7. Let $M=\left\{\operatorname{dim}\left(E_{i} \cap F_{j}\right)\right\}_{1 \leq i, j \leq n}$, and let $j \in[n]$. The numbers in the j-th column of M correspond to the sequence

$$
\operatorname{dim}\left(E_{1} \cap F_{j}\right), \operatorname{dim}\left(E_{2} \cap F_{j}\right), \ldots, \operatorname{dim}\left(E_{n} \cap F_{j}\right)
$$

which is clearly a non-decreasing sequence. Note that the kernel of the canonical homomorphism

$$
f: E_{i} \cap F_{j} \rightarrow E_{i} / E_{i-1}
$$

is $\operatorname{ker}(f)=\left(E_{i} \cap F_{j}\right) \cap E_{i-1}=E_{i-1} \cap F_{j}$, so it induces an injection

$$
\hat{f}:\left(E_{i} \cap F_{j}\right) /\left(E_{i-1} \cap F_{j}\right) \hookrightarrow E_{i} / E_{i-1}
$$

Therefore

$$
\operatorname{dim}\left(E_{i} \cap F_{j}\right)-\operatorname{dim}\left(E_{i-1} \cap F_{j}\right)=\operatorname{dim}\left(\left(E_{i} \cap F_{j}\right) /\left(E_{i-1} \cap F_{j}\right)\right) \leq \operatorname{dim}\left(E_{i} / E_{i-1}\right)=1
$$

which shows that the sequence of numbers in the j-th column of M increases at most 1 at each step. Define

$$
S_{j}=\left\{i \in[n]: \operatorname{dim}\left(E_{i} \cap F_{j}\right)-\operatorname{dim}\left(E_{i-1} \cap F_{j}\right)=1\right\}
$$

that is, S_{j} is the set of steps where the sequence of numbers in the j-th column increases. Since $\operatorname{dim}\left(E_{0} \cap\right.$ $\left.F_{j}\right)=\operatorname{dim}(0)=0$ and $\operatorname{dim}\left(E_{n} \cap F_{j}\right)=\operatorname{dim}\left(F_{j}\right)=j$ then the set S_{j} contains exactly j elements. Moreover, note that if $j>1$ and $i \notin S_{j}$ then

$$
\operatorname{dim}\left(E_{i} \cap F_{j}\right)-\operatorname{dim}\left(E_{i-1} \cap F_{j}\right)=0
$$

and so $E_{i} \cap F_{j}=E_{i-1} \cap F_{j}$, thus

$$
E_{i} \cap F_{j-1}=\left(E_{i} \cap F_{j}\right) \cap F_{j-1}=\left(E_{i-1} \cap F_{j}\right) \cap F_{j-1}=E_{i-1} \cap F_{j-1}
$$

and

$$
\operatorname{dim}\left(E_{i} \cap F_{j-1}\right)-\operatorname{dim}\left(E_{i-1} \cap F_{j-1}\right)=0
$$

showing that $i \notin S_{j-1}$. We have then that $S_{1} \subseteq S_{2} \subseteq \cdots \subseteq S_{n}$. Since for all j we have that $\# S_{j}=$ j, then for all j there is a unique number $\sigma(j) \in S_{j} \backslash S_{j-1}$ (where we take $S_{0}=\emptyset$). Note that $\{\sigma(1), \sigma(2), \ldots, \sigma(n)\}=S_{n}=[n]$, so it is clear that σ is a permutation of the set $[n]$. Moreover, M is the rank table of the permutation σ, because for any pair i, j we have that the number of dots in the northwest corner above the point (i, j) in the rank table of σ is

$$
\begin{aligned}
\#\{k \leq j: \sigma(k) \leq i\} & =\#\left\{k \leq j: S_{k} \backslash S_{k-1} \leq i\right\} \\
& =\#\left(\left(\left(S_{1} \backslash S_{0}\right) \cup\left(S_{2} \backslash S_{1}\right) \cup \cdots \cup\left(S_{j} \backslash S_{j-1}\right)\right) \cap[i]\right) \\
& =\#\left(S_{j} \cap[i]\right) \\
& =M_{i, j}
\end{aligned}
$$

directly from the definition of S_{j}.

