- **3.** We will divide the proof into several steps.
 - Step 1: Let $x, y \in W$, and suppose $s \in S$ is such that $s \not\leq_R x$ and $s \not\leq_R y$. Then $s \not\leq_R x \lor y$. Suppose on the contrary that $s \leq_R x \lor y$. Since $s \not\leq_R x$ then l(sx) = l(x) + 1. We also have that $sx \leq_R w_0$, and thus $x = s(sx) \leq_R sw_0$. Similarly we get $y \leq_R sw_0$, so $x \lor y \leq_R sw_0$. Then $s \leq_R sw_0$, but this is a contradiction because $l(ssw_0) = l(w_0) > l(sw_0)$.
 - Step 2: If $w \in W$ then the set $A_w = \{x \in W : x \land w = e \text{ and } x \lor w = w_0\}$ is closed under joins. Take $x, y \in A_w$. It is clear that $(x \lor y) \lor w = w_0$. If $(x \lor y) \land w >_R e$ then there exists an $s \in S$ such that $(x \lor y) \land w \ge_R s$. Now, since $x \in A_w$ and $s \le_R w$ then $s \not\le_R x$ (otherwise $s \le_R x \land w$). Similarly $s \not\le_R y$, so by Step 1 we have that $s \not\le_R x \lor y$, which is a contradiction.
 - Step 3: If $w \in W$ then the set A_w is closed under meets.

Since multiplication on the left by w_0 is an antiautomorphism of the weak order then it takes meets to joins and viceversa, so

$$A_{w} = \{x \in W : x \land w = e \text{ and } x \lor w = w_{0}\}$$

= $\{x \in W : w_{0}(x \land w) = w_{0} \text{ and } w_{0}(x \lor w) = e\}$
= $\{x \in W : w_{0}x \lor w_{0}w = w_{0} \text{ and } w_{0}x \land w_{0}w = e\}$
= $\{w_{0}y \in W : y \lor w_{0}w = w_{0} \text{ and } y \land w_{0}w = e\}$
= $w_{0}A_{w_{0}w}$,

which is closed under meets by Step 2.

• Step 4: If $w \in W$ then the set A_w is an interval.

By steps 2 and 3 we have that A_w has a least element $u = \bigwedge A_w$ and a greatest element $v = \bigvee A_w$. Therefore $A_w = [u, v]$, because if $u \leq_R x \leq_R v$ then $x \wedge w \leq_R v \wedge w = e$ and $x \vee w \geq_R u \vee w = w_0$, so $x \in A_w$.