl}_{M/A}(X) = \operatorname{cl}_M(X \cup A) A$ for all $X \subseteq E A$.
 - (c) M/A has no loops if and only if A is a flat of M.
- 4. Parallel elements in cotransversal matroids. Show that if e and f are parallel elements in a cotransversal matroid M, then $M \setminus e$ is also cotransversal.
- 5. The matroid of bases of minimum weight. Let $M = (E, \mathcal{B})$ be a matroid and let $w : E \to \mathbb{R}$ be a weight function on E. For each real number r, let $E_r = \{e \in E \mid w(e) \leq r\}$. Notice that there are only finitely many different sets E_r ; let's call them S_1, \ldots, S_k .

Let M_w be the matroid of bases of minimum weight of M. Find a description of M_w in terms of the matroid M, the sets S_i , direct sums, and minors.