
Coxeter Groups - Homework 1

Felipe Rincón

1. We know that ac = ca and also aba = bab. Therefore

1 = bcb(ca)cababcacbcabacbabacbc

= bcba(cc)ababcacbcabacbabacbc

= bcb(aa)babcacbcabacbabacbc

= bc(bb)abcacbcabacbabacbc

= bcabcacbcabacb(aba)cbc

= bcabcacbcabac(bb)abcbc

= bcabcacbcaba(ca)bcbc

= bcabcacbcab(aa)cbcbc

= bcab(ca)cbcabcbcbc

= bcaba(cc)bcabcbcbc

= bc(aba)bcabcbcbc

= bcba(bb)cabcbcbc

= bcba(ca)bcbcbc

= bcb(aa)cbcbcbc

= bcbcbcbcbc

= (bc)5

Since bc is not the identity (otherwise b = c, which we know cannot happen) then the order of bc is equal
to 5. But this order is just m, so m = 5.

3. (a) The equivalence relation ≈ we really want to work with is the transitive closure of the relation ∼
described in this problem statement (which is not transitive).

To show that S∗/ ≈ inherits a product from S∗ it is enough to show that if x, x′, y, y′ ∈ S∗ are
such that x ∼ x′ and y ∼ y′ then xy ≈ x′y′ (this easily implies that the product is well defined on the
equivalence classes of ≈). But if x ∼ x′ then x = uv and x′ = u(s1s2)m(s1,s2)v (or vice versa) for some
u, v ∈ S∗ and s1, s2 ∈ S, and also if y ∼ y′ then y = pq and y′ = p(s3s4)m(s3,s4)q (or vice versa) for some
p, q ∈ S∗ and s3, s4 ∈ S. Therefore xy ≈ x′y′, since all the possible cases are

a) xy = uvpq ≈ u(s1s2)m(s1,s2)vp(s3s4)m(s3,s4)q = x′y′,

b) xy = uvp(s3s4)m(s3,s4)q ≈ u(s1s2)m(s1,s2)vpq = x′y′,

c) xy = u(s1s2)m(s1,s2)vpq ≈ uvp(s3s4)m(s3,s4)q = x′y′ or

d) xy = u(s1s2)m(s1,s2)vp(s3s4)m(s3,s4)q ≈ uvpq = x′y′.
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Since concatenation of words is associative we have that multiplication in S∗/≈ is associative. More-
over, S∗/ ≈ has an identity (the equivalence class of the empty word) and inverses (the inverse of the
equivalence class of the word s1s2 . . . sk−1sk is the equivalence class of the word sksk−1 . . . s2s1, since
s1s2 . . . sk−1sksksk−1 . . . s2s1 ≈ ∅). Therefore S∗/≈ is a group.

Now, consider the function f ′ : S → S∗/≈ defined as f ′(s) = s (where s is the equivalence class of
s). By the universal property of free groups this function can be extended to a group homomorphism
f : F → S∗/≈, which is clearly surjective. We will show that ker(f) = N , so W ∼= F/N ∼= S∗/≈ as we
want.

ker(f) ⊇ N : Note that for every s, s′ ∈ S we have that f((ss′)m(s,s′)) = (ss′)m(s,s′) = ∅, so
{(ss′)m(s,s′) : s, s′ ∈ S} ⊆ ker(f). Then, since ker(f) is a normal subgroup of F , we get that
N ⊆ ker(f).

ker(f) ⊆ N : Assume x = s±1
1 s±1

2 . . . s±1
k ∈ F is in ker(f). This means that

∅ = f(x)

= f(s±1
1 s±1

2 . . . s±1
k )

= s1
±1 s2

±1 . . . sk
±1

= s1 s2 . . . sk

= s1s2 . . . sk,

so s1s2 . . . sk ≈ ∅. The result follows from the following facts:

• If x, y ∈ S∗ are such that x ∼ y and x ∈ N (regarded as an element of F ), then y ∈ N :

If x ∼ y then x = uv and y = u(ss′)m(s,s′)v (or vice versa) for some u, v ∈ S∗ and s, s′ ∈ S.
Then

y = u(ss′)m(s,s′)v

= u(vv−1)(ss′)m(s,s′)v

= (uv)(v−1(ss′)m(s,s′)v)

= x(v−1(ss′)m(s,s′)v) ∈ N

or

y = uv

= u((ss′)m(s,s′)vv−1(ss′)−m(s,s′))v

= (u(ss′)m(s,s′)v)(v−1(ss′)−m(s,s′)v)

= x(v−1(ss′)−m(s,s′)v) ∈ N.

