
Since SA is a group, it’s multiplicatively closed (which is routine to check:
given two maps sending elements of Ai to elements of Ai for all i, their
composition does the same), we’ll have that (Sn)J ⊆ SA so long as every
generator of (Sn)J is contained in SA. But this is the case by construction:
for si ∈ J , i.e. i ∈ I, the edge (i i + 1) is in G by construction so i and i + 1
fall in the same connected component of G; then si, which exchanges only
these two elements and fixes everything else, is in SA. So indeed (Sn)J ⊆ SA.

Conversely, an arbitrary w ∈ SA is the composition of an arbitrary per-
mutation on each connected component of G. So, by multiplicative closure,
to prove SA ⊆ (Sn)J it’s enough to show any permutation on one connected
component of G is in (Sn)J . Now, the vertices of any connected component
of G are a set of consecutive integers {i, i + 1, . . . , j} for some i ≤ j ∈ [n],
and its edges are (i, i + 1), (i + 1, i + 2), . . . , (j− 1, j); furthermore, the edges
(i − 1, i) and (j, j + 1) don’t exist in G. (To check this, since this putative
connected component is indeed connected, it’s enough to see there are no
edges joining a vertex inside to a vertex outside; but every edge (u, v) of G
has |u − v| = 1, and we’ve explicitly ruled out the only two possible edges
of this form). But then J contains the transpositions si, si+1, . . . , sj−1, and
these are a system of Coxeter generators for S{i,...,j}; so any permutation on
this component is indeed in (Sn)J , and we have (Sn)J ⊆ SA.

Finally, to realise an arbitrary Young subgroup SA of Sn as a parabolic
subgroup, we relabel such that the parts A1, . . . , Ak of A are the consecutive
ranges of integers Am = {j ∈ [n] : |

⋃m−1
i=1 Ai| < j ≤ |

⋃m
i=1 Ai|}. Then,

giving Sn the standard system s1, . . . , sn−1 of Coxeter generators, we take
J = {i : i ∼A i + 1}, where ∼A is the equivalence relation determined by A.
Running through the construction above we quickly see that the connected
components of G are exactly the Am, so that we’ve realised SA as a parabolic
subgroup as desired.

8 Knowing the Bruhat order for (W, S) gives us in particular its graph
of covering relations, and each of these covering relations corresponds to a
single deletion and thus is an edge in the Bruhat graph. So our task is to
reconstruct the edges (w, w′) of the Bruhat graph with l(w′) − l(w) > 1.
Any Bruhat edge joins two comparable elements, so it’s enough to look at
each interval [w, w′] in the Bruhat order and determine whether the edge
(w,w′) should exist. By induction we can assume we’ve already done so for
all proper subintervals of [w, w′].
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We claim that, for any Bruhat interval [w, w′] with l(w′)− l(w) = d, there
are exactly d Bruhat edges from elements of this interval to w′. This will
allow us to perform the reconstruction of the Bruhat graph: for each interval
[w, w′], after having finished with its subintervals, w′ will have either d − 1
or d edges to it from within the interval; the edge (w, w′) should be inserted
if and only if there are d− 1.

So, toward proving the claim, first take some reduced word s1 . . . sl(w′)

for w′, so that it has a subword omitting only d letters si1 , . . . , sid which is
a reduced word for w. Omitting any single one of these letters sik yields a
word v with w ≤ v ≤ w′ such that an edge (v, w′) exists in the Bruhat graph.
This provides d edges overall; it remains to show there are no more.

Suppose this didn’t hold; let [w, w′] be a counterexample with l(w′) min-
imal. There is a minimal word s1 . . . sl(w′) = w′, such that there are strictly
more than d indices i such that deleting si from this word leaves a word
v ≥ w in the Bruhat order. Let I be the set of these indices.

Consider now the element w′s, where s := sl(w′); this element satisfies
w′s < w. Given any i ∈ I \ {l(w′)}, write wî for the word obtained by
deleting i from w′. This is a reduced word, and it ends in s, so wîs < wî.

Now, we have two cases, according to whether l(w′) ∈ I, equivalently
whether ws < w or ws > w. If ws > w, then the subword of s1 . . . sl(w′)

giving w omits sl(w′), so that for any i ∈ I \ {l(w′)}, wîs is still a superword
of w. There are more than d−1 elements of I \{l(w′)}, and thus the interval
[w′s, w] of length d − 1 constitutes a smaller counterexample. If instead
ws < w, then for every i ∈ I, we have wîs < ws by lifting, and there are
more than d such indices i, so the interval [w′s, ws] of length d is a smaller
counterexample. In either case we have a contradiction.

9 We leave the Coxeter group perspective behind in short order, recasting
this as a problem simply about words. Suppose A◦ were an infinite antichain
in the Bruhat order of a Coxeter system (W, S), with S finite. Let A be the
set of all reduced words for elements in A◦. Then, we claim that A is an
antichain in the poset P of words over S with the subword order (i.e. w ≤ w′

iff w is obtained by deleting zero or more symbols from w′). Indeed, no two
distinct reduced words for the same element of A◦ are comparable in the
subword order, since they have the same length; and if two distinct elements
of A◦ had reduced words comparable in the subword order, they themselves
would be comparable in the Bruhat order. Also, A is infinite (since each
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