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2. Suppose J = {s1, . . . , ŝk, . . . , sn−1}. By problem 2 of HW#3, we know that the elements of the
parabolic quotient SJ

n are the permutations σ = (σ1, σ2, . . . , σn) such that σ1 < σ2 < · · · < σk and
σk+1 < σk+2 < · · · < σn. Assume that x, y ∈ SJ

n are such that x ! y in the Bruhat order of Sn. Then
y = tx, where t ∈ Sn is a transposition that switches two elements xi, xj of x out of order. We cannot
have that i and j are both less than or equal to k or that they are both greater than k, otherwise y would
not have the form described above. By the same reason we must have that xi and xj are consecutive
numbers, showing that t ∈ S and therefore x !L y. We have shown that if x, y ∈ SJ

n then x ! y implies
x !L y.

Now, if x, y ∈ SJ
n and x ≤ y in the Bruhat order then there exists a sequence x ! x1 ! x2 ! · · · !

xm ! y of elements in SJ
n , since parabolic quotients are graded by length (see BB, Theorem 2.5.5). Then

we have x !L x1 !L x2 !L · · · !L xm !L y, so x ≤L y. The other implication x ≤L y ⇒ x ≤ y is
obvious, so we are done.

3. We will divide the proof into several steps.

Step 1: Let x, y ∈ W , and suppose s ∈ S is such that s !R x and s !R y. Then s !R x ∨ y.

Suppose on the contrary that s ≤R x ∨ y. Since s !R x then l(sx) = l(x) + 1. We also have that
sx ≤R w0, and thus x = s(sx) ≤R sw0. Similarly we get y ≤R sw0, so x∨y ≤R sw0. Then s ≤R sw0,
but this is a contradiction because l(ssw0) = l(w0) > l(sw0).

Step 2: If w ∈ W then the set Aw = {x ∈ W : x ∧ w = e and x ∨ w = w0} is closed under joins.

Take x, y ∈ Aw. It is clear that (x ∨ y) ∨ w = w0. If (x ∨ y) ∧ w >R e then there exists an s ∈ S
such that (x ∨ y) ∧ w ≥R s. Now, since x ∈ Aw and s ≤R w then s !R x (otherwise s ≤R x ∧ w).
Similarly s !R y, so by Step 1 we have that s !R x ∨ y, which is a contradiction.

Step 3: If w ∈ W then the set Aw is closed under meets.

Since multiplication on the left by w0 is an antiautomorphism of the weak order then it takes meets
to joins and viceversa, so

Aw = {x ∈ W : x ∧ w = e and x ∨ w = w0}

= {x ∈ W : w0(x ∧ w) = w0 and w0(x ∨ w) = e}

= {x ∈ W : w0x ∨ w0w = w0 and w0x ∧ w0w = e}

= {w0y ∈ W : y ∨ w0w = w0 and y ∧ w0w = e}

= w0Aw0w,

which is closed under meets by Step 2.
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Step 4: If w ∈ W then the set Aw is an interval.

By steps 2 and 3 we have that Aw has a least element u =
∧

Aw and a greatest element v =
∨

Aw.
Therefore Aw = [u, v], because if u ≤R x ≤R v then x ∧w ≤R v ∧ w = e and x ∨w ≥R u ∨w = w0,
so x ∈ Aw.

4. For notation simplicity, we will regard any permutation π ∈ Sn also as the point (π1, π2, . . . , πn) ∈ Rn.

Suppose c = (c1, c2, . . . , cn) ∈ Rn. Assume σ ∈ Sn is such that cσ1
≤ cσ2

≤ · · · ≤ cσn
(there might

be various σ that satisfy this if some of the cis are equal). Note that if we let x ∈ Rn vary among all
permutations π ∈ Sn, the maximum value of the functional c · x is 1cσ1

+ 2cσ2
+ 3cσ3

+ · · · + ncσn
=

σ−1
1 c1 + σ−1

2 c2 + · · · + σ−1
n cn = c · σ−1.

Now let π ∈ Sn. If we take c = (π1, π2, . . . , πn) ∈ R then there is only one σ ∈ Sn such that
cσ1

≤ cσ2
≤ · · · ≤ cσn

, namely σ = π−1. By our previous observation we know then that the functional
c · x is maximum (over the points corresponding to permutations) at π, showing that (π1, π2, . . . , πn) is
a vertex of the permutahedron Πn. Moreover, by the way Πn was defined, it is clear that its vertices are
exactly the points of this form.

Suppose now that y, z ∈ Sn are such that y !L z, so z is obtained by switching two elements i, i + 1
of y out of order. If we take c = (y1+z1

2
, y2+z2

2
, . . . , yn+zn

2
), then the coordinates of c are exactly the same

coordinates of y (or z) except in the position of i and i + 1, which are both i + 1/2 in c. Then there
are exactly two σ ∈ Sn such that cσ1

≤ cσ2
≤ · · · ≤ cσn

, namely σ = y−1 and σ = z−1. Our previous
observation shows that the functional c · x is maximum (over the points corresponding to permutations)
at y and z, so they are both part of an edge in Πn. On the other hand, if c ∈ Rn is such that the
functional c · x determines an edge of Πn then c · x takes its maximum value (among the vertices of Πn)
at exactly two vertices y, z ∈ Sn. Again by our observation, we must have that the coordinates of c are
all distinct except for two that are equal to each other, say ci = cj . Since cy−1

1

≤ cy−1

2

≤ · · · ≤ cy−1
n

and

also cz−1

1

≤ cz−1

2

≤ · · · ≤ cz−1
n

then y−1 and z−1 must be exactly the same except for some position k

where y−1
k = i and y−1

k+1
= j but z−1

k = j and z−1
k+1

= i. Then yi = k and yj = k + 1 but zi = k + 1 and
zj = k. This means that y = (k, k + 1)z, so y !L z or z !L y as we wanted.

5. Consider the Coxeter diagram consisting of two vertices a, b and an edge between them labeled ∞,
and let W be its associated Coxeter group. Since every element in W has a unique reduced expression,
it is easy to see from the prefix property that the weak order on W is the following.

e

a b

ab ba

aba bab

abab baba

..

.
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