3. (a) The equivalence relation \approx we really want to work with is the transitive closure of the relation \sim described in this problem statement (which is not transitive).

To show that S^{*} / \approx inherits a product from S^{*} it is enough to show that if $x, x^{\prime}, y, y^{\prime} \in S^{*}$ are such that $x \sim x^{\prime}$ and $y \sim y^{\prime}$ then $x y \approx x^{\prime} y^{\prime}$ (this easily implies that the product is well defined on the equivalence classes of \approx). But if $x \sim x^{\prime}$ then $x=u v$ and $x^{\prime}=u\left(s_{1} s_{2}\right)^{m\left(s_{1}, s_{2}\right)} v$ (or vice versa) for some $u, v \in S^{*}$ and $s_{1}, s_{2} \in S$, and also if $y \sim y^{\prime}$ then $y=p q$ and $y^{\prime}=p\left(s_{3} s_{4}\right)^{m\left(s_{3}, s_{4}\right)} q$ (or vice versa) for some $p, q \in S^{*}$ and $s_{3}, s_{4} \in S$. Therefore $x y \approx x^{\prime} y^{\prime}$, since all the possible cases are
a) $x y=u v p q \approx u\left(s_{1} s_{2}\right)^{m\left(s_{1}, s_{2}\right)} v p\left(s_{3} s_{4}\right)^{m\left(s_{3}, s_{4}\right)} q=x^{\prime} y^{\prime}$,
b) $x y=u v p\left(s_{3} s_{4}\right)^{m\left(s_{3}, s_{4}\right)} q \approx u\left(s_{1} s_{2}\right)^{m\left(s_{1}, s_{2}\right)} v p q=x^{\prime} y^{\prime}$,
c) $x y=u\left(s_{1} s_{2}\right)^{m\left(s_{1}, s_{2}\right)} v p q \approx u v p\left(s_{3} s_{4}\right)^{m\left(s_{3}, s_{4}\right)} q=x^{\prime} y^{\prime}$ or
d) $x y=u\left(s_{1} s_{2}\right)^{m\left(s_{1}, s_{2}\right)} v p\left(s_{3} s_{4}\right)^{m\left(s_{3}, s_{4}\right)} q \approx u v p q=x^{\prime} y^{\prime}$.
equivalence class of the word $s_{1} s_{2} \ldots s_{k-1} s_{k}$ is the equivalence class of the word $s_{k} s_{k-1} \ldots s_{2} s_{1}$, since
$s_{1} s_{2} \ldots s_{k-1} s_{k} s_{k} s_{k-1} \ldots s_{2} s_{1} \approx \emptyset$). Therefore S^{*} / \approx is a group.
Now, consider the function $f^{\prime}: S \rightarrow S^{*} / \approx$ defined as $f^{\prime}(s)=\bar{s}$ (where \bar{s} is the equivalence class of $s)$. By the universal property of free groups this function can be extended to a group homomorphism $f: F \rightarrow S^{*} / \approx$, which is clearly surjective. We will show that $\operatorname{ker}(f)=N$, so $W \cong F / N \cong S^{*} / \approx$ as we want.

- $\operatorname{ker}(f) \supseteq N$: Note that for every $s, s^{\prime} \in S$ we have that $f\left(\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}\right)=\overline{\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}}=\bar{\emptyset}$, so $\left\{\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}: s, s^{\prime} \in S\right\} \subseteq \operatorname{ker}(f)$. Then, since $\operatorname{ker}(f)$ is a normal subgroup of F, we get that $N \subseteq \operatorname{ker}(f)$.
- $\operatorname{ker}(f) \subseteq N$: Assume $x=s_{1}^{ \pm 1} s_{2}^{ \pm 1} \ldots s_{k}^{ \pm 1} \in F$ is in $\operatorname{ker}(f)$. This means that

$$
\begin{aligned}
\bar{\emptyset} & =f(x) \\
& =f\left(s_{1}^{ \pm 1} s_{2}^{ \pm 1} \ldots s_{k}^{ \pm 1}\right) \\
& ={\overline{s_{1}}}^{ \pm 1}{\overline{s_{2}}}^{ \pm 1} \ldots{\overline{s_{k}}}^{ \pm 1} \\
& =\overline{s_{1}} \overline{s_{2}} \ldots \overline{s_{k}} \\
& =\overline{s_{1} s_{2} \ldots s_{k}},
\end{aligned}
$$

so $s_{1} s_{2} \ldots s_{k} \approx \emptyset$. The result follows from the following facts:

