
Coxeter groups homework 2

Alex Fink

4 We prove this in very much the same spirit as the implication that the
exchange property is sufficient to be a Coxeter system. We’ll say two reduced
expressions are interconvertible if one can be converted into the other by a
sequence of replacements of substrings ss′ss′ · · · by s′ss′s · · · , both of length
m(s, s′). Note that this is an equivalence relation, in particular transitive.

Let s1 · · · sk and s′1 · · · s′k be two reduced words for some w ∈ W . We
proceed by induction on k. Taking k = 0 as our base case, say, there’s
nothing to do. Otherwise, by exchange, since s′1s

′
1 · · · s′k = s′2 · · · s′k, we have

s′1s1 · · · sk = s1 · · · ŝi · · · sk for some i, i.e.

s1s2 · · · sk = s′1s1 · · · ŝi · · · sks
′
1 · · · s′k. (1)

Now, s′1s1 · · · ŝi · · · sk and s′1 · · · s′k are both reduced expressions, and accord-
ingly so are s1 · · · ŝi · · · sk = s′2 · · · s′k which by induction are interconvertible.
Adding an initial s′1 doesn’t affect any of the necessary replacements, so
s′1s1 · · · ŝi · · · sk and s′1 · · · s′k are interconvertible as well.

As for the left equality in (1), we can fall back on induction to show that
s1s2 · · · sk and s′1s1 · · · ŝi · · · sk are interconvertible so long as they have have
any common suffix, i.e. i < k. Then, by transitivity, we’d be done. So it
remains to handle the case i = k, that is s1s2 · · · sk = s′1s1 · · · sk−1.

In this situation, we exchange the roles of s′1s1 · · · sk−1 and s1s2 · · · sk and
start again. Either we finish the proof by a breakdown like (1), or else we
come to this same point in the proof again and get

s′1s1 · · · sk−1 = s1s
′
1s1 · · · ŝk−1 = s1s

′
1s1 · · · sk−2.

Iterating further, for altogether k − 1 steps, either we finish or we come to
the conclusion that

· · · s′1s1s
′
1s1 = · · · s1s

′
1s1s

′
1 (2)

both of length k.

Now, we know that the order of (s1s′1) is m(s1, s′1). Our last inequality can
be rewritten (s1s′1)

k = 1, so we find m(s1, s′1) | k. Accordingly the two sides
of (2) are interconvertible, by k/m(s1, s′1) replacements of the acceptable
form. This at last finishes the proof.

1



5 We proceed inductively, converting each suffix si · · · sk of this word to
an equivalent reduced word by means of our two permissible kinds of re-
placement. Proceeding in this way we’ll eventually convert the whole word
s1 · · · sk to a reduced word; but as s1 · · · sk = e this must be the empty word.

We can start with the empty suffix, for which we’re vacuously finished.
Otherwise, suppose s′i · · · s′l is a reduced word for si · · · sk. Now, l(si−1s′i . . . s

′
l) =

l(s′i . . . s
′
l)± 1. If the sign here is +, then si−1s′i . . . s

′
l is already reduced, and

we’re done the inductive step without any further replacements. Other-
wise si−1s′i . . . s

′
l has some reduced word w of length l(s′i . . . s

′
l) − 1, so that

l(si−1w) = l(s′i . . . s
′
l) and thus si+1w is a reduced word for s′i . . . s

′
l. By the

result of problem 4, s′i . . . s
′
l can be converted to si−1w by making only replace-

ments of the form ss′ss′ · · · → s′ss′s · · · . Performing these replacements on
the tail of si−1s′i . . . s

′
l yields si−1si−1w, and then a single deletion of si−1si−1

yields the reduced word w, as our inductive hypothesis demanded.

Accordingly, we have the following (näıve and atrocious, but at least
terminating) algorithm for the word problem in a Coxeter group1. Given a
word w of length k, make all possible replacements of the two permissible
kinds, repeatedly, until there are no more replacements that yield a word we
haven’t already seen; then conclude w = e if and only if we have seen the
empty word.

Since no permissible replacement lengthens the word, we will see at most
all words over {s1, . . . , sn} of length ≤ k, and there are finitely many of these.
So we see all possible words obtainable from w by permissible replacements
in finite time, and we know when this happens. By what we’ve just done, the
empty word will appear among these if w = e in the group, and it certainly
appears only if w = e since all permissible replacements come from relations
in the group. Therefore our algorithm is correct.

7 Let E· and F· be complete flags in Rn. It will make the argument
slightly more natural to consider our tables to include zero-indexed entries
as well. Since E0 and F0 are each just the origin, we have dim(E0 ∩ Fj) =
dim(Ei∩F0) = 0, and the corresponding entries in a partition rank table are
evidently also zero.

For any 1 ≤ i, j ≤ n we have

di,j := dim(Ei∩Fj)+dim(Ei−1∩Fj−1)−dim(Ei∩Fj−1)−dim(Ei−1∩Fj) ≥ 0.

1We could make improvements like rejecting immediately if k is not even, but they’re
hardly necessary merely to get an algorithm.

2