• If x = s1s2 . . . sk ∈ N then y = s±1
1 s±1

2 . . . s±1
k ∈ N :

Note that

y = (s1s2 . . . sk−1sk s−1
k s−1

k−1 . . . s−1
2 s−1

1 ) y = x(s−1
k s−1

k−1 . . . s−1
2 s−1

1 y).

We will show by induction on k that for any y = s±1
1 s±1

2 . . . s±1
k ∈ F we have that z =

s−1
k s−1

k−1 . . . s−1
2 s−1

1 y ∈ N , which clearly implies what we want. If k = 1 the result is clear.
Now, assume the result holds for k − 1. Since

z = s−1
k s−1

k−1 . . . s−1
2 s−1

1 y = s−1
k s−1

k−1 . . . s−1
2 s−1

1 s±1
1 s±1

2 . . . s±1
k−1s

±1
k ,
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we can cancel terms in the middle until we get

z = s−1
k s−1

k−1 . . . s−1
l+1 s−2

l s±1
l+1 . . . s±1

k−1s
±1
k

for some l ≥ 1. But then

z = s−1
k s−1

k−1 . . . s−1
l+1 s−2

l (sl+1 . . . sk−1sk s−1
k s−1

k−1 . . . s−1
l+1) s±1

l+1 . . . s±1
k−1s

±1
k

= (s−1
k s−1

k−1 . . . s−1
l+1 s−2

l sl+1 . . . sk−1sk)(s
−1
k s−1

k−1 . . . s−1
l+1 s±1

l+1 . . . s±1
k−1s

±1
k ),

which by induction hypothesis is a product of two elements of N , and we are done.

3. (b) Assume G is a group and f : S → G is a function such that (f(s)f(s′))m(s,s′) = e for all s, s′ ∈ S.
By the universal property of free groups, f extends uniquely to a group homomorphism f ′ : F → G.
Now, our assumption about f clearly implies that ker(f ′) ⊇ N , so f ′ factors through a (unique) group
homomorphism f ′′ : F/N ∼= W → G, and the proof is complete.

7. (a) First, suppose that A ⊆ T does not connect all the vertices of Kn. Let C ⊆ {1, 2, . . . , n} be a
connected component of the graph obtained from Kn by deleting all edges not in A. By hypothesis Cc

is not empty. Since all transpositions in A send an element of C to an element of C, and an element of
Cc to an element of Cc; there is no way they can generate a permutation sending an element of C to an
element of Cc.

Now, we will prove by induction on n that if A ⊆ T connects all the vertices of Kn then A generates
Sn. This is clear when n = 2. Assume the result holds for n − 1, and suppose that A connects all the
vertices of Kn. By removing edges in A that form a cycle, we can see that A contains a spanning tree B
(a tree connecting all the vertices of Kn). Let i be a vertex of B adjacent to only one edge e ∈ B (it must
exist since B has no cycles), and assume the edge e corresponds to the transposition (i, j). Note that
B− e connects all the vertices {1, 2, . . . , i− 1, i+1, . . . , n}, so by induction hypothesis B− e generates all
the permutations that fix the element i. Then for every k ∈ {1, 2, . . . , i− 1, i+1, . . . , n} the transposition
(i, k) = (j, k)(i, j)(j, k) is generated by B, and therefore by A. We have then that A generates all the
transpositions in Sn and thus A generates all Sn.

5. Let (Wn, {a1, a2, . . . , an−1}) be the Coxeter system associated to the following Coxeter diagram.

a a a a a1 2 3 n−2 n−1
. . .

Consider the function f ′ : {a1, a2, . . . , an−1} → Sn defined by f ′(ai) = si. Note that

(f ′(ai)f
′(ai))

1 = s2
i = e for 1 ≤ i ≤ n − 1,

(f ′(ai)f
′(ai+1))

3 = (sisi+1)
3 = ((i, i + 1)(i + 1, i + 2))3 = (i, i + 1, i + 2)3 = e for 1 ≤ i ≤ n − 2, and

(f ′(ai)f
′(aj))

2 = (sisj)
2 = ((i, i + 1)(j, j + 1))2 = e for 1 ≤ i, j ≤ n − 1 such that |i − j| ≥ 2.

Therefore, by problem 3. (b) we know that f ′ extends to a group homomorphism f : Wn → Sn. By
problem 7. (a) we have that {s1, s2, . . . , sn−1} generates Sn, so f is a surjective homomorphism. To show
that f is injective, we will count the number of elements in Wn. For this, we need the following lemma.

Lemma. Every element of Wn can be written as a product of the ais using at most once the element
an−1.
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