- If $x, y \in S^{*}$ are such that $x \sim y$ and $x \in N$ (regarded as an element of $\left.F\right)$, then $y \in N$:

If $x \sim y$ then $x=u v$ and $y=u\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)} v$ (or vice versa) for some $u, v \in S^{*}$ and $s, s^{\prime} \in S$. Then

$$
\begin{aligned}
y & =u\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)} v \\
& =u\left(v v^{-1}\right)\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)} v \\
& =(u v)\left(v^{-1}\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)} v\right) \\
& =x\left(v^{-1}\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)} v\right) \in N
\end{aligned}
$$

or

$$
\begin{aligned}
y & =u v \\
& =u\left(\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)} v v^{-1}\left(s s^{\prime}\right)^{-m\left(s, s^{\prime}\right)}\right) v \\
& =\left(u\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)} v\right)\left(v^{-1}\left(s s^{\prime}\right)^{-m\left(s, s^{\prime}\right)} v\right) \\
& =x\left(v^{-1}\left(s s^{\prime}\right)^{-m\left(s, s^{\prime}\right)} v\right) \in N
\end{aligned}
$$

- If $x=s_{1} s_{2} \ldots s_{k} \in N$ then $y=s_{1}^{ \pm 1} s_{2}^{ \pm 1} \ldots s_{k}^{ \pm 1} \in N$:

Note that

$$
y=\left(s_{1} s_{2} \ldots s_{k-1} s_{k} s_{k}^{-1} s_{k-1}^{-1} \ldots s_{2}^{-1} s_{1}^{-1}\right) y=x\left(s_{k}^{-1} s_{k-1}^{-1} \ldots s_{2}^{-1} s_{1}^{-1} y\right)
$$

We will show by induction on k that for any $y=s_{1}^{ \pm 1} s_{2}^{ \pm 1} \ldots s_{k}^{ \pm 1} \in F$ we have that $z=$ $s_{k}^{-1} s_{k-1}^{-1} \ldots s_{2}^{-1} s_{1}^{-1} y \in N$, which clearly implies what we want. If $k=1$ the result is clear. Now, assume the result holds for $k-1$. Since
we can cancel terms in the middle until we get

$$
z=s_{k}^{-1} s_{k-1}^{-1} \ldots s_{l+1}^{-1} s_{l}^{-2} s_{l+1}^{ \pm 1} \ldots s_{k-1}^{ \pm 1} s_{k}^{ \pm 1}
$$

for some $l \geq 1$. But then

$$
\begin{aligned}
z & =s_{k}^{-1} s_{k-1}^{-1} \ldots s_{l+1}^{-1} s_{l}^{-2}\left(s_{l+1} \ldots s_{k-1} s_{k} s_{k}^{-1} s_{k-1}^{-1} \ldots s_{l+1}^{-1}\right) s_{l+1}^{ \pm 1} \ldots s_{k-1}^{ \pm 1} s_{k}^{ \pm 1} \\
& =\left(s_{k}^{-1} s_{k-1}^{-1} \ldots s_{l+1}^{-1} s_{l}^{-2} s_{l+1} \ldots s_{k-1} s_{k}\right)\left(s_{k}^{-1} s_{k-1}^{-1} \ldots s_{l+1}^{-1} s_{l+1}^{ \pm 1} \ldots s_{k-1}^{ \pm 1} s_{k}^{ \pm 1}\right)
\end{aligned}
$$

which by induction hypothesis is a product of two elements of N, and we are done.
3. (b) Assume G is a group and $f: S \rightarrow G$ is a function such that $\left(f(s) f\left(s^{\prime}\right)\right)^{m\left(s, s^{\prime}\right)}=e$ for all $s, s^{\prime} \in S$. By the universal property of free groups, f extends uniquely to a group homomorphism $f^{\prime}: F \rightarrow G$. Now, our assumption about f clearly implies that $\operatorname{ker}\left(f^{\prime}\right) \supseteq N$, so f^{\prime} factors through a (unique) group homomorphism $f^{\prime \prime}: F / N \cong W \rightarrow G$, and the proof is complete.

