Exercise 2 Let $\left(S_{n}\right)^{J}$ be a parabolic quotient of S_{n} modulo a set of generators J with $|J|=n-2$. Prove that, if $x, y \in\left(S_{n}\right)^{J}$, then $x \leq y$ in the Bruhat order $\Longleftrightarrow x \leq_{L} y$ in the left weak order.

Proof. First, let $x \leq_{L} y$. Then x is the suffix of some reduced expression for y, i.e. $x=s_{1} s_{2} \ldots s_{r}$ and $y=s_{1}^{\prime} s_{2}^{\prime} \ldots s_{t}^{\prime} s_{1} s_{2} \ldots s_{r}$. Hence, x is a subword of y and thus $x \leq y$ in the Bruhat order.
Now, suppose $x \leq y$ in the Bruhat order. By assumption, $x, y \in\left(S_{n}\right)^{J}$. By Theorem 2.5.5 we know $\left(S_{n}\right)^{J}$ is graded; in other words there exist elements $w_{i} \in\left(S_{n}\right)^{J}, l\left(w_{i}\right)=l(x)+i$ for $0 \leq i \leq k$ such that $x=$ $w_{0} \leq w_{1} \leq \cdots \leq w_{k}=y$. To show $x \leq_{L} y$, we will do induction on $l(y)-l(x)$. If $l(y)-l(x)=0$ then $x=y$ and so $x \leq_{L} y$. Assume that if $l(y)-l(x)=k$ we know $x \leq_{L} y$ and now consider $l(y)-l(x)=k+1$. By Theorem 2.5.5 there exists a $u \in\left(S_{n}\right)^{J}$ such that, $x<u<y$ and $l(u)=l(x)+1$, so $l(y)-l(u)=k$, thus $u \leq_{L} y$ by out inductive hypothesis. By Lemma 2.1.4, u covers $x=x_{1} x_{2} x_{3} \ldots x_{i} \ldots x_{j} \ldots x_{n}$ in the Bruhat order iff $u=x_{1} x_{2} \ldots x_{j} \ldots x_{i} \ldots x_{n}$ such that $x_{i}<x_{j}$. In $\left(S_{n}\right)^{J}$ it is only possible to switch consecuvtive values, because of the "wall" property seen in Homework 3, Exercise 2. Thus $j=i+1$ which corresponds to a simple reflection being multiplied on the left of x to get u. Therefore, $x \leq_{L} u$ and so $x \leq_{L} y$.

