3. (a) The equivalence relation \approx we really want to work with is the transitive closure of the relation \sim described in this problem statement (which is not transitive).

To show that S^*/\approx inherits a product from S^* it is enough to show that if $x, x', y, y' \in S^*$ are such that $x \sim x'$ and $y \sim y'$ then $xy \approx x'y'$ (this easily implies that the product is well defined on the equivalence classes of \approx). But if $x \sim x'$ then x = uv and $x' = u(s_1s_2)^{m(s_1,s_2)}v$ (or vice versa) for some $u, v \in S^*$ and $s_1, s_2 \in S$, and also if $y \sim y'$ then y = pq and $y' = p(s_3s_4)^{m(s_3,s_4)}q$ (or vice versa) for some $p, q \in S^*$ and $s_3, s_4 \in S$. Therefore $xy \approx x'y'$, since all the possible cases are

a)
$$xy = uvpq \approx u(s_1s_2)^{m(s_1,s_2)}vp(s_3s_4)^{m(s_3,s_4)}q = x'y',$$

b) $xy = uvp(s_3s_4)^{m(s_3,s_4)}q \approx u(s_1s_2)^{m(s_1,s_2)}vpq = x'y',$
c) $xy = u(s_1s_2)^{m(s_1,s_2)}vpq \approx uvp(s_3s_4)^{m(s_3,s_4)}q = x'y'$ or
d) $xy = u(s_1s_2)^{m(s_1,s_2)}vp(s_3s_4)^{m(s_3,s_4)}q \approx uvpq = x'y'.$

equivalence class of the word $s_1s_2...s_{k-1}s_k$ is the equivalence class of the word $s_ks_{k-1}...s_2s_1$, since $s_1s_2...s_{k-1}s_ks_ks_{k-1}...s_2s_1 \approx \emptyset$). Therefore S^*/\approx is a group.

Now, consider the function $f': S \to S^* \approx defined$ as $f'(s) = \overline{s}$ (where \overline{s} is the equivalence class of s). By the universal property of free groups this function can be extended to a group homomorphism $f: F \to S^* \approx$, which is clearly surjective. We will show that $\ker(f) = N$, so $W \cong F/N \cong S^* \approx$ as we want.

- $\ker(f) \supseteq N$: Note that for every $s, s' \in S$ we have that $f((ss')^{m(s,s')}) = \overline{(ss')^{m(s,s')}} = \overline{\emptyset}$, so $\{(ss')^{m(s,s')} : s, s' \in S\} \subseteq \ker(f)$. Then, since $\ker(f)$ is a normal subgroup of F, we get that $N \subseteq \ker(f)$.
- $\ker(f) \subseteq N$: Assume $x = s_1^{\pm 1} s_2^{\pm 1} \dots s_k^{\pm 1} \in F$ is in $\ker(f)$. This means that

$$\begin{split} \emptyset &= f(x) \\ &= f(s_1^{\pm 1} s_2^{\pm 1} \dots s_k^{\pm 1}) \\ &= \overline{s_1}^{\pm 1} \overline{s_2}^{\pm 1} \dots \overline{s_k}^{\pm 1} \\ &= \overline{s_1} \overline{s_2} \dots \overline{s_k} \\ &= \overline{s_1 s_2 \dots s_k}, \end{split}$$

so $s_1 s_2 \dots s_k \approx \emptyset$. The result follows from the following facts:

• If $x, y \in S^*$ are such that $x \sim y$ and $x \in N$ (regarded as an element of F), then $y \in N$: If $x \sim y$ then x = uv and $y = u(ss')^{m(s,s')}v$ (or vice versa) for some $u, v \in S^*$ and $s, s' \in S$. Then

$$y = u(ss')^{m(s,s')}v$$

= $u(vv^{-1})(ss')^{m(s,s')}v$
= $(uv)(v^{-1}(ss')^{m(s,s')}v)$
= $x(v^{-1}(ss')^{m(s,s')}v) \in N$

 or

$$y = uv$$

= $u((ss')^{m(s,s')}vv^{-1}(ss')^{-m(s,s')})v$
= $(u(ss')^{m(s,s')}v)(v^{-1}(ss')^{-m(s,s')}v)$
= $x(v^{-1}(ss')^{-m(s,s')}v) \in N.$

• If $x = s_1 s_2 \dots s_k \in N$ then $y = s_1^{\pm 1} s_2^{\pm 1} \dots s_k^{\pm 1} \in N$: Note that

$$y = (s_1 s_2 \dots s_{k-1} s_k s_k^{-1} s_{k-1}^{-1} \dots s_2^{-1} s_1^{-1}) y = x(s_k^{-1} s_{k-1}^{-1} \dots s_2^{-1} s_1^{-1} y).$$

We will show by induction on k that for any $y = s_1^{\pm 1} s_2^{\pm 1} \dots s_k^{\pm 1} \in F$ we have that $z = s_k^{-1} s_{k-1}^{-1} \dots s_2^{-1} s_1^{-1} y \in N$, which clearly implies what we want. If k = 1 the result is clear. Now, assume the result holds for k - 1. Since

we can cancel terms in the middle until we get

$$z = s_k^{-1} s_{k-1}^{-1} \dots s_{l+1}^{-1} s_l^{-2} s_{l+1}^{\pm 1} \dots s_{k-1}^{\pm 1} s_k^{\pm 1}$$

for some $l \geq 1$. But then

$$z = s_k^{-1} s_{k-1}^{-1} \dots s_{l+1}^{-1} s_l^{-2} (s_{l+1} \dots s_{k-1} s_k s_k^{-1} s_{k-1}^{-1} \dots s_{l+1}^{-1}) s_{l+1}^{\pm 1} \dots s_{k-1}^{\pm 1} s_k^{\pm 1}$$

= $(s_k^{-1} s_{k-1}^{-1} \dots s_{l+1}^{-1} s_l^{-2} s_{l+1} \dots s_{k-1} s_k) (s_k^{-1} s_{k-1}^{-1} \dots s_{l+1}^{-1} s_{l+1}^{\pm 1} \dots s_{k-1}^{\pm 1} s_k^{\pm 1}),$

which by induction hypothesis is a product of two elements of N, and we are done.

3. (b) Assume G is a group and $f: S \to G$ is a function such that $(f(s)f(s'))^{m(s,s')} = e$ for all $s, s' \in S$. By the universal property of free groups, f extends uniquely to a group homomorphism $f': F \to G$. Now, our assumption about f clearly implies that $\ker(f') \supseteq N$, so f' factors through a (unique) group homomorphism $f'': F/N \cong W \to G$, and the proof is complete.