
one checks easily that

sj..isk =






sksj..i k < i− 1
sj..i−1 k = i− 1
sj..i+1 k = i ≤ j
sk−1sj..i i < k ≤ j

(1)

We shall say that a word over S is in normal form iff it has the form

s1..m1s2..m2 · · · s(n−1)..mn−1

for some mi with 1 ≤ mi ≤ i + 1 for each i. We claim that if w is in normal
form and sk ∈ S, then wsk can be rewritten in normal form. Indeed, using
the equalities of (1) and induction on n, this is relatively direct. The word
wsk ends in s(n−1)..mn−1sk, and since k ≤ n−1 at least one of the cases in (1)
applies. If it’s the second or third, then we’re done. If it’s the first or fourth,
then we’ve rewritten

wsk = s1..m1 · · · s(n−2)..mn−2sk′ s(n−1)..m′
n−1

for some k′ which does not exceed n − 2 (because of the bound on k in
the first case and the decrementing in the fourth), and by induction on n
everything except for the last term can be written in normal form (without
the s(n−1)..mn−1 term). So our claim is proven. Since the empty word is in
normal form, repeated application of our claim shows that every word over S,
i.e. every element of W , can be rewritten in normal form.

Observe now that, in the definition of normal form, there are only i + 1
choices for mi, and thus

∏n−1
i=1 (i + 1) = n! possible normal forms altogether.

Therefore W has at most n! elements. But then our f is necessarily bijective
by a cardinality argument, and we have proven f : W

∼→ Sn, as desired.

9 For compactness, given a word w = s1 · · · sn ∈ S, we shall abbreviate it
by w = s1..n, and likewise any subword sk · · · sl by sk..l.

Let (W, S) be the Coxeter system for the group. For any reflection t and
word w = s1..n, define

sgn(w, t) = (−1)#{k : 1≤k≤n,t=s1..ks−1
1..k−1}

as in our discussion of the signed permutation representation. By the well-
definedness of that representation, sgn(w, t) is well-defined if w is considered
simply to be an element of W , rather than a particular word over S.
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So, let t be a reflection. We then claim that sgn(t, t) = −1. To see this,
consider a word of form wsw−1 for t. This word has the two consecutive
prefixes w and ws with t = wsw−1; this contributes −1 to the sign. Suppose
there were another such expression, i.e. a decomposition of the word wsw−1

as xs′y for words x, y and s′ ∈ S, with t = xs′x−1. Then y = (xs′)−1t = x−1,
and so t = y−1s′y as well, which is an expression of t as the ratio of the two
consecutive suffixes s′y and y. But, since t is palindromic, these consecutive
suffixes can be seen as consecutive prefixes y−1 and (s′y)−1, and this pair
is different to our first pair x and xs′ since s′ was not the middle character
of wsw−1 by assumption. So these two expressions contribute 1 to sgn(t, t),
i.e. cancel each other, and there will only be the one non-cancelling expression
t = wsw−1 we remarked on earlier. So sgn(t, t) = −1 as claimed.

Now, let s1..n be any reduced word for t. Since sgn(t, t) = 1 there must
be at least one index k such that s1..ks

−1
1..k−1 = t = s1..ksk+1..n, implying

s−1
1..k−1 = sk+1..n. Then, in our word s1..n, we can thus either replace the

prefix s1..k−1 by s−1
k+1..n or, oppositely, sk+1..n by s−1

1..k−1, in both cases obtaining
another word for t. Both the results of these replacements are palindromes,
and at least one is at least as short as s1..n and is therefore reduces. We
conclude t has a palindromic reduced expression.

10 Let G = 〈s1sn, . . . , sn−1sn〉 be the subgroup of W in question (it’s im-
portant that we allow the use of the inverses of our generators: witness the
cases where ord(sisn) = ∞). We have then that sisj = (sisw)(sjsw)−1 ∈ G
for any 1 ≤ i, j ≤ n. But now given any w ∈ W in the alternating group,
w is a word of even length in the si, which can be broken into a product of
pairs of symbols sisj ∈ G, so that w ∈ G. So G contains the alternating
group of W .

Conversely, all the elements sisn are manifestly of even length, so that
any product of such elements and their inverses will be as well. So G is
contained by the alternating group of W , and is precisely this group.
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