PROPOSITION 3.1.1. The following are equivalent:

- 1) M and u are coalgebra maps
- 2) \triangle and \in are algebra maps
- 3) a) $\triangle(1) = 1 \otimes 1$
 - b) $\Delta(gh) = \sum_{(g),(h)} g(1)^h(1)^{\otimes g}(2)^h(2)$ c) $\epsilon(1) = 1$ and
 - $d) \in (gh) = \in (g) \in (h)$

<u>Proof</u>. 2) and 3) are obviously equivalent.

The equivalence of 1) and 2) may be seen by considering the following diagrams:

The commutativity of α) and β) says exactly that Δ is an algebra map, whereas the commutativity of λ) and ρ) says ϵ is an algebra map. On the other hand α) and λ) commute if and only if M is a coalgebra map, and β) and ρ) commute in case u is a coalgebra map. Thus 1) is equivalent to 2).