Knowing the Bruhat order for (W, S) gives us in particular its graph of covering relations, and each of these covering relations corresponds to a single deletion and thus is an edge in the Bruhat graph. So our task is to reconstruct the edges $\left(w, w^{\prime}\right)$ of the Bruhat graph with $l\left(w^{\prime}\right)-l(w)>1$. Any Bruhat edge joins two comparable elements, so it's enough to look at each interval $\left[w, w^{\prime}\right]$ in the Bruhat order and determine whether the edge (w, w^{\prime}) should exist. By induction we can assume we've already done so for all proper subintervals of $\left[w, w^{\prime}\right]$.

We claim that, for any Bruhat interval $\left[w, w^{\prime}\right]$ with $l\left(w^{\prime}\right)-l(w)=d$, there are exactly d Bruhat edges from elements of this interval to w^{\prime}. This will allow us to perform the reconstruction of the Bruhat graph: for each interval [$\left.w, w^{\prime}\right]$, after having finished with its subintervals, w^{\prime} will have either $d-1$ or d edges to it from within the interval; the edge (w, w^{\prime}) should be inserted if and only if there are $d-1$.

So, toward proving the claim, first take some reduced word $s_{1} \ldots s_{l\left(w^{\prime}\right)}$ for w^{\prime}, so that it has a subword omitting only d letters $s_{i_{1}}, \ldots, s_{i_{d}}$ which is a reduced word for w. Omitting any single one of these letters $s_{i_{k}}$ yields a word v with $w \leq v \leq w^{\prime}$ such that an edge $\left(v, w^{\prime}\right)$ exists in the Bruhat graph. This provides d edges overall; it remains to show there are no more.

Suppose this didn't hold; let $\left[w, w^{\prime}\right]$ be a counterexample with $l\left(w^{\prime}\right)$ minimal. There is a minimal word $s_{1} \ldots s_{l\left(w^{\prime}\right)}=w^{\prime}$, such that there are strictly more than d indices i such that deleting s_{i} from this word leaves a word $v \geq w$ in the Bruhat order. Let I be the set of these indices.

Consider now the element $w^{\prime} s$, where $s:=s_{l\left(w^{\prime}\right)}$; this element satisfies $w^{\prime} s<w$. Given any $i \in I \backslash\left\{l\left(w^{\prime}\right)\right\}$, write $w_{\hat{i}}$ for the word obtained by deleting i from w^{\prime}. This is a reduced word, and it ends in s, so $w_{\hat{i}} s<w_{\hat{i}}$.

Now, we have two cases, according to whether $l\left(w^{\prime}\right) \in I$, equivalently whether $w s<w$ or $w s>w$. If $w s>w$, then the subword of $s_{1} \ldots s_{l\left(w^{\prime}\right)}$ giving w omits $s_{l\left(w^{\prime}\right)}$, so that for any $i \in I \backslash\left\{l\left(w^{\prime}\right)\right\}, w_{\hat{i}} s$ is still a superword of w. There are more than $d-1$ elements of $I \backslash\left\{l\left(w^{\prime}\right)\right\}$, and thus the interval [$w^{\prime} s, w$] of length $d-1$ constitutes a smaller counterexample. If instead $w s<w$, then for every $i \in I$, we have $w_{\hat{i}} s<w s$ by lifting, and there are more than d such indices i, so the interval [$w^{\prime} s, w s$] of length d is a smaller counterexample. In either case we have a contradiction.

