3. We will divide the proof into several steps.

- Step 1: Let $x, y \in W$, and suppose $s \in S$ is such that $s \not \not_{R} x$ and $s \not 又_{R} y$. Then $s \not \not_{R} x \vee y$. Suppose on the contrary that $s \leq_{R} x \vee y$. Since $s \not \mathbb{Z}_{R} x$ then $l(s x)=l(x)+1$. We also have that $s x \leq_{R} w_{0}$, and thus $x=s(s x) \leq_{R} s w_{0}$. Similarly we get $y \leq_{R} s w_{0}$, so $x \vee y \leq_{R} s w_{0}$. Then $s \leq_{R} s w_{0}$, but this is a contradiction because $l\left(s s w_{0}\right)=l\left(w_{0}\right)>l\left(s w_{0}\right)$.
- Step 2: If $w \in W$ then the set $A_{w}=\left\{x \in W: x \wedge w=e\right.$ and $\left.x \vee w=w_{0}\right\}$ is closed under joins.

Take $x, y \in A_{w}$. It is clear that $(x \vee y) \vee w=w_{0}$. If $(x \vee y) \wedge w>_{R} e$ then there exists an $s \in S$ such that $(x \vee y) \wedge w \geq_{R} s$. Now, since $x \in A_{w}$ and $s \leq_{R} w$ then $s \not \leq_{R} x$ (otherwise $s \leq_{R} x \wedge w$). Similarly $s \not \mathbb{Z}_{R} y$, so by Step 1 we have that $s \not \mathbb{Z}_{R} x \vee y$, which is a contradiction.

- Step 3: If $w \in W$ then the set A_{w} is closed under meets.

Since multiplication on the left by w_{0} is an antiautomorphism of the weak order then it takes meets to joins and viceversa, so

$$
\begin{aligned}
A_{w} & =\left\{x \in W: x \wedge w=e \text { and } x \vee w=w_{0}\right\} \\
& =\left\{x \in W: w_{0}(x \wedge w)=w_{0} \text { and } w_{0}(x \vee w)=e\right\} \\
& =\left\{x \in W: w_{0} x \vee w_{0} w=w_{0} \text { and } w_{0} x \wedge w_{0} w=e\right\} \\
& =\left\{w_{0} y \in W: y \vee w_{0} w=w_{0} \text { and } y \wedge w_{0} w=e\right\} \\
& =w_{0} A_{w_{0} w},
\end{aligned}
$$

which is closed under meets by Step 2.

- Step 4: If $w \in W$ then the set A_{w} is an interval.

By steps 2 and 3 we have that A_{w} has a least element $u=\bigwedge A_{w}$ and a greatest element $v=\bigvee A_{w}$. Therefore $A_{w}=[u, v]$, because if $u \leq_{R} x \leq_{R} v$ then $x \wedge w \leq_{R} v \wedge w=e$ and $x \vee w \geq_{R} u \vee w=w_{0}$, so $x \in A_{w}$.

