(7) Given a cube of side length $\sqrt{2}$, show that the 12 vectors from the center of cube to the midpoints of its 12 edges form a root system of S_{4}. Then draw some pictures.

Proof: Let a, b, c denote $s_{1}, s_{2}, s_{3} \in S_{4}$, respectively and let + , - denote $\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}$, respectively. We associate a with the vector $\alpha_{a}=(0,-,-), b$ with $\alpha_{b}=(+, 0,+)$, and c with $\alpha_{c}=(0,+,-)$. First we need to check that $\left\langle\alpha_{a}, \alpha_{b}\right\rangle=$ $\left\langle\alpha_{b}, \alpha_{c}\right\rangle=-\cos \frac{\pi}{3}=-\frac{1}{2}$
and that $\left\langle\alpha_{a}, \alpha_{c}=-\cos \frac{\pi}{2}=0\right.$.
Since S_{4} is finite, our inner product is the standard inner product. Thus if θ is the angle between two vectors u and v, then $\cos \theta=\frac{\langle u, v\rangle}{|u| v \mid}$

So, $\left\langle\alpha_{a}, \alpha_{b}\right\rangle=0+0-\frac{1}{2}=-\frac{1}{2}=\cos \left(\theta_{1}\right)$ and
$\left\langle\alpha_{b}, \alpha_{c}\right\rangle=0+0-\frac{1}{2}=-\frac{1}{2}=\cos \left(\theta_{2}\right)$ and
$\left\langle\alpha_{a}, \alpha_{c}\right\rangle=0-\frac{1}{2}+\frac{1}{2}=-0=\cos \left(\theta_{3}\right)$.
Thus $\theta_{1}=\theta_{2}=\frac{\pi}{3}$ and $\theta_{3}=\frac{\pi}{2}$ as desired.
So $\alpha_{a}, \alpha_{b}, \alpha_{c}$ are the simple roots for the root system of S_{4}.
Finally, we show that these three roots generate the other edges.
$\alpha_{a}+\alpha_{b}=(+,-, 0)$,
$\alpha_{b}+\alpha_{c}=(+,+, 0)$, and
$\alpha_{a}+\alpha_{b}+\alpha_{c}=(+, 0,-)$.
These are exactly the six positive roots (see figure below) and the other six edges are obtained by multiplying each by -1 .

reflecting hyperplane for s_1
reflecting hyperplane for s_2
reflecting hyperplane for s_3

0 = origin
1 = alpha_1
2 = s_3(alpha_1)
3 = s_2s_3(alpha_1)
4 = s_1s_2s_3(alpha_1)
5 = s_3s_1s_2s_3(alpha_1)
$6=$ s_2s_3s_1s_2s_3(alpha_1)
7 =s_1s_2s_3s_1s_2s_3(alpha_1)

