
for some indices jk ≥ ik still satisfying jk+1 > jk (and with the same conven-
tion about empty sequences).

First, if a symbol xl in one of the substrings (sik · · · sk) of xl is included
in yl, with l > k, we claim that xl+1 is included as well. Suppose not;
let k, and subject to this l, be minimal such that this doesn’t hold. Then
(+) is violated at sl. For (1+), there is either another sl in the following
substring (sik−1

· · · sk−1), if k > a, or else there is an sa in this substring if
k = a. For (2+): if k > a, then there is no subsequent sl+1 before the next
occurrence of sl; if k = a, then there is no subsequent sl+1 at all.

This shows that the reduced subword for y has the form yl claimed, except
possibly that we might not have jk+1 > jk. But, if we didn’t, then the
substring (sjk+1

· · · sk+1) would contain sk, and this would violate (−): the
next substring (sjk

· · · sk) would start with sk again, and there wouldn’t have
been an intervening sk+1. Accordingly jk+1 > jk for each k as well.

In view of this, we rewrite xl to another reduced word for x by successive
commutations of adjacent elements. Consider the prefix z = (sik · · · sjk−1)
of any substring (sik · · · sk) of xl that doesn’t appear in yl. Since the jk

are strictly increasing, j′k − (jk − 1) ≥ 2 for any k′ ≥ k; accordingly, this
prefix z commutes with all the substrings (sjk′ · · · sk′) appearing earlier in yl.
Therefore we can rewrite xl by commutations as a reduced word in which all
the symbols that don’t occur in yl occur strictly to the right of all those that
do, as

xl = (sin−1 · · · sjn−1−1) · · · (sia · · · sja−1) (sjn−1 · · · sn−1) · · · (sja · · · sa).

But yl is a suffix of this word. So x ≤L y in the left weak order, as desired.

4 We’ll look at the left weak order. This choice is of no substance; x ≤ y
in the left weak order iff x−1 ≤ y−1 in the right weak order.

In the left weak order on the symmetric group Sn, given any w ∈ Sn and
any si, there exists a covering relation in one direction or the other between
w and siw, according to whether l(siw) is greater or less than l(w). In either
case, the graph arising from the covering relations has an edge (w, siw).
These are all the covering relations, so these are all the edges.

Left-multiplication by a Coxeter generator si = (i i + 1) has the effect
of switching which elements are mapped to i and i + 1, i.e. exchanging two
consecutive integers i and i + 1 wherever they appear in the permutation
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when written out as a list of images. This then is the condition for two
permutations π, π′ ∈ Sn to be joined by an edge in the weak order.

We claim the same condition identifies the edges of the permutahedron
Πn. We’ll identify a permutation π with the point (π(1), . . . , π(n)) whose
coordinates it gives.

The edges of Πn are by definition exactly the one-dimensional faces, i.e.
the one-dimensional subpolytopes which can be realised as the intersection
of Πn with a hyperplane. So let be given two permutations π, π′ ∈ Sn, and
let H be a hyperplane that intersects Πn only in the edge (π, π′), i.e. such
that one of the two open halfspaces delimited by H contains all permutations
other than π and π′.

Choosing a normal vector a to H of suitable sign, we may assume 〈π, a〉 =
〈π′, a〉 =: b and 〈σ, a〉 < b for any other permutation σ ∈ Sn. Thus for any
i < j in [n] we must have aπ−1(i) ≤ aπ−1(j), otherwise the permutation (i j)π,
which switches the preimages of i and j, would achieve 〈(i j)π, a〉 > 〈π, a〉.
For the same reason we have strict inequality aπ−1(i) < aπ−1(j) unless π′ =
(i j)π. The same is true using π′ in place of π. Therefore at least two entries
of a must be equal, since there’s at least one pair i < j such that π−1(i)
and π−1(j) compare in the opposite sense to π′−1(i) and π′−1(j). Thus we
do have an equality of form π′ = (i j)π. Furthermore, i and j must be
consecutive integers, otherwise we’d have aπ−1(i) < aπ−1(i+1) < aπ−1(j) =
aπ−1(i).

This shows that any edge (π, π′) of Πn has π′ = (i i+1)π for some i. This
is in fact also a sufficient condition. We claim that if we choose a to be any
vector with its entries suitably ordered, i.e. such that aπ−1(i) = aπ−1(i+1) and
aπ−1(j) < aπ−1(j+1) for j '= i, and take b to be 〈π, a〉 = 〈π′, a〉, we will realise
the edge (π, π′) as the face defined by the hyperplane 〈σ, a〉 = b.

For any σ0 ∈ Sn distinct from π, π′, there will be some pair i′ < j′

in [n] not equal to (i, i + 1) such that σ0(π−1(i)) > σ0(π−1(i + 1)); and
then σ1 := (i′ j′)σ0 satisfies 〈σ1, a〉 > 〈σ0, a〉. Iterating in this way, define a
sequence of permutations (σk): if ever some σk is π or π′, let the sequence
terminate; otherwise construct σk+1 so that 〈σk+1, a〉 > 〈σk, a〉. If ever the
sequence does terminate, by transitivity among all these inequalities we get
〈σ0, a〉 < b. Otherwise, since Sn is finite we must have distinct indices k, k′

with σk = σk′ ; but then transitivity of inequalities gives the contradiction
〈σk′ , a〉 > 〈σk, a〉. We conclude that every permutation σ other than π and π′

lies in the open halfspace 〈σ, a〉 < b, as claimed.
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