Exercise 6 Given a Coxeter system (W, S) and $I, J \subseteq S$, prove that
(a) $W_{I} \cap W_{J}=W_{I \cap J}$
(b) $\left\langle W_{I} \cup W_{J}\right\rangle=W_{I \cup J}$
(c) $W_{I}=W_{J}$ if and only if $I=J$.

Proof. .
(a) Pick $x \in W_{I} \cap W_{J}$. Then $x \in W_{I}$ and $x \in W_{J}$, so $x=s_{1} \ldots s_{m}$ where $s_{1}, \ldots, s_{m} \in I$ and $x=r_{1} \ldots r_{n}$ where $r_{1}, \ldots, r_{n} \in J$. Then by Corollary 1.4.8(ii), $\left\{r_{1}, \ldots r_{n}\right\}=\left\{s_{1}, \ldots s_{m}\right\}$, therefore, $\left\{r_{1}, \ldots r_{n}\right\} \in$ $I \cap J$ and $x \in W_{I \cap J}$, hence $W_{I} \cap W_{J} \subseteq W_{I \cap J}$.
Next, pick some $x \in W_{I \cap J}$. Then $x=s_{1} \ldots s_{n}$ where $s_{i} \in I \cap J$. Hence, $x \in W_{I}$ and $x \in W_{J}$, therefore $x \in W_{I} \cap W_{J}$. So $W_{I \cap J} \subseteq$ $W_{I} \cap W_{J}$, thus $W_{I} \cap W_{J}=W_{I \cap J}$.
(b) Pick $x \in\left\langle W_{I} \cup W_{J}\right\rangle$. Then, x is in the group generated by the union of the parabolic subgroups W_{I} and W_{J}. So $x=s_{1} s_{2} \ldots s_{k}$ such that either $s_{i} \in I$ or $s_{i} \in J$ for all $i \in\{1, \ldots, k\}$, because x can be any combination of elements from W_{I} and W_{J}. Then for each s_{i} it follows that $s_{i} \in I \cup J$, therefore $x \in W_{I \cup J}$. Hence $\left\langle W_{I} \cup W_{J}\right\rangle \subseteq W_{I \cup J}$.
Now, choose some $x \in W_{I \cup J}$. Then $x=s_{1} s_{2} \ldots s_{k}$ such that $s_{i} \in$ $I \cup J$ for all $i \in\{1, \ldots, k\}$. Therefore either $s_{i} \in I$ or $s_{i} \in J$. By above, all elements of $\left\langle W_{I} \cup W_{J}\right\rangle$ are made up of generators such that either $s_{i} \in I$ or $s_{i} \in J$, thus $x \in\left\langle W_{I} \cup W_{J}\right\rangle$ and $W_{I \cup J} \subseteq\left\langle W_{I} \cup W_{J}\right\rangle$.
(c) Suppose $W_{I}=W_{J}$ but $I \neq J$. Then there must exist some $s_{i} \in I$ such that $s_{i} \notin J$. Then by definition $w=s_{i} \in W_{I}$ and by our assumption $w \in W_{J}$. Therefore $w=s_{1}^{\prime} \ldots s_{r}^{\prime}$ for some $s_{j} \in I$. However, this implies $s_{i}=s_{1}^{\prime} \ldots s_{r}^{\prime}$ which is a contradiction because by Corollary 1.4.8(iii) no Coxeter generator can be expressed in terms of others. Therefore if $W_{I}=W_{J}$ then $I=J$. The opposite direction follows from the definition of W_{I} given a set I; if $I=J$ then $W_{I}=W_{J}$.
Collaborated with Mike Jackanich

