We prove this in very much the same spirit as the implication that the exchange property is sufficient to be a Coxeter system. We'll say two reduced expressions are interconvertible if one can be converted into the other by a sequence of replacements of substrings $s s^{\prime} s s^{\prime} \cdots$ by $s^{\prime} s s^{\prime} s \cdots$, both of length $m\left(s, s^{\prime}\right)$. Note that this is an equivalence relation, in particular transitive.

Let $s_{1} \cdots s_{k}$ and $s_{1}^{\prime} \cdots s_{k}^{\prime}$ be two reduced words for some $w \in W$. We proceed by induction on k. Taking $k=0$ as our base case, say, there's nothing to do. Otherwise, by exchange, since $s_{1}^{\prime} s_{1}^{\prime} \cdots s_{k}^{\prime}=s_{2}^{\prime} \cdots s_{k}^{\prime}$, we have $s_{1}^{\prime} s_{1} \cdots s_{k}=s_{1} \cdots \widehat{s_{i}} \cdots s_{k}$ for some i, i.e.

$$
\begin{equation*}
s_{1} s_{2} \cdots s_{k}=s_{1}^{\prime} s_{1} \cdots \widehat{s_{i}} \cdots s_{k} s_{1}^{\prime} \cdots s_{k}^{\prime} . \tag{1}
\end{equation*}
$$

Now, $s_{1}^{\prime} s_{1} \cdots \widehat{s_{i}} \cdots s_{k}$ and $s_{1}^{\prime} \cdots s_{k}^{\prime}$ are both reduced expressions, and accordingly so are $s_{1} \cdots \widehat{s_{i}} \cdots s_{k}=s_{2}^{\prime} \cdots s_{k}^{\prime}$ which by induction are interconvertible. Adding an initial s_{1}^{\prime} doesn't affect any of the necessary replacements, so $s_{1}^{\prime} s_{1} \cdots \widehat{s}_{i} \cdots s_{k}$ and $s_{1}^{\prime} \cdots s_{k}^{\prime}$ are interconvertible as well.

As for the left equality in (1), we can fall back on induction to show that $s_{1} s_{2} \cdots s_{k}$ and $s_{1}^{\prime} s_{1} \cdots \widehat{s_{i}} \cdots s_{k}$ are interconvertible so long as they have have any common suffix, i.e. $i<k$. Then, by transitivity, we'd be done. So it remains to handle the case $i=k$, that is $s_{1} s_{2} \cdots s_{k}=s_{1}^{\prime} s_{1} \cdots s_{k-1}$.

In this situation, we exchange the roles of $s_{1}^{\prime} s_{1} \cdots s_{k-1}$ and $s_{1} s_{2} \cdots s_{k}$ and start again. Either we finish the proof by a breakdown like (1), or else we come to this same point in the proof again and get

$$
s_{1}^{\prime} s_{1} \cdots s_{k-1}=s_{1} s_{1}^{\prime} s_{1} \cdots \widehat{s_{k-1}}=s_{1} s_{1}^{\prime} s_{1} \cdots s_{k-2}
$$

Iterating further, for altogether $k-1$ steps, either we finish or we come to the conclusion that

$$
\begin{equation*}
\cdots s_{1}^{\prime} s_{1} s_{1}^{\prime} s_{1}=\cdots s_{1} s_{1}^{\prime} s_{1} s_{1}^{\prime} \tag{2}
\end{equation*}
$$

both of length k.
Now, we know that the order of $\left(s_{1} s_{1}^{\prime}\right)$ is $m\left(s_{1}, s_{1}^{\prime}\right)$. Our last inequality can be rewritten $\left(s_{1} s_{1}^{\prime}\right)^{k}=1$, so we find $m\left(s_{1}, s_{1}^{\prime}\right) \mid k$. Accordingly the two sides of (2) are interconvertible, by $k / m\left(s_{1}, s_{1}^{\prime}\right)$ replacements of the acceptable form. This at last finishes the proof.

We proceed inductively, converting each suffix $s_{i} \cdots s_{k}$ of this word to an equivalent reduced word by means of our two permissible kinds of replacement. Proceeding in this way we'll eventually convert the whole word $s_{1} \cdots s_{k}$ to a reduced word; but as $s_{1} \cdots s_{k}=e$ this must be the empty word. We can start with the empty suffix, for which we're vacuously finished. Otherwise, suppose $s_{i}^{\prime} \cdots s_{l}^{\prime}$ is a reduced word for $s_{i} \cdots s_{k}$. Now, $l\left(s_{i-1} s_{i}^{\prime} \ldots s_{l}^{\prime}\right)=$ $l\left(s_{i}^{\prime} \ldots s_{l}^{\prime}\right) \pm 1$. If the sign here is + , then $s_{i-1} s_{i}^{\prime} \ldots s_{l}^{\prime}$ is already reduced, and we're done the inductive step without any further replacements. Otherwise $s_{i-1} s_{i}^{\prime} \ldots s_{l}^{\prime}$ has some reduced word w of length $l\left(s_{i}^{\prime} \ldots s_{l}^{\prime}\right)-1$, so that $l\left(s_{i-1} w\right)=l\left(s_{i}^{\prime} \ldots s_{l}^{\prime}\right)$ and thus $s_{i+1} w$ is a reduced word for $s_{i}^{\prime} \ldots s_{l}^{\prime}$. By the result of problem $4, s_{i}^{\prime} \ldots s_{l}^{\prime}$ can be converted to $s_{i-1} w$ by making only replacements of the form $s s^{\prime} s s^{\prime} \cdots \rightarrow s^{\prime} s s^{\prime} s \cdots$. Performing these replacements on the tail of $s_{i-1} s_{i}^{\prime} \ldots s_{l}^{\prime}$ yields $s_{i-1} s_{i-1} w$, and then a single deletion of $s_{i-1} s_{i-1}$ yields the reduced word w, as our inductive hypothesis demanded.

Accordingly, we have the following (naïve and atrocious, but at least terminating) algorithm for the word problem in a Coxeter group ${ }^{1}$. Given a word w of length k, make all possible replacements of the two permissible kinds, repeatedly, until there are no more replacements that yield a word we haven't already seen; then conclude $w=e$ if and only if we have seen the empty word.

Since no permissible replacement lengthens the word, we will see at most all words over $\left\{s_{1}, \ldots, s_{n}\right\}$ of length $\leq k$, and there are finitely many of these. So we see all possible words obtainable from w by permissible replacements in finite time, and we know when this happens. By what we've just done, the empty word will appear among these if $w=e$ in the group, and it certainly appears only if $w=e$ since all permissible replacements come from relations in the group. Therefore our algorithm is correct.

