For a Coxeter system (W, S) let $l: W \rightarrow \mathbb{N}$ take $w \rightarrow k$ where $w=s_{1} \ldots s_{k}$ is a reduced expression for w. Then
(a) $l(u v) \equiv l(u)+l(v)(\bmod 2)$.

Proof. Let $u=s_{1} \ldots s_{k}$ and $v=s_{k+1} \ldots s_{n}$ be reduced expressions for u and v. If $u v=s_{1} s_{2} \ldots s_{n}$ is a reduced expression for $u v$, then $l(u v)=l(u)+l(v)$ and the result follows. On the other hand, if $u v=s_{1} s_{2} \ldots s_{n}$ is not reduced, then we repeatedly apply the deletion property to obtain a reduced expression for $u v$. Each application of the deletion property preserves the parity of n (since it removes two letters at a time), so $l(u v) \equiv l(u)+l(v)(\bmod 2)$.
(b) $l\left(w^{-1}\right)=l(w)$

Proof. Since $l\left(w w^{-1}\right)=l(e)=0$, we have that $l(w) \equiv l\left(w^{-1}\right)(\bmod 2)$, by part (a). Suppose $w=s_{1} \ldots s_{k}$ and $w^{-1}=t_{1} \ldots s_{k-2 m}$ are reduced expressions for w and $w^{1-}\left(\right.$ where $\left.m \in \mathbb{Z}_{\geq 0}\right)$. We show that $m=0$. Since $e=w w^{-1}=$ $s_{1} \ldots s_{k} t_{1} \ldots t_{k-2 m}$ has length zero, we apply deletion repeatedly to the RHS. But each application must remove an s_{i} and a t_{j} since our original expressions for w and w^{-1} were reduced. Therefore, to obtain the empty word we must apply deletion precisely k times. Thus, $\mathrm{m}=0$ as desired.
(c) $l(s w)=l(w) \pm 1$

Proof. If $w=s_{1} \ldots s_{k}$ be a reduced expression for w . If $s w$ is reduced, then clearly $l(s w)=l(w)+1$. If $s w$ is not reduced, then $s w=s_{1} \ldots \widehat{s_{i}} \ldots s_{k}$ for some i by the exchange property. This is a reduced expression for $s w$ since otherwise $w=s(s w)$ would be expressible as a word of length less than k which contradicts $w=s_{1} \ldots s_{k}$ being reduced.
(d) The distance function $d(u, v)=l\left(u v^{-1}\right)$ is a metric on W.

Proof. Since no word can have negative length, the distance function is nonnegative. Suppose $d(u, v)=0$. Then $l\left(u v^{-1}\right)=0$ implies that $u=\left(v^{-1}\right)^{-1}=$ v. Thus d is positive-definite. Since $v u^{-1}=\left(u v^{-1}\right)^{-1}$, we have $l\left(u v^{-1}\right)=$ $l\left(v u^{-1}\right)$ by part (b), and hence that d is symmetric. Finally, if $s_{1} \ldots s_{k}$ and $t_{1} \ldots t_{j}$ are reduced expressions for $u w^{-1}$ and $w v^{-1}$ respectively, then we have a (not necessarily reduced) expression $u v=u w^{-1} w v^{-1}=s_{1} \ldots s_{k} t_{1} \ldots t_{j}$ of length $l\left(u w^{-1}\right)+l\left(w v^{-1}\right)$. So $d(u, v) \leq d(u, w)+d(w, v)$. So d is a metric on W.

