homework three

1. Duality in graphs. Let G be a connected plane graph and G^{*} its dual.
(a) An isthmus is an edge whose removal disconnects the graph. Prove that e is a loop in G if and only if e^{*} is an isthmus in G^{*}.
(b) A bond is a minimal set of edges whose removal disconnects the graph. Prove that C is a circuit of G if and only if C^{*} is a bond of G^{*}.
(c) Let H be the graph obtained by removing edge e from G. Describe the graph H^{*} in terms of G^{*}.
2. Non-graphical duals of graphical matroids. Let K_{5} be the complete graph on 5 vertices, and let $K_{3,3}$ be the complete bipartite graph with 3 left vertices and 3 right vertices. Prove that the matroids $M\left(K_{5}\right)^{*}$ and $M\left(K_{3,3}\right)^{*}$ are not graphical.
(If you've tried for a while and still don't know how to get started, see Oxley, Prop. 2.3.3.)
3. A "local" axiom system for rank functions. Prove that a function $r: 2^{E} \rightarrow \mathbb{N}$ is the rank function of a matroid on E if and only if r satisfies the following conditions:
$(\mathbf{R 1})^{\prime} \quad r(\emptyset)=0$
(R2)' If $A \subseteq E$ and $a \in E$ then $r(A \cup a)-r(A)=0$ or 1 .
$(\mathbf{R} 3)^{\prime}$ If $A \subseteq E$ and $a, b \in E$ satisfy that $r(A \cup a)=r(A \cup b)=r(A)$, then $r(A \cup a \cup b)=r(A)$.
4. A closure characterization of dual matroids. Let M_{1} and M_{2} be matroids on a set E, and let cl_{1} and cl_{2} be their closure operators. Prove that $M_{1}=M_{2}^{*}$ if and only if, for every partition $(\{e\}, X, Y)$ of E into three disjoint sets, the element e is in exactly one of $\mathrm{cl}_{1}(X)$ and $\mathrm{cl}_{2}(Y)$.
5. Cotransversal matroids are matroids. Let G be a graph with directed edges, and let X and Y be two sets of vertices with $|X|=|Y|=r$. A routing from X to Y is a collection of r directed paths such that the initial vertex of each path is in X, the final vertex of each path is in Y, and no two paths have a vertex in common. Note that a path could consist of a single vertex, if this vertex is in both X and Y.
Let B_{0} be a set of vertices of G. Let $L\left(G, B_{0}\right)$ be the collection of subsets X for which there exists a routing from X to B_{0}. Prove, directly from the basis axioms, that $L\left(G, B_{0}\right)$ is the collection of bases of a matroid.
6. Matroids from tilings.
(a) You are given an equilateral triangular board of size n divided into little unit triangles, and tiles which are little $60^{\circ}-120^{\circ}$ unit rhombi. Notice that it is impossible to tile the board with the given tiles, because the board contains $\binom{n+1}{2}$ triangles facing up and $\binom{n}{2}$ facing down, and each unit rhombus must cover one triangle of each kind.

However, if you punch $\binom{n+1}{2}-\binom{n}{2}=n$ unit triangular holes, you may (or may not) be able to tile the resulting board. If it is possible to tile it, we will call the set of n holes good. The picture shows a good set of 4 holes, and a corresponding tiling.
Prove that the good sets of holes are the bases of a matroid.
(b) Is the same result true for any board consising of little unit equilateral triangles?

