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e3 e3, e2 e3, e2, e1 e3, e2, e1, e4

e1 0 0 1 1
e1, e2 0 1 2 2

e1, e2, e3 1 2 3 3
e1, e2, e3, e4 1 2 3 4

and we see how those flags work. It’s clear those flags need not be unique.

Problem 8. Let X2n = {x ∈ S2n : |x(i) − i| ! n for 1 ! i ! 2n}. We
are describing tables in matrix coordinates so, for example, if we have the dots
table for φ and a dot in position ij, that means φ(i) = 2n + 1− j.
Result 1. Let (χij) be a dots table for x ∈ S2n. Then, the following conditions
are equivalent:

i. x ∈ X2n

ii. If χij contains a dot, then n < i + j ! 3n + 1

i ⇒ ii. Let χij be a cell with a dot, then |x(i) − i| = |2n + 1 − (j + i)| ! n so
−n ! 2n + 1− (i + j) ! n, but the left side is just i + j ! 3n + 1 and the right
one is n + 1 ! i + j.
ii ⇒ i. It is the same prove backwards.
Now, we claim that X2n = [idS2n , φ] where φ(i) = n+i for i ! n and φ(i) = i−n
for i > n. Let x ∈ X2n, (xij) be the rank table for x and (χij) the dots table.
We try to find upper bounds for the value in each entry of (xij). First, we write,

(xij) =
(

A1 M1

M2 A2

)
where A1, A2, M1, M2 are n× n subtables

- So let’s work in A1.
Take χk1k2 with k1, k2 ! n. If k1 +k2 ! n, then it is easy to see that the North-
West corner of χk1k2 contains no dots. So, suppose k1 + k2 > n. We claim
that xk1k2 ! k1 + k2 − n . To prove it, suppose xk1k2 > k1 + k2 − n. Because
(χij) is a dots table for a permutation, we know there are xk1k2 columns in
NWC(χk1k2) with dots, but the set {k2, ..., n+1−k1} (Notice k2 " n+1−k1)
has k1 + k2 − n elements so the pigeonhole principle tells us that some entry
χij of NWC(χk1k2) contains a dot with i ! k1, j < n + 1 − k1 which implies
i + j < k1 + n + 1− k1 = n + 1 or i + j ! n. But x ∈ X2n and that contradicts
Result 1.

- Let’s see M1.
Take χk1k2 with k1 ! n, k2 > n. Then we have k1 < k2, so xk1k2 ! k1 is
immediate.

- For M2.
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By symmetry with M1, xk1k2 ! k2.

- We study A2.
Take χk1k2 with k1, k2 > n. This time we change a bit. Instead of looking for
some upper bound for xk1k2 , we look for a lower bound for n− xk1k2 . Let

χk∗ = {(k, j) : χkj contains a dot }, χ∗k = {(i, k) : χik contains a dot }

We suppose k1, k2 < 2n because by exercise 7, the numbers xk1(2n) and x(2n)k2

are well known. Now, define the sets Ak1 =
⋃2n

i=k1+1 χi∗ and Bk2 =
⋃2n

j=k2+1 χ∗j .
Then we have,

2n− xk1k2 = #(Ak1

⋃
Bk2)

By the inclution-exclution principle,

2n−xk1k2 = #Ak1 + #Bk2 − #(Ak1

⋂
Bk2) = (2n−k1)+(2n−k2)− #(Ak1

⋂
Bk2).

So we need an upper bound for #(Ak1

⋂
Bk2), but that is good news because

one good bound is #{i > k1 : there exists j > k2 satisfying i + j ! 3n + 1}. For
k1 + k2 + 1 " 3n + 1 this number is just 0 and for k1 + k2 + 1 < 3n + 1, the
number is 3n− (k1 + k2). So,

i. If k1 + k2 " 3n, #(Ak1

⋂
Bk2) = 0

ii. If k1 + k2 < 3n, #(Ak1

⋂
Bk2) ! 3n− (k1 + k2)

Plugging this in our equation we get,

i. If k1 + k2 " 3n, xk1k2 = k1 + k2 − 2n
ii. If k1 + k2 < 3n, xk1k2 ! n

So let’s see what we have so far. If x ∈ X2n and (xij) is the rank table for x, then

1. i, j ! n

- If i + j ! n, xij = 0
- If i + j > n, xij ! i + j − n

2. i ! n, j > n

xij ! i

3. i > n, j ! n

xij ! j
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4. i, j > n

- If i + j " 3n, xij = i + j − 2n
- If i + j < 3n, xij ! n

But assuming the equalities in those equations, we get the entries of (φij), the
rank table for φ. That proves X2n ⊆ [idS2n , φ]. The other part is much shorter.
Assume y does not belong to X2n, let (yij) be the rank table for y and (γij) the
dots table. Then the cell γij contains a dot with i + j ! n or i + j > 3n + 1. If
i + j ! n, then yij " 1 but φij = 0, so either y > φ or they are not comparable.
If i + j > 3n + 1 with i, j < 2n, we build again our sets Ai, Bj and this time
we obtain a lower bound for #(Ai

⋂
Bj). But that is immediate because a lower

bound is 0 and then 2n = 0+2n ! #(Ai
⋂

Bj)+2n = (2n− i)+(2n− j)+yij so
i+j−2n ! yij . But assuming y ! φ, we obtain i+j−2n " yij so i+j−2n = yij .
The problem here is that γij contains a dot, which implies y(i−1)(j−1) = yij − 1.
We had i + j > 3n + 1, so (i − 1) + (j − 1) " 3n and we know that implies
φ(i−1)(j−1) = (i− 1) + (j − 1)− 2n = yij − 2 giving us y(i−1)(j−1) > φ(i−1)(j−1).
The case for i or j equal to 2n is solved using the same argument and the fact
that s(2n)k = sk(2n) = k for all s ∈ S2n. We proved [idS2n , φ] ⊆ X2n, so

[idS2n , φ] = X2n

Finally, we count atoms and coatoms. The number of atoms is easily seen to be
2n − 1 because there are 2n − 1 generators in the coxeter group S2n, so there
are exactly 2n− 1 covers of idS2n in S2n and all of them are smaller than φ in
the Bruhat order. Now, let’s write the complete representation of φ,

φ = (n + 1)(n + 2)(n + 3)...(2n)(1)(2)(3)...(n)

We group the numbers like,

φ = 〈(n + 1)(n + 2)(n + 3)...(2n)〉〈(1)(2)(3)...(n)〉

We know the reflections of permutation groups are the transpositions, so let’s se
what happens if transpose the elements of our representation. If we transpose
two elements of the first factor, the inversion number of φ will rise and then,
the permutation obtained would be bigger or not comparable to φ. The same
will happen if we transpose two elements of the second factor. Now if we choose
any position a in the first factor and any position c in the second factor, there
is no b such that a < b < c and φ(a) > φ(b) > φ(c), so transposing positions a
and c we decrease the inversion number of φ by one, so φ is a cover for all the
permutations obtained in those cases. There are n numbers in the first factor
and n umbers in the second one, so there are n2 different permutations covered
by φ, that is, n2 coatoms.


