$9 \quad$ For compactness, given a word $w=s_{1} \cdots s_{n} \in S$, we shall abbreviate it by $w=s_{1 . . n}$, and likewise any subword $s_{k} \cdots s_{l}$ by $s_{k . l}$.

Let (W, S) be the Coxeter system for the group. For any reflection t and word $w=s_{1 . . n}$, define

$$
\operatorname{sgn}(w, t)=(-1)^{\#\left\{k: 1 \leq k \leq n, t=s_{1 . . k}^{s_{1 . . k-1}}\right\}}
$$

as in our discussion of the signed permutation representation. By the welldefinedness of that representation, $\operatorname{sgn}(w, t)$ is well-defined if w is considered simply to be an element of W, rather than a particular word over S.

So, let t be a reflection. We then claim that $\operatorname{sgn}(t, t)=-1$. To see this, consider a word of form $w s w^{-1}$ for t. This word has the two consecutive prefixes w and $w s$ with $t=w s w^{-1}$; this contributes -1 to the sign. Suppose there were another such expression, i.e. a decomposition of the word $w s w^{-1}$ as $x s^{\prime} y$ for words x, y and $s^{\prime} \in S$, with $t=x s^{\prime} x^{-1}$. Then $y=\left(x s^{\prime}\right)^{-1} t=x^{-1}$, and so $t=y^{-1} s^{\prime} y$ as well, which is an expression of t as the ratio of the two consecutive suffixes $s^{\prime} y$ and y. But, since t is palindromic, these consecutive suffixes can be seen as consecutive prefixes y^{-1} and $\left(s^{\prime} y\right)^{-1}$, and this pair is different to our first pair x and $x s^{\prime}$ since s^{\prime} was not the middle character of $w s w^{-1}$ by assumption. So these two expressions contribute 1 to $\operatorname{sgn}(t, t)$, i.e. cancel each other, and there will only be the one non-cancelling expression $t=w s w^{-1}$ we remarked on earlier. So $\operatorname{sgn}(t, t)=-1$ as claimed.

Now, let $s_{1 . . n}$ be any reduced word for t. Since $\operatorname{sgn}(t, t)=1$ there must be at least one index k such that $s_{1 . . k} s_{1 . . k-1}^{-1}=t=s_{1 . . k} s_{k+1 . . n}$, implying $s_{1 . . k-1}^{-1}=s_{k+1 . . n}$. Then, in our word $s_{1 . . n}$, we can thus either replace the prefix $s_{1 . . k-1}$ by $s_{k+1 . . n}^{-1}$ or, oppositely, $s_{k+1 . . n}$ by $s_{1 . . k-1}^{-1}$, in both cases obtaining another word for t. Both the results of these replacements are palindromes, and at least one is at least as short as $s_{1 . . n}$ and is therefore reduces. We conclude t has a palindromic reduced expression.